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Underground Natural Gas Microleakage Detection
With Hyperspectral Imagery Based on Temporal

Features and Ensemble Learning
Jinbao Jiang , Yingyang Pan , Kangning Li , Xinda Wang , and Wenxuan Zhang

Abstract—Microleakage in underground natural gas storage
has serious impacts on the environment or public safety. Recent
studies have shown that hyperspectral imagery can detect natural
gas microleakage by spectral or spatial features of vegetation in-
directly. However, the identification of natural gas microleakage
based on hyperspectral imagery still suffers from the following
problems: the spectral and spatial features of vegetation change
in a complex way with increasing stress time; the effectiveness of
ensemble classifiers in recognizing natural gas-stressed vegetation
in hyperspectral imagery is unclear; and there is also a lack of
studies on the spatial and temporal changes of vegetation stress
in natural gas microleakage. Therefore, hyperspectral images of
wheat, bean, and grass in different periods were collected. First,
the spectral features were filtered using the Relief-F algorithm.
The spatial texture features were extracted using the grayscale
co-occurrence matrix. The temporal features were extracted using
the bi-temporal band ratio. Then, an ensemble classification model
fusing spectral, spatial, and temporal features was established.
Finally, the natural gas microleakage information was extracted
based on the minimum external circle, and the spatial-temporal
changes of vegetation stress were analyzed. The results showed that
the average stress radii of wheat, bean, and grass were 1.07, 0.83,
and 0.86 m, respectively. The mean absolute localization error of
natural gas microleakage points was less than 0.4 m. This study
provides a theoretical basis and technical support for the future use
of satellite hyperspectral detection of microleakage in underground
gas storage reservoirs.

Index Terms—Ensemble classification, feature fusion, hyper-
spectral imagery, natural gas microleakage.

I. INTRODUCTION

NATURAL gas is widely used in various fields such as
industrial fuels, electricity, and transportation [1], playing

an increasingly important role in the global energy consumption
system. Underground gas storage is very suitable for natural gas
storage because of its advantages such as large storage capacity,
high mobility, and low operating costs [2]. However, there is a
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risk of leakage from natural gas storage or underground pipelines
due to factors such as the aging of pipelines, geological stress,
or human damage [3]. Natural gas leakage will not only cause
energy loss but also may cause serious environmental pollution
[4], [5]. Under certain conditions, natural gas may also explode
when mixed with air [6]. In addition, natural gas leakage could
reduce the operational efficiency of gas storage and increase the
cost of storing natural gas. In order to realize the safe and stable
operation of underground gas storage, it is important to detect
the underground gas leakage information timely and accurately.

Traditional detection methods focus on detecting natural gas
leaks through changes in pipeline pressure, temperature, or flow
rate [7]. However, the pressure changes caused when closing
or opening the valve can cause false identification of leaks.
In addition, this detection method is not ideal for detecting
small leaks. Therefore, a more efficient and convenient detection
method is needed. Natural gas is a low-quality hydrocarbon,
and when a slight leakage occurs in an underground storage
reservoir or pipeline, its migration path in the soil is generally
vertical upward [8]. Therefore, it will compress the original soil
air, making the vegetation roots in a low oxygen environment,
affecting the normal growth and development of vegetation, thus
causing changes in vegetation chlorophyll content and canopy
reflectance [9], [10]. As a noncontact technology, hyperspectral
image remote sensing can obtain real-time, rapid, and nonde-
structive information on surface vegetation changes, and can
detect underground gas leakage nondestructively and indirectly
[11], [12].

Many scholars in China and abroad have conducted studies
related to the detection of natural gas or other hydrocarbon
leakage using hyperspectral images. Van der Werff et al. [13]
used two successive Hough transforms to extract spatial infor-
mation from images and combined with spectral information
to identify natural gas microleakage areas from hyperspectral
imagery, which revealed surface vegetation stress ranging from
5 to 14 m in diameter and reduced false identification rates.
Noomen et al. [14] combined spectral vegetation indices and
spatial filters to detect anomalous vegetation caused by gas
leakage in the field using Probe-1 hyperspectral imagery and
found that the number of “false anomalies” was significantly
reduced compared to that detected using spectral information.
Male et al. [15] conducted a CO2 microleakage stress field ex-
periment in Montana, USA. Canopy hyperspectral and airborne
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hyperspectral images of the experimental area were collected.
The spectral and spatial features were combined with the spectral
angular mapping method for CO2 microleakage point detection,
and good results were achieved. Noomen et al. [16] used multi-
temporal HyMap hyperspectral imagery to detect the bioreme-
diation status after microleakage of underground hydrocarbon
transport pipelines, and used normalized vegetation indices to
standardize the two-temporal images of 17 sampling sites for
comparative analysis. The results showed a user detection ac-
curacy of 71% over three years. Jiang et al. [17] constructed
spectral index and color features based on hyperspectral images,
and fused the two types of detection results using the shape
detection algorithm and linear weighted fusion method, which
can significantly improve the detection accuracy of natural gas
microleakage points. Du et al [18] proposed that combining
CNN and SAFY modeling methods can accurately detect natural
gas leaks based on UAV hyperspectral images.

Although the use of hyperspectral imaging remote sensing
is considered a promising method for detecting natural gas
microleakage, the potential of this technology has not yet been
fully realized. At present, most researchers focus on the spectral
and spatial features of hyperspectral images, but do not study the
temporal features of the images in depth. The spectral and spatial
features of surface-stressed vegetation change with increasing
stress time during natural gas microleakage. For the hyperspec-
tral images with multiple time series, its advantage is mainly
the ability to obtain temporal features that cannot be extracted
from single-time phase images. Remote sensing images based
on time-series features are widely used for land cover change
[19], natural disaster monitoring [20], and biological stress iden-
tification [21]. However, the application in the field of natural
gas microleakage stress identification is still insufficient. The
main reasons are as follows: first, it is usually difficult to obtain
hyperspectral images with multiple time series for the study
area, and thus, cannot obtain its temporal features; second, there
is a lack of methods to construct suitable temporal features of
natural gas microleakage stress vegetation. Traditional methods
for temporal phase feature analysis of images, such as principal
component analysis, wavelet analysis, or Fourier analysis, which
rely on the labeling of the change component of the ground
object type [22], are a tedious process. In addition, the spectral
characteristics of surface vegetation are highly dependent on the
phenological stage of the vegetation [23]. In a single date scene,
the spectral characteristics of vegetation have a weaker ability
to respond to external stress and disturbance, and may fluc-
tuate with phenological differences or environmental changes.
Temporal spectral features allows stable access to vegetation
phenology differences between temporal scenarios, thus char-
acterizing the progressive development of internal and external
symptoms caused by vegetation lesions while suppressing other
confounding factors (e.g., soil background albedo and light
effects) [24]. Therefore, it is necessary to design a fast and
efficient method for temporal feature extraction.

In recent years, machine-learning algorithms have performed
well in hyperspectral imaging classification and recognition
applications, which can model high-dimensional data and adapt
to multisource data fusion processing. Rumpf et al. [25] used

nine vegetation indices related to physiological parameters as
features for nondestructive identification of diseased and healthy
sugar beet by support vector machine (SVM) with radial basis
function as the core, with a classification accuracy of 97%.
Tian et al. [26] used disease specific spectral features and
machine-learning-based sequential floating forward selection
to detect rice blast at different infection stages and showed
classification accuracies higher than 65% and 80% for asymp-
tomatic infection and early infection stages, respectively. In
addition, it is difficult for a single classifier to maintain excellent
performance for multiple classification scenarios all the time
[27]. Compared to a single classifier, an ensemble classifier
(EC) can achieve better classification results [28]. Yuan et al.
[29] used three classifiers, SVM, PLS-DA, and SIMCA, to form
an EC with an overall classification accuracy of 97.66% for
pixel-level classification of healthy and moldy peanuts, all of
which outperformed other individual classifiers. Yao et al. [30]
developed the ensemble learning model for wetland vegetation
mapping by superimposing Random Forest (RF), CatBoost, and
XGBoost algorithms, and found that ensemble learning has
better performance than using a single machine-learning model,
with an overall accuracy between 77.02% and 92.27%.

The current hyperspectral image-based identification of nat-
ural gas microleakage stressed vegetation has the following
problems:

1) existing studies mainly use the spectral features or spatial
features of the images, but rarely consider the temporal
features of the images in depth;

2) EC has stronger generalization ability and better classifi-
cation performance than a single classifier, and has better
stability in classification application of hyperspectral im-
ages, but it has not been applied in hyperspectral recog-
nition classification of natural gas microleakage stressed
vegetation;

3) lack of spatial and temporal analysis of vegetation stress
under natural gas microleakage.

Therefore, this study collected the multitemporal hyperspec-
tral imaging data of wheat, bean, and grass under the condition of
simulating the microleakage of natural gas in the field. First, the
spectral, spatial, and temporal features of hyperspectral images
were extracted and fused. Then, EC was used to classify the
natural gas microleakage stress vegetation, and a multifeature
fusion stress vegetation identification model was constructed.
Finally, the minimum external circle algorithm was used to
extract the natural gas microleakage stress vegetation area and
leak point location, and the spatial and temporal variation of the
stress area range was analyzed.

II. MATERIALS AND METHODS

A. Experimental Design

The experimental site was located in a farmland in
Zhangziying Town, Daxing District, Beijing (39°39’2.56“N,
116°34’33.10”E). The experimental subjects included three
types of surface vegetation: wheat, bean, and grass. Eight plots
of 2.5 m × 2.5 m were set up for each vegetation, including four
gas groups and four control groups, where the odd numbered
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Fig. 1. Overview map of the field experiment.

plots were gas groups and the even numbered plots were control
groups, as shown in Fig. 1. The adjacent plots of the gas and
control groups were spaced by 0.5 m, and the interval between
every two rows of plots was 1.5 m, which facilitated the pas-
sage of collection vehicles and improved the efficiency of data
collection.

Natural gas is liquefied natural gas provided by gas compa-
nies, which is gasified and transported through copper pipes.
Before natural gas goes underground, it is connected to the
copper pipes using PVC pipes. At the edge of the plot, the
PVC pipe was inserted at an angle into the soil about 0.6 m
deep directly below the center of the plot. Nine small holes were
drilled evenly at the bottom of the pipe to ensure that the diffusion
concentration of natural gas was the same in all directions around
the underground leakage point.

Wheats were seeded on September 20, 2018, with natural gas
stress from October 11 to November 18. Beans were seeded
on June 15, 2019, with natural gas stress dates from July 4 to
September 3. Grass was seeded on June 10, 2017, with natural
gas stress from July 8 to September 17. The rate of natural gas
microleakage rate was controlled at 1 L/min by a computer and
PLC controller during the experiment.

B. Data Collection

Fig. 2(a) shows the methane concentration measurement us-
ing the GXH-3050E infrared gas analyzer (Junfanglihua, Bei-
jing, China). First, the instrument was turned ON and warmed
up for 30 min. In addition, a rubber hose was used to connect
the pipe valve to the analyzer. Then, the valve was opened and

Fig. 2. (a) Methane concentration measurement. (b) Data sampling area and
methane concentration distribution.

Fig. 3. Hyperspectral imagery acquisition.

the staff recorded the peak concentration, after which the valve
was closed. Soil gas concentrations at ten sampling points were
measured sequentially according to the aforementioned process.
Since the roots of the experimental vegetation were mainly
distributed in the soil at 30 cm depth, we analyzed the methane
gas concentration at a depth of 30 cm in the soil. After data
interpolation and contour fitting, the concentration distribution
of methane gas in soil at a depth of 30 cm was obtained [black
contour in Fig. 2(b)]. The area with largest gas concentration
is offset by approximately 15 cm from the leakage point [see
Fig. 2(b)]. In this study, the area with a gas concentration greater
than 33% were designated as the center group, the area with a
gas concentration between 10% and 20% were designated as
the edge group, and the area with a gas concentration of 0 were
designated as the control group.

The acquisition of near ground hyperspectral imaging is
shown in Fig. 3. Hyperspectral images were acquired using the
SOC710e portable hyperspectral imager from Surface Optics
Corporation (SOC), USA. It has an imaging spectral range of
400–1000 nm with 128 bands. Data acquisition was performed
in clear and windless weather from 11:00 to 13:00. The imager
was first focused, and then, fixed to the elevator platform, and
the sampling process of the spectrometer was controlled by



1194 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

computer. During the sampling process, the lens was aimed at
the center of the plot and the height of the lens was adjusted to
5 m, while the standard plate was placed in the measurement
area. The exposure time was adjusted according to the light,
and each image was taken over a ground area of approximately
3.7 m × 2.8 m, which ensures that a single hyperspectral image
could cover the entire plot. The spatial resolution of each image
is approximately 2.8 mm × 2.8 mm. In specific experiments,
five periods of image data were acquired for each vegetation
type.

C. Data Preprocessing

The raw data acquired by the spectrometer is the spectral radi-
ance brightness, which needs to be radiometrically corrected and
converted to surface reflectance data, thus reducing the effects
of terrain and altitude changes, image exposure, atmospheric
scattering, etc., on the spectrometer imaging. The radiation
correction equation is as follows:

R =
IO − ID
IW − ID

(1)

where R represents the reflectance of the corrected hyperspectral
image; IO represents the radiometric brightness data of the
original hyperspectral image; IW represents the reflection data
of the reference corrected whiteboard; and ID represents the
dark current data.

Due to light variations and the instrument system itself, noise
may exist during hyperspectral imaging data acquisition. There-
fore, it is necessary to smooth the data. In this article, a five-point
weighted smoothing algorithm was used for spectral smoothing
of each pixel point in the hyperspectral image. The formula is
as follows:

RS =
1
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2
Ri+1 +

1

4
Ri+2

)

(2)
where Riis the reflectance value at band i,RS is the reflectance
value after smoothing of the band, and k represents the number
of bands.

The image of one period was selected as the reference image,
and then, the images of other periods were registered with the
same name point. After image registration, each image was
cropped to a size of 900 × 900 pixels, and then, rotated 180° so
that the top of the image faces north.

D. Data Analysis

The technology roadmap of the natural gas microleakage
detection in this study is shown in Fig. 4. First, spectral, spatial,
and temporal features of the hyperspectral images were extracted
separately and fused at the feature level. Then, the target images
were classified using the EC to obtain a preliminary natural
gas-stressed vegetation classification map, and the classification
results were optimized using mathematical morphology. Finally,
the minimum external circle algorithm was used to obtain the
vegetation stress range and natural gas microleakage points.

1) Feature Extraction and Fusion:

Fig. 4. Technology roadmap.

a) Spectral feature extraction: Two hundred pixels were
randomly selected in the control, center, and edge group regions,
respectively. The spectral mean value was taken as the spectral
reflectance of the region. The weights of all bands were calcu-
lated using the Relief-F algorithm [31], ranked according to the
weight magnitude, and the single band corresponding to the top
10% of optimal weights was selected and marked with a single
score. The single bands corresponding to the optimal weights
were calculated for all periods and all vegetation, and the single
band with the highest statistical score was used as the spectral
feature.

b) Texture feature extraction: The gray-level co-
occurrence matrix (GLCM) is a matrix function involving
pixel distances and angles, which reflects the comprehensive
information of an image in terms of direction, interval,
magnitude of change, and speed by calculating the correlation
between the grayscale of two points at a certain distance
and a certain direction in the image [32]. The GLCM can be
expressed as the joint frequency distribution of the simultaneous
occurrence of two grayscale pixels with a certain distance in
the image. The mathematical interpretation is the probability
of simultaneous appearance of pixel i as the starting point and
pixel j as the ending point at a certain direction θ and distance d.
In this article, four texture features were extracted using GLCM,
namely variance, homogeneity, entropy, and correlation. The
specific formulas are shown as follows:

P (i, j|d, θ) = {
(x, y)|f(x, y) = i, f(x+ dx, y + dy)

= j;x, y = 0, 1, 2 . . . , N − 1
}

(3)
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Variance =
∑
a,b

p(a, b|d, θ)× (a− μ)2 (4)

Homogeneity =
∑
a,b

{p(a, b|d, θ)}2
1 + (a− b)2

(5)

Entropy =
∑
a,b

p(a, b|d, θ) log p(a, b|d, θ) (6)

Correlation =
∑
a,b

(a− μ)(b− μ)p(a, b|d, θ)
VAR

(7)

where θ can be taken in four directions: 0°, 45°, 90°, and
145°. a and b represent the row number and column number of
the image matrix, respectively, and p(a, b|d, θ) is the conditional
probability.

c) Temporal feature extraction: The main reason for the
change in the spectrum of surface vegetation is the change in the
chlorophyll content and leaf area index (LAI) of the vegetation
[33]. The decrease in chlorophyll content or LAI resulted in
diminished absorption in the red and blue spectral domains,
while the green spectral domain is less affected. The chlorophyll
content or LAI of surface vegetation may change drastically
under the stress of underground natural gas microleakage. In
order to capture the spectral change characteristics of vegeta-
tion under natural gas microleakage, this study constructed a
bitemporal band ratio model (BTBR) based on the green and red
bands caused by chlorophyll change, as shown in (8). The BTBR
is used to highlight the spectral characteristics of vegetation
associated with natural gas microleakage stress. This index not
only highlights differences in vegetation symptoms between two
different stress periods but also minimizes differences in image
brightness due to inconsistent calibration of the spectral imager
and variations in insolation between acquisition dates [34]. This
compensates to a large extent for the lack of radiometric correc-
tion of hyperspectral images, which highlights the advantage of
reliable quantitative comparisons under two stress dates.

BTBR =
(RTn/RT1

)− (GTn/GT1
)

(RTn/RT1
)+(GTn/GT1

)
(8)

where R and G represent the red and green bands of the image.
Tn and T1 represent phase n and phase 1, respectively. The
calculation results of the BTBR serve as temporal characteristics
for the Tn.

d) Feature fusion: In this article, the extracted spectral,
spatial, and temporal features were fused using the feature
stacking method [35]. In the fusion process, since the different
types of features represent different physical meanings, the most
fundamental one is the different value ranges of the type param-
eters, and the large value parameters may mask the recognition
ability of the small value parameters. Therefore, this study needs
to normalize the fused feature covariates so that the different
features are in the same range of values during fusion. In this
article, the extracted color and texture features are normalized
to the [−1, 1] interval using min-max normalization [35].

2) Ensemble Learning Model: Ensemble learning [36] is the
task of learning (classification) by generating and combining

multiple basic learning algorithms, specifically by combining
multiple classifiers into an integrated model by some strategy
to make reliable judgments on the results. The current effective
classifiers for hyperspectral image classification include SVM,
RF, and back propagation (BP) neural networks. The SVM is a
nonparametric supervised classifier with significant easy gener-
alization properties by minimizing the structural risk strategy to
reduce the misclassification errors of training data [37]. How-
ever, its classification performance is more significantly affected
by parameters and is sensitive to regularization parameters.
RF is a parameter-free machine learning method that can handle
a large number of input features and it is contains multiple
decision trees. It has good noise immunity and tolerance to
missing data, but the running efficiency decreases significantly
when the number of decision trees is large [38]. The BP neural
network is a multilayer feed-forward neural network trained
according to the error back propagation algorithm. It is widely
used in various classification studies for its excellent nonlinear
approximation performance to minimize the prediction error
[39]. However, this method approximates a black-box operation
and lacks a visual explanation of the classification process. All
the aforementioned three methods have been widely applied in
the field of hyperspectral image classification; however, each
of them has certain shortcomings and limitations. The uncer-
tainty and ambiguity of individual classifiers can be reduced
by combining their results for discriminant analysis through
ensemble learning. In addition, Ran et al. [40] classified stressed
vegetation under natural gas microleakage based on multilevel
multiscale segmentation and rotating forest classification algo-
rithm (MMS_Ensem_RoF), which achieved good classification
accuracy and detection results. Therefore, this study introduces
the MMS_Ensem_RoF method to classify the fused images and
analyze them in comparison with ensemble learning.

In this study, one of the gas-stressed plots and one of the
control plots were selected as training images, and the others
were used as validation images. The labels were divided into
three categories: healthy vegetation (control group), heavily
stressed vegetation (central group), and lightly stressed veg-
etation (edge group). Three thousand samples were selected
from the hyperspectral images of each period, and each class
of labels included 1000 samples. The samples were randomly
divided into 60% training samples and 40% validation samples,
and each class included 600 training samples and 400 validation
samples.

3) Stress Range Extraction Method: The ultimate goal of this
study is to detect natural gas microleakage points and to identify
natural gas microleakage stress vegetation areas. Therefore, the
heavily stressed and lightly stressed areas were combined as nat-
ural gas stressed vegetation areas. Based on this, mathematical
morphology and the minimum external circle algorithm were
applied to obtain the vegetation stress area and the location of
natural gas microleakage points.

The mathematical basis of morphology is set theory, which
includes four basic operations: erosion, expansion, opening, and
closing [41]. These basic operations enable processing such as
noise removal, edge detection and feature extraction of images
[42]. After mathematical morphological processing, the natural
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Fig. 5. Hyperspectral characteristics of vegetation under natural gas mi-
croleakage stress. (a)—(c) Wheat, bean, and grass, respectively.

gas microleakage stress region appears as an irregular circle-
like shape in the image. The connected objects in the central
region of the image were extracted using the minimum external
circle algorithm. The extracted fitted circle was used to represent
the vegetation stress range of natural gas microleakage, and the
center of this fitted circle was used as the location of the natural
gas microleakage point.

III. RESULTS

A. Feature Extraction and Fusion Results

1) Spectral Feature: The hyperspectral reflectance of wheat,
bean, and grass is shown in Fig. 5. In the visible region of
400–730 nm, the spectral reflectance of the vegetation in both
the center and edge groups was greater than that of the control
group. In addition, the spectral reflectance of the center group
was greater than that of the edge group, indicating that the
vegetation in the center group was more affected by natural
gas microleakage stress. In the NIR region of 760–1000 nm,
the spectral reflectance of vegetation in both the control and
edge groups was greater than that of vegetation in the center
group. The aforementioned spectral changes may be due to the
fact that the increased concentration of subsurface natural gas
changes the original air components in the soil, leading to a
decrease in oxygen content [43], making the vegetation roots less
capable of aerobic respiration and nutrient uptake. The decrease
in root absorption capacity seriously affects the normal growth
of vegetation [44], resulting in a decrease in chlorophyll content
or biomass of vegetation, which leads to changes in the spectral
response of vegetation [45].

The band weights of each hyperspectral image for wheat,
bean, and grass were calculated separately using the Relief-F
algorithm, as shown in Fig. 6. The larger the weight of the
bands, the greater the ability to discriminate between vegetation
stressed by different concentrations of natural gas microleakage.
The most relevant single band of wheat and grass was in the range
of 750–850 nm, and the most relevant single band of bean was in

Fig. 6. Single band weight values based on the Relief-F algorithm.
(a)–(c) Wheat, bean, and grass, respectively.

TABLE I
MULTICLASS HYPERSPECTRAL IMAGE FUSION FEATURES

the range of 550–690 nm. The Relief-F feature processing was
carried out on the spectral information of all the stressed periods
of the three vegetation species. For the single-band weight results
of each phase, the band with the top 10% weight was selected as
the optimal candidate band and marked as one score. Finally, the
single band with the highest score was selected as the spectral
feature of the hyperspectral image. The selected characteristic
bands are shown in Table I.

2) Texture Features: Texture features such as variance, ho-
mogeneity, entropy, and correlation were extracted from the
feature band images (as shown in Fig. 7). The values of variance,
entropy, and correlation of vegetation in the natural gas leakage
stress area were larger than those of healthy vegetation, which
were shown in high brightness in the image. The homogeneity
value of the coerced vegetation was less than that of the healthy
vegetation, which was shown in low brightness in the image.
In addition, the texture distribution of vegetation in natural
gas-stressed areas was complex, and there was some variability
in texture in areas with different degrees of natural gas stress.
In this study, texture features were extracted from grayscale
images in the feature bands, and finally, 40 texture features were
obtained from hyperspectral images.

3) Temporal Features: Based on the single-band feature
screening results, 690 and 530 nm were selected as the red and
green bands for calculating the BTBR. The temporal features of
the three vegetation hyperspectral images are shown in Fig. 8.
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Fig. 7. Vegetation texture images under natural gas microleakage stress. (a)–
(d) Texture feature image of wheat. (e)–(h) Texture feature image of bean. (i)–(l)
Texture feature image of grass.

Fig. 8. Temporal characteristics of natural gas microleakage stress on vegeta-
tion. (a)–(c) Wheat, bean, and grass, respectively.

The BTBR of vegetation in the natural gas microleakage stressed
area was larger than that of healthy vegetation, which is high-
lighted in the image. As can be seen from Fig. 8, the range
of temporal features changes in wheat and grass under natural
gas stress is greater than that of bean, which better captures the
changing characteristics of the stressed vegetation at different
times. This is because bean plants are higher than wheat and
grass, and the branches and leaves of bean in the edge group
will extend to the center group due to continuous growth.

4) Feature Fusion: Ten spectral features, forty spatial tex-
ture features, and one temporal phase feature were obtained
in this study (as shown in Table I). Then, the spectral, spa-
tial, and temporal features were fused at the feature level to
improve the robustness of subsequent classification models and
the interpretability of natural gas microleakage stress features.
Therefore, the fused data include a total of 51 features.

B. Feature-Fusion-Based Classification Results

An ensemble classification model was established based on
the fused multifeature image data. The ensemble classification
model includes three individual classifiers, namely SVM, RF,
and BP. The labels of the vegetation in the control, center,

Fig. 9. Vegetation classification results under natural gas microleakage
stress based on multifeature fusion. (a)–(b5) Classification results of wheat-
stressed and control plots, respectively. (c)–(d5) Classification results of bean-
stressed and control plots, respectively. (e)–(f5) Classification results of grass-
stressed and control plots, respectively.

and edge groups are assigned as 0, 1, and 2 during the sam-
ple training. The optimal model parameters of the individual
classifier were determined based on multiple training sessions.
The optimal parameters of the SVM model are C = 80 and
gamma = 0.12. The optimal parameters of the RF model
are n_estimators = 100, min_samples_split = 7, and
min_samples_leaf = 2. The optimal parameters of the BP neu-
ral network model are λ = 0.001, and batch_size = 100. A
fivefold cross-validation was used to improve the accuracy and
confidence of the model. Finally, the classification results of
individual classifiers were passed through the Moore voting
method to obtain the final classification results. In addition,
this study referred to the MMS_Ensen_RoF model parameter
settings of Ran et al. [40]. The number of base classifiers and
the number of feature subsets in the RoF classification algorithm
were set to 10 and 35, respectively. The final image classification
results were achieved by the mean of ten Monte Carlo runs.

The classification results of the validated images of wheat,
bean, and grass are shown in Fig. 9. The average overall classi-
fication accuracies (OA) of the training and validation sets are
shown in Table II. The overall classification accuracy of wheat,
bean, and grass were 94.52%, 93.94%, and 96.40%, respectively.
Compared with individual classifiers, the EC model obtains
optimal classification accuracy on both training and validation
images. For the bean and grass, the classification accuracy based
on MMS_Ensen_RoF was higher than that of Ran et al. [40]. This
is because this study fully employs spectral-spatial-temporal
features for image classification, and Ran et al. [40] only used
spectral and spatial features. It demonstrates that the inclusion of
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TABLE II
OVERALL ACCURACY OF VEGETATION CLASSIFICATION UNDER NATURAL GAS MICROLEAKAGE STRESS BASED ON MULTIFEATURE FUSION

Fig. 10. Extracting vegetation stress regions from natural gas microleakage
based on multifeature fusion. (a)–(c) Result of class merging of wheat, bean,
and grass, respectively. (d)–(f) Results of mathematical morphology treatment
of wheat, bean, and grass, respectively.

temporal features can better characterize the differences between
stressed and healthy vegetation and obtain better classification
results. The overall classification accuracy of bean was lower
than that of wheat and grass, which may be due to the phe-
nomenon of superimposed shading caused by the expansion of
bean branches in all directions [see Fig. 9(c)]. The edge areas of
the control plots were easily misidentified as heavily stressed
vegetation due to the bare soil at the edges of the plots; in
addition, some shaded areas in the control plots were easily
misidentified as lightly stressed vegetation. The misidentified
regions of the control plots are all scattered and optimized by
mathematical morphological operations.

C. Natural Gas Microleakage Stresses Vegetation Extraction

In this study, heavily stressed vegetation and lightly stressed
vegetation were merged as in Fig. 10(a)–(c). After merging,
the red areas were stressed vegetation and the green areas were
healthy vegetation. It can be seen that the range of vegetation
stress was irregularly circular, containing many small spots or
voids. The image was poorly connected and closed, especially
in the edge areas of the bean plots. The reason for the aforemen-
tioned results may be that leaves overlap and cross each other
during natural gas microleakage stress and vegetation growth

Fig. 11. Identification results of wheat under natural gas microleakage stress
at different periods.

and development. Shadows and bare soil tend to appear during
image acquisition, affecting the boundaries and integrity of the
classification results [46]. In order to improve the aforemen-
tioned situation, this study uses a mathematical morphology al-
gorithm to perform erosion, expansion, and opening and closing
operations on the merged images, which can effectively remove
the internal speckles and voids in the target and smooth the target
boundary. The processing results are shown in Fig. 10(d)–(f).

The range of vegetation stress and the location of leakage
points of the image were extracted using the minimum external
circle, as shown in Figs. 11–13. Fig. 11 shows the identification
results of wheat under natural gas microleakage stress at dif-
ferent periods. On October 24, the center group of wheat was
subjected to natural gas stress, resulting in light green symptoms
on the leaves and short and sparse plants. It can be seen from
Fig. 11 that the areas of natural gas microleakage stress were not
the same in different plots, which may be related to the diffusion
range of methane gas, the growth state of the vegetation, or the
external environment [47]. On November 1, the extent of stress
increased further in all plots. Wheat stress symptoms were more
severe in the center group, with the leaf color gradually changing
from the initial light green to light yellow. The light green
characteristics of wheat in the edge group were more obvious.
From November 9 to November 18, the stress range of wheat
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Fig. 12. Identification results of bean under natural gas microleakage stress at
different periods.

Fig. 13. Identification results of grass under natural gas microleakage stress
at different periods.

has been expanding continuously, and the stress symptoms have
become more severe.

Fig. 12 shows the identification results of bean under natural
gas microleakage stress at different periods. On July 30, beans
showed obvious symptoms of stress, with sparse growth and
dwarf vegetation in the center group, and most leaves had turned
yellow or brown. The central area of the plot had relatively clear
bare soil. The leaves of bean in the edge group were light green.
The distance between the detected leakage point and the actual
leakage point in plot Bean3 is far, which may be due to the
slow growth of bean at the edge, resulting in the appearance of
obvious bare soil, making the detection error larger. On August
14, the bean stress range showed an increasing trend. The bean
in the center group grew slowly, with sparse branching and more
severe yellowing. From August 24 to August 31, the stress range
of bean gradually decreased.

Fig. 13 shows the identification results of grass under natural
gas microleakage stress at different periods. On August 7, the

Fig. 14. Variation pattern of vegetation stress range of natural gas microleak-
age. (a)–(c) Wheat, bean, and grass, respectively. (Vertical bars indicate standard
deviation.)

stress symptoms of grass were less severe. In the center group,
there was slight yellowing of the leaves and uneven distribution
of bare soil. In addition, the stress range of Grass1 was larger.
This is because the growth condition of Grass1 before aeration
was poorer, so the stress symptoms were more severe after
aeration. On August 24, the stress range of the grass increased
further. This was due to the unstable growth of grass in the
center group, which was prone to growth stagnation or even
death, resulting in an increase in the stress range in the center
group. On September 7, there were some differences in stress
range changes in the grass plots, with a significant decrease in the
Grass3 plot and a slight increase in the other plots. On September
17, the grass showed a trend of decreasing stress extent.

D. Spatial and Temporal Changes in Stressed Vegetation

Table III shows MALE of natural gas microleakage points and
the extent of stressed vegetation for the three vegetation species
at different periods. The MALE represents the mean value of the
distance between the detected natural gas microleakage point
and the actual natural gas microleakage point [17]. Except for
Bean3, the MALE of natural gas microleakage points were less
than 0.4 m. The MALE of natural gas microleakage points in
wheat, bean, and grass were 0.27, 0.30, and 0.23 m, respec-
tively. The MALE of natural gas microleakage point of bean
was the largest, followed by wheat and grass. The natural gas
microleakage stress radius ranged from 0.7 to 1.25 m for the
three vegetation types. The wheat plots had the largest average
stress radius of 1.07 m, while the bean and grass had average
stress radius of 0.83 and 0.86 m, respectively.

Fig. 14 shows the changes in the stress range of three veg-
etation species under natural gas microleakage over time. The
mean stress radius of wheat plots increased with increasing stress
time. From October 24 to November 1, wheat was more sensitive
to natural gas stress, so its stress range increased rapidly. From
November 1 to November 18, wheat was less sensitive to natural
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TABLE III
STRESS RANGE AND LOCALIZATION POINT IDENTIFICATION ACCURACY OF NATURAL GAS MICROLEAKAGE BASED ON MULTIFEATURE FUSION

gas stress and the stress range increased at a decreasing rate.
The stress radius of both bean and grass showed a trend of
increasing, and then, decreasing with the increasing leakage
time, but there were differences in the intensity of the changes.
The range of stress in bean changed relatively slowly. There
was no significant change in the radius of stress in bean from
August 14 to August 24. The range of stress in the grass changed
more significantly. From August 7 to August 24, the radius of
stress in the grass increased faster, while from August 24 to
September 17, the radius of stress in the grass decreased faster.
This may be because grass has a shallower root system than
bean and its growth condition was easily affected by external
environmental stress.

IV. DISCUSSION

As the concentration of natural gas in the soil increases, the
O2 concentration around the root system of vegetation decreases
[see Fig. 2(b)], which causes a low-oxygen environment directly.
This will seriously affect the respiration and absorption capacity
of the root system, indirectly hindering the normal growth of
leaves and leading to a decrease in chlorophyll content, which
has been verified in [45] and [48]. The spectral features of
vegetation extracted in this study (see Table I) were uniformly
distributed in the visible (green and red light bands) as well as in
the short-wave near-infrared region. These spectral features were
closely related to both chlorophyll content and water content
[49], [50], [51], effectively explaining the differences in spectral
changes of vegetation under natural gas microleakage stress.
In addition, natural gas stress was more severe in the center
group of the plot, resulting in shorter vegetation and more bare
soil. It makes the texture features of the center group area more
different from the edge group and control group (see Fig. 7). This
plays a positive role in extracting the natural gas microleakage

stress areas. It is worth noting that this study collected hy-
perspectral imagery under multiple stress periods, which has
a great advantage over single-date data sources. This is because
stress symptoms similar to natural gas microleakage can easily
occur in single date scenarios with differences in phenology,
differences in vegetation growth conditions, or other stressful
pressures. The spectral features or texture features at a single
time can easily confuse different types of stress symptoms, while
temporal features based on multitemporal hyperspectral imagery
provide temporal features that help to eliminate anomalies other
than natural gas microleakage stress, and provide an additional
reliable basis for accurate identification of natural gas microleak-
age points.

As natural gas microleakage continued, the extent of stress
and the degree of stress in the wheat plots increased, which may
include the following two reasons. First, underground natural
gas microleakage continuously squeezes oxygen from the soil,
which affects the uptake of nutrients and water by the roots
[52], resulting in the gradual chlorosis of wheat leaves and their
increasing extent. Second, wheat enters the overwintering period
in mid-November. The growth and development of wheat started
to become slow and the metabolic rate decreased. This makes
previously healthy wheat susceptible to natural gas stress as it en-
ters the overwintering period, which further increases the range
of stressed wheat. In the later stage of natural gas microleakage,
the stress range of bean and grass showed a decreasing trend.
This may be due to the fact that the roots of vegetation in
the edge group would grow toward the area of lower natural
gas concentration and their root systems gradually stabilized,
thus gradually adapting to the low natural gas concentration
environment and allowing the bean and grass in the edge group
to return to normal growth [11]. However, the vegetation in the
center group showed increasingly significant stress symptoms.
This is because it is difficult for most of the vegetation to grow
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back under the high concentration of natural gas, resulting in
more and more bare soil in the center group.

There are differences in the localization of natural gas mi-
croleakage point detection in different vegetation, which may be
related to the canopy morphology of the vegetation. The plant
height of beans is relatively high, and the growth of branches
and leaves is relatively disorderly, which makes the leaves in the
stress area cross-distribute each other, and the canopy structure is
not uniform, resulting in an irregular shape of the stress area [47].
Therefore, the localization error of bean is large. The distribution
of grass on the canopy is more dense and uniform than that of
wheat and the stress area is closer to the circle-like shape, so the
localization error is smaller. This is consistent with the natural
gas microleakage point localization errors in Table III.

The radius of natural gas microleakage stress for the three
vegetation types ranged from 0.7 to 1.25 m as shown in Table III.
This is relatively similar to the spatial pattern of gas leak stress
vegetation found in other experimental studies. Smith et al. [11]
found that natural gas leakage resulted in a circular stress zone
of 0.5–1 m near the leakage point. Male et al. [15] found that
the range of stressed vegetation was roughly 1 m after 5 days
of CO2 leakage; the range of stressed vegetation increased to
2.5 m after 10 days of leakage. Similarly, Al-Traboulsi et al. [53]
observed the vegetation around the leakage point formed a circu-
lar stress area with a diameter of 1–1.2 m through CO2 leakage
experiments. The mean stress radius of wheat, bean, and grass in
all periods was 1.07, 0.83, and 0.86 m, respectively, indicating
differences in the range of natural gas stress in different types
of vegetation. Hoeks [54] found that the radius of the vegetation
stress area due to subsurface gas leakage might range from 1 to
15 m, which is related to the rate of subsurface gas leakage,
soil physicochemical properties, and vegetation type. In this
study, soil conditions (water content, porosity, etc.) may differ
among plots; second, the stress response of different vegetation
to natural gas stress is also different. These may be the reasons
why the range of stress is not the same for different vegetation.

In this study, spectral, spatial, and temporal features were
extracted from hyperspectral images and fused at the fea-
ture level. The fused data not only assemble spectral-spatial-
temporal features but also reduces the high-dimensional features
(128 bands) of the original hyperspectral image to 51 features,
which reduces the computational complexity of the subsequent
classification model to some extent. As can be seen from Table II,
the classification accuracies of ensemble learning are all higher
than other individual classifiers. On the one hand, it reflects
the effective integration of individual classifiers by the Moore
voting method in ensemble learning [55], and on the other
hand, it provides solid conditions for the accurate identification
and extraction of natural gas microleakage-stressed vegetation.
Although there were some differences in the degree of response
of different vegetation to natural gas microleakage stress, the
natural gas leakage localization errors of all experimental plots
were lower than 0.4 m, and the localization results were rel-
atively accurate. From the practical application point of view,
the ensemble learning method based on spectral, spatial, and
temporal features proposed in this study can provide technical
support for large-scale detection of natural gas microleakage in

underground storage reservoirs or pipelines in the field. From the
practical application point of view, the method proposed in this
study can provide technical support for large-scale detection of
natural gas microleakage in underground gas storage reservoirs
or pipelines in the field. It should be mentioned that with the
continuous improvement of remote sensing technology, there is a
great potential for efficient detection of natural gas microleakage
using satellite remote sensing.

V. CONCLUSION

Microleakage in underground natural gas storage can be a
serious hazard to the economy, environment, and public safety,
so it is necessary to detect and determine the natural gas mi-
croleakage points in a timely manner. However, three issues in
detecting natural gas microleakage need to be further explored,
including the extraction and utilization of temporal features
in hyperspectral images, the accurate classification of ensem-
ble classification in images, and the analysis of spatial and
temporal changes in vegetation stress areas under natural gas
microleakage. The solution of the aforementioned problems is
crucial for the accurate detection of natural gas microleakage.
Therefore, this study proposes a natural gas microleakage stress
vegetation detection model that integrates spectral, spatial, and
temporal features using multitemporal hyperspectral imagery
and ensemble classification strategy.

The main findings of this article are as follows.
1) Ten feature bands (565, 659, 674, 685, 760, 776, 787,

792, 803, and 841 nm) were screened from 128 bands of
hyperspectral images using the Relief-F algorithm. Based
on this, four spatial texture features (variance, homogene-
ity, entropy, and correlation) of each feature band image
were extracted using GLGM. The temporal features of the
images were extracted using the BTBR temporal index.

2) Feature-level fusion of the aforementioned extracted spec-
tral, spatial, and temporal phase feature components was
performed. The fused images of wheat, bean, and grass
were classified using the ensemble classification with an
average overall accuracy of 94.52%, 93.94%, and 96.40%,
respectively, outperforming the individual classifiers.

3) Finally, the range of natural gas microleakage stress veg-
etation and the localization of the leakage point were
extracted by mathematical morphology and minimum
external circle algorithm. The MALE of natural gas mi-
croleakage point identification results for all three vegeta-
tion types is less than 0.3 m, among which the MALE of
wheat and grass are 0.27 and 0.23 m, respectively.

The results indicate that the overall accuracy of natural
gas microleakage identification is high and meets the practi-
cal application requirements. In addition, the mean values of
stress radius for wheat, bean, and grass were 1.07, 0.83, and
0.86 m, respectively. With the microleakage of natural gas, the
stress radius of wheat gradually increased, and the stress radius
of bean and grass first increased, and then, decreased, indicating
that different types of vegetation exhibited their own unique
spatial characteristics of stress. Researchers can determine the
natural gas microleakage information based on the spatial
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variation characteristics of different stressed vegetation on the
surface. The proposed method provides a reference for identify-
ing vegetation stress in multitemporal hyperspectral images and
provides a theoretical basis for future natural gas microleakage
detection in large-scale underground gas storage or pipeline on
a satellite-based platform.
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