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IceRegionShip: Optical Remote Sensing Dataset
for Ship Detection in Ice-Infested Waters

Peilin Wang *“, Bingxin Liu

Abstract—As shipping routes and resource exploration move
toward high-latitude oceans, sea ice becomes a major threat to
the safety of ship navigation, posing significant challenges to the
shipping industry and offshore resource development. Continuous
development of satellite remote sensing and deep learning has
made large-scale and wide-ranging ship detection (SD) possible,
which is of great significance for ship safety. However, existing ship
datasets used for deep learning only include ship images in open
waters (OW), such as ports and inland rivers. Currently, remote
sensing datasets suitable for SD in ice-infested waters (IIW) are
lacking. SD in IIW is more difficult than SD in OW because of
complex background interference from sea ice. Thus, it is infea-
sible to directly use the features of ships in OW for SD in IIW.
Herein, we propose a remote sensing SD dataset called IceRe-
gionShip, which includes subdatasets IceRegionShip-red, green
and blue (RGB) and IceRegionShip-ice region ship index (IRSI).
IceRegionShip—-IRSI consists of low-resolution images processed
with IRSI. IceRegionShip—RGB and IceRegionShip—IRSI contain
11436 and 9073 ship instances, respectively. IRSI was proposed to
address false alarms caused by ice interference. To the best of our
knowledge, this is the first dataset designed specifically for SD in
IIW. In addition, the dataset was evaluated using several advanced
detection algorithms, providing a benchmark for SD in IIW and
demonstrating the effectiveness of IRSI for SD in low-resolution
optical remote sensing images.

Index Terms—Deep learning, ice-infested waters (IIW), remote
sensing dataset, ship detection (SD).

1. INTRODUCTION

ARITIME transportation and the utilization of ocean
M resources are integral to human economic activity. Thus,
rational ship regulation holds significant value for ensuring
stable economic development. Advances in remote sensing
technology have enabled obtaining abundant ship image data,
thereby becoming an indispensable ship data source. Ship de-
tection (SD) techniques based on remote sensing imagery have
broad applications, particularly in port and inland waterway
scenarios.
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However, with global warming, maritime routes and oil and
gas exploration are shifting toward high latitudes. Sea ice
presents significant challenges for the development of ocean
resources. For instance, the besetting of a ship in sea ice con-
siderably threatens ship safety [1]. The infrastructure along
high-latitude routes needs to be improved, necessitating the
provision of navigational assistance services. Thus, SD in ice-
infested waters (IIW) based on remote sensing imagery must be
investigated to provide information in ice-prone environments,
which is vital for maritime search and rescue operations, ship
safety, high-latitude route development, and the protection of
marine ecological environments.

Existing SD methods can be primarily categorized into the
following types [2]:

1) threshold-based methods,

2) salient-based method,

3) shape and texture—feature-based methods,

4) transform-domain methods,

5) anomaly detection methods, and

6) deep-learning methods.

Over the past decade, deep-learning-based approaches have
witnessed rapid development of computer vision. The use of
convolutional neural networks [3] or visual transformer models
[4] for the adaptive extraction of visual features instead of
handcrafted feature design has improved the performance and
generalizability of the methods. However, it is essential to note
that all these new methods require large-scale data for training.
Although certain progress has been attained in semisupervised
[5] and zero-shot methods [6], creating large and high-quality
datasets specific to the corresponding domain remains essential
for deep-learning models to achieve higher accuracy and adapt-
ability in real-world applications.

Inrecent years, numerous studies have released datasets to ad-
dress object detection challenges in remote sensing. DOTAv2.0
[7], an extension of DOTAv1.0 [8], expands the dataset size to
facilitate the training of more state-of-the-art baselines. Simi-
larly, FAIRIM [9] not only increases the dataset size but also
supplements it with additional categories. In the field of SD, a
considerable number of datasets have also emerged. Liu et al.
[10] introduced the first optical remote sensing SD dataset,
HRSC2016, which has become a commonly used benchmark.
FSGD [11] and DOSR [12] are extensions of HRSC2016, and
ShipRSImageNet [13] is currently the largest optical remote
sensing SD dataset, containing 17 573 ship instances. Through
investigation, it was observed that the ship targets in existing
optical remote sensing datasets are predominantly concentrated
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Fig. 1.

Ship instance examples. (a) HRSC 2016. (b) IceRegionShip—-RGB.

in open waters (OW), such as ports, inland rivers, and a small
number of open sea areas.

In contrast to these scenes, IIW images exhibit greater com-
plexity. Fragmented ice formed by ice fractures interferes with
ship object extraction in terms of texture, shape, and other
features, as illustrated in Fig. 1(b). When considering the use
of deep-learning methods for SD in IIW, the existing datasets
suffer from the following limitations.

1) Ship targets are primarily located in ice-free areas, result-
ing in a scarcity of ship instances operating in IIW. For
instance, in the HRSC dataset, 1680 images capture OW
but lack areas containing ice.

2) The existing datasets for fine-grained ship recognition,
such as FGSD, mostly consist of images with high spatial
resolutions ranging from 0.12 to 1.93 m. High-resolution
remote sensing images are expensive and limited in cover-
age, making it difficult to conduct extensive ship searches
over large areas. This limitation hinders the efficient iden-
tification of ship targets in ice-covered environments.

3) A substantial portion of the images in datasets, such as
HRSC2016, FGSD, and DOSR, is derived from other
datasets or Google Earth, leading to notable disparities
from real-world applications.

In response to the limitations of existing datasets, herein, a
novel optical remote sensing dataset called IceRegionShip is
proposed specifically for SD in IIW. It comprises multiresolution
optical remote sensing images obtained from various satellite
platforms, including GF-1, Landsat-8, and Sentinel-2. To the
best of our knowledge, this dataset is the first large-scale optical
remote sensing dataset for SD in IIW, indicating its significance
for relevant research.

Conventional optical remote sensing systems typically have
sensors that capture multiple spectra, each offering specific
information. The use of multiband remote sensing data for band
calculations allows for emphasizing the desired features and
properties of the target objects, thereby enhancing the accuracy
and reliability of target extraction. In this article, the ice region
ship index (IRSI) was proposed for SD in IIW based on the
analysis of the spectral characteristics of ship decks, sea ice,
and seawater. Incorporating IRSI into the image preprocessing
stage yielded a subdataset named IceRegionShip—IRSI. Ex-
perimental results demonstrate that the preprocessing images
with IRSI aids the discrimination between ships and sea ice,
particularly in low-spatial-resolution images. This approach
improves the detection performance of models and effectively
addresses the issue of false alarms caused by gaps in sea
ice.

Now, we summarize the main contributions of this article as
follows.

1) The construction of the first optical remote sensing dataset,
IceRegionShip, designed specifically for SD in ITW. It
includes 11 436 ship instances, addressing the limitations
of existing datasets by providing samples from water areas
with ice coverage.

2) The proposal of the IRSI for SD in IIW. The
IceRegionShip—IRSI subdataset was created for detecting
ships in low-resolution images. The IRSIreduces the effect
of sea ice on SD, enhances ship outlines, and effectively
reduces the number of false alarm targets.

3) Testing of the IceRegionShip dataset using multiple
benchmark models. The results validate the advantages
of IceRegionShip—IRSI for low resolutions.
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TABLE I

COMPARISON OF SHIP INSTANCES IN PUBLIC OPTICAL REMOTE SENSING OBJECT DATASETS
Dataset Annotation Images total Ship categories  Ship instances Year
NWPU VHR-10 [14] HBB 800 1 302 2014
DOTA-v1.0 [8] OBB 2806 1 52516 2017
DIOR [15] HBB 23 463 1 64000 2019
HRRSD [16] HBB 21761 1 3886 2019
XView [17] HBB 1413 9 5672 2018
DOTA-v2.0 [7] OBB 11268 1 251 883 2021
FAIRIM [9] OBB 15266 9 ~115 000 2021
SODA-A [18] OBB 2510 1 61916 2022

Now, we summarize the main contributions of this article as follows.

II. RELATED WORK
A. Optical Remote Sensing Datasets

We surveyed popular optical remote sensing datasets contain-
ing ship targets, such as NWPU VHR-10 [14], DOTAv1.0 [8],
and DIOR [15]. Table I presents information on the annotation
method, number of images, number of ship instance categories,
number of ship instances, and year of release for each dataset. By
investigating the spatial distribution of ships in existing datasets,
we found that most ship instances are concentrated in OW, such
as inland rivers, ports, and open sea areas; moreover, sea surface
images and ship instances in IIW are lacking in these datasets.

B. Optical Remote Sensing Ship Datasets

The existing optical remote sensing ship datasets are lim-
ited in quantity—the representative ones include HESC2016,
FGSD, DOSR, and ShipRSImageNet. However, these datasets
are mainly intended for research on fine-grained ship recog-
nition and thus lack ship instances in complex environments,
particularly in ITW.

1) HRSC2016: The HRSC2016 dataset comprises 1070 im-
ages and 2976 ship instances obtained from Google Earth [10]. It
is the earliest large-scale and multiclass optical remote sensing
dataset designed explicitly for SD. It has become one of the
commonly used benchmarks in the field of SD [13]. HRSC2016
initially employed a three-stage hierarchical classification sys-
tem, dividing ships into 25 categories, which greatly influenced
subsequent datasets.

2) FGSD: In 2020, Chenetal. [11] collected images of ships
from multiple large ports using Google Earth; they built upon
the HRSC2016 dataset and introduced a new dataset called
FGSD. FGSD comprises 2612 images and 5634 ship instances,
with spatial resolutions ranging from 0.12 to 1.93 m. Each
ship instance is annotated with both horizontal bounding boxes
(HBBs) and oriented bounding boxes. FGSD not only subdivides
ships into 43 categories but also adds a ship dock category, with
an average of 131 instances per category [13].

3) DOSR: To address the limitations of HRSC2016, such
as the need for annotations for small ships and incorrect ship

category labels, Han et al. [12] constructed a new publicly
available dataset called DOSR. Similar to the datasets mentioned
above, DOSR consists of images from Google Earth and includes
1066 optical remote sensing images and 6127 ship instances. The
ship types in DOSR are categorized into 20 classes. Additionally,
DOSR classifies the image scene into 832 coastal scenes (e.g.,
densely populated ports) and 234 offshore scenes (consisting
solely of the sea surface).

4) ShipRSImageNet: Zhang et al. [13] released a large-scale
optical remote sensing image dataset, which included 3425
images with 17 573 ship instances containing ship targets from
multiple sources, such as XView [17], FGSD, and GF-2. Influ-
enced by HRSC2016, ShipRSImageNet employs a hierarchical
classification system, which divides ship types into four lev-
els: class, category, subcategory, and type, resulting in 49 ship
categories. All instances have annotations for bounding boxes,
oriented bounding boxes, and polygons. ShipRSImageNet also
considers weather conditions, such as cloudiness, sunlight re-
flected from the ocean surface, and low lighting to make the
dataset more applicable to real-world scenarios. Compared to
HRSC2016 and FGSD, ShipRSImageNet is larger and offers
a more diverse set of ship categories, further promoting the ad-
vancement of fine-grained recognition of ship targets and related
applications.

III. CONSTRUCTION OF ICE REGION SHIP DETECTION
ICEREGIONSHIP

Our dataset, named IceRegionShip, consists of two sub-
datasets: IceRegionShip-red, green and blue (RGB), obtained
by merging RGB images from three spectral bands, and
IceRegionShip-IRSI, preprocessed using the IRSI. This section
elucidates the construction of the IceRegionShip dataset. Fig. 2
exhibits the entire production workflow.

A. Images Acquisition

Different satellites have varying revisit times and imaging
characteristics. Compared to a single satellite data source, com-
bining multiple satellite data sources enhances the diversity of
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Fig. 2. Construction process of IceRegionShip.
TABLE I
DATA SOURCE OF ICEREGIONSHIP
. Revisit Swath Resolution
Satellite Sensor time(d) (km) (m) Image
Landsat-8 OLI 16 185 15 28
Sentinel-2 MSI 5 290 10 15
GF-1 WFV 4 800 16 41
GF-1 PMS 4 60 2 5
Total 89

the data and compensates for data missing on specific dates in
a single source. The proposed IceRegionShip dataset primar-
ily consists of 41 wide field view (WFV) images from GF-1,
28 images from the operational land imager (OLI) sensor of
Landsat-8, and 15 images from the multispectral instrument
sensor of Sentinel-2 (Table II). Official websites of these satel-
lites provide publicly available low-resolution satellite images.
Landsat-8 OLI images were fused to achieve a spatial resolution
of 15 m and swath size of 185 km. Sentinel-2 images have a
spatial resolution of 10 m and a swath size of 290 km. GF-1
WFV images have a spatial resolution of 16 m and swath size
of 800 km. These images meet the requirements for large-scale
coverage monitoring and are cost-effective, even though detailed
features of the ship may not be as prominent as in high-resolution
images. Additionally, we supplemented the dataset with higher

resolution (spatial resolution: 2 m) images from the GF-1 PMS
camera to provide additional ship instance samples. During the
data acquisition process, we strive to select data with observation
angles as close as possible to eliminate radiation differences
caused by observation geometry. Subsequently, sensor noise and
atmospheric effects are eliminated through radiometric calibra-
tion and atmospheric correction.

Located in the northeastern Bohai Sea, Liaodong Bay is a
water area with the most prolonged ice period and the most
extensive range in China. Most of the area is covered with
drifting sea ice, with only a small portion near the coastline
covered by fixed ice. Liaodong Bay is one of China’s busiest
maritime transportation regions, encompassing ports, such as
Huludao, Jinzhou, and Yingkou, with dozens of shipping routes
[19]. Ships frequently commute between these ports, increasing
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TABLE III
DIFFERENT THICKNESS OF SEA ICE SAMPLES USED IN THE EXPERIMENT

Sample 1 2 3 4 5 6 7 8 9 10 11
no.
Th;“:‘r:l‘ess 52 95 282 30 341 353 362 378 394 411 425

the complexity of maritime traffic. Ice class indicates the ship’s
ability to navigate inice. Ships with high ice class usually have an
additional level of strengthening for navigation and sustenance
in ice. However, relatively few ships in this region have Ice
Class B or higher. Thus, the presence of abundant sea ice poses
a significant threat to maritime structures and ship navigation in
the Liaodong Bay area, highlighting the critical importance of
remote imaging of this region. Therefore, we selected the remote
sensing images of the Liaodong Bay region as the source images.
These images contain a large number of ships operating in ITW.
We also conducted onsite sampling of sea ice in this region, as
shown in Fig. 3.

B. Ice Region Ship Index

Although the selected image data satisfies the practical needs
of large-scale detection, low-resolution images of IIW still pose
challenges to SD. In RGB images, ships tend to blend with the
seaice, making it difficult for human eyes to discern them. More-
over, the elongated shapes formed by gaps between ice layers
confuse the model and generate false detections. Therefore, we
used additional bands and constructed spectral indices to assist
SD. To capture the spectral differences between ships, seawater,
and sea ice in the visible and near-infrared wavelength ranges,
we conducted spectral measurements in the waters of Liaodong
Bay. Subsequently, the required spectral bands were identified

through the analysis of reflection spectra, and spectral indices
for ship extraction in the ice zone were developed.

1) Spectral Measurement Experiment: In this experiment,
11 sea—ice samples with different thicknesses were used.
The thicknesses of the employed sea—ice samples are listed in
Table III. The ship deck data were collected from several typical
decks (made of steel and painted in white, gray, iron red, and
medium green colors) of ships sailing in the area. The ASD
FieldSpec3 spectrometer was used as the measurement instru-
ment. During the measurement process, the field of view of
the spectrometer was set to 25°, zenith angle was set to 0°,
and probe was positioned vertically on the ice surface (~45
cm above the observed object). Reflectance data were obtained
for different deck colors, different thicknesses of sea ice, and
seawater samples. Each reflectance spectral curve consisted of a
total of 1563 data points, and after removing the outliers, the av-
erage reflectance spectral curve was obtained as the reflectance
spectrum for the sample.

2) Spectral Analysis Results: Through spectral measure-
ments, we obtained the reflectance spectra of different-colored
decks, different thicknesses of sea ice, and seawater, as shown
in Fig. 4. To better differentiate between sea ice and ships, we
compared the reflectance of different thicknesses of sea ice and
ships (Fig. 5). The contrast between different-colored decks and
seaice is the most prominent in the shortwave infrared band, and
the difference in reflectance tends to remain constant at different



1012

6
1.0 5 == [
) %
—-=-ice-5.2 cm
- = -ice-9.5cm
<e----ice-28.2 cm

= = -ice- 30 cm

==Landsas-oLi ice35.3 cm

e=GF12wry Ciced78
EESentinel 24 MsT €6 394 m
——ice-42.5cm
coastal water
———deck-unpainted
——deck-red
~———deck-grey
———deck-dark green

0.9

0.8

Reflectance
[—]
i
1

e
w
1

<

\__x\

TN

0.0 T T T T l’ - T ;L"f T T m
400 600 800 1000 1200 1400 1600 1800 2000 2200
Wavelength / nm
Fig.4. Measured reflectance of water, sea ice, and ship decks. The band ranges
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ice thicknesses, consistently exhibiting a significant difference.
The contrast between decks and sea ice is also noticeable in the
near-infrared band. Moreover, the contrast between decks and
sea ice is slightly lower in the visible light range. In the case of
thin sea ice, the contrast between decks, except for white decks,
and seaice is relatively low. As the thickness of sea ice increases,
the reflectance of white decks becomes comparable to that of sea
ice, hindering the extraction of ship targets in IITW.

3) Construction of Ice Region Ship Index (IRSI): The exper-
iment shows that sea ice, seawater, and ships exhibit different
reflectance values in different spectral bands. Therefore, ship
targets can be effectively extracted by combining spectral re-
flectance in different bands. As GF-1 data lacks the infrared
band, the near-infrared band was utilized in this article. The nor-
malized difference water index (NDWI) highlights water bodies
in sea ice using the near-infrared and green bands. However,
our objective is to differentiate between sea ice and ship targets.
Inspired by NDWI and considering the spectral properties of
ship decks and sea ice, we designed the IRSI specifically for SD
in [IW

IRSI — RGreen + RNIR (1)
RGreen - RNIR

where  Rgreentepresents the green spectral band and
Rnirrepresents the near-infrared spectral band. IRSI is
considered 0 when Rgreen = RNir. At this time, the pixels
appear black and will not have a major impact on the ship
target. We applied NDWI and IRSI for ship target processing
and compared the results. Ship targets processed with NDWI
appear predominantly black, making it difficult to differentiate
them from the surrounding ice layers, as shown in Fig. 6(b).
In contrast, in the IRSI-processed image, the outer contours of
ships are highlighted, distinguishing them from ice.

The thin strip-shaped ships blend with the ice layers, almost
merging with black cracks, making them difficult to discern
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even to the human eye [Fig. 6(a)]. After applying IRSI, vi-
sual differences between ship targets and ice become more
pronounced, facilitating SD. In addition to making ship targets
more prominent, IRSI enables the model to further differentiate
between ships and polynya during the learning process. In
unprocessed images, the polynyas in ice may be identified as
ship targets with a high level of confidence (Fig. 7). This leads
to anumber of false alarms, thus reducing the performance of the
detector. In the IRSI-processed image, there are no bright spots
outlining ship contours around nonship targets, and the polynyas
appear blurred, reducing the probability of false alarms caused
by elongated ship-resembling polynyas (Fig. 8).

C. IceRegionShip—RGB and IceRegionShip—IRSI

Owing to the differences between RGB images and im-
ages processed using the IRSI for SD in IIW, two sub-
datasets were constructed and named IceRegionShip—RGB and
IceRegionShip—IRSI. IceRegionShip focuses on detecting ships
in ITW using optical remote sensing images at spatial resolutions
of2, 10, 15, and 16 m. After preprocessing, which involves radio-
metric calibration and atmospheric correction, the RGB bands
were fused and the images were cropped, resulting in a dataset of
9789 images containing 11 436 ship instances. IceRegionShip—
IRSI primarily focuses on SD in low-resolution images (spatial
resolutions of 10, 15, and 16 m). After performing the same
preprocessing steps, a single-band image was obtained by fusing
the bands using the IRSI, followed by cropping to generate
a dataset of 7990 images containing 9073 ship instances. At
the same resolution, ship targets in IceRegionShip—IRSI are
generally brighter and more easily detectable than those in
IceRegionShip, as shown in Fig. 9.

D. Data Annotation

In object detection, targets are commonly enclosed in rect-
angular bounding boxes, which is called HBB annotation. The
HBB annotation is typically represented by a quadruple, which
represents the coordinates of the object center and the width
and height of the horizontal box. Well-known datasets, such as
PASCAL VOC [20] and MS COCO [21], utilize HBB anno-
tation. Similarly, we provide corresponding XML and JSON
files for our dataset for each image containing ship targets.
In the case of annotation for ice-covered environments, an-
notators need to exercise extra caution. The complexity of
the background and the presence of floating ice fragments
can affect the model’s judgment of ships. To ensure high-
quality annotations, we divided the annotation process into three
stages, with five annotators and two reviewers assigned to three
groups.

In the first stage, three annotators worked on the initial anno-
tation for the IceRegionShip—RGB dataset, while two annotators
annotated the IceRegionShip—IRSI dataset. During the annota-
tion process, we aligned the ship’s bow with the shorter side
of the bounding box, aiming to tightly enclose the ship target
and minimize the proportion of background area within the box.
In the second stage, the two groups of annotators reviewed each
other’s annotations from the first stage, addressing any identified
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Differences in reflectance between sea ice and ship deck. (a—d) show differences in reflectance between sea ice of multiple thicknesses (9.5, 30, 37.8, and

42.5 cm) and decks of different colors. Gray areas represent the region conducive to distinguishing between sea ice and the ship deck.

issues by returning to the first stage for resolution. In the third
stage, two expert reviewers conducted a thorough examination.
If there were any doubts or concerns regarding the annotations
in an image, the two groups of annotators engaged in discussions
and performed the first stage of annotation again for the image.

E. Characteristics of IceRegionShip

1) Specification: IceRegionShip is proposed to address the
challenge of large-scale SD in IIW. To the best of our
knowledge, this is the first introduced dataset in this field.
IceRegionShip—-RGB comprises fused images from the red,
green, and blue spectral bands, faithfully representing the au-
thentic ITW. IceRegionShip—IRSI, on the other hand, is derived
through band calculations, which effectively eliminate certain
portions of sea ice and enhance ship outlines. In essence, this
corresponds to two feasible approaches: directly training mod-
els using the original images or training models after apply-
ing suitable sea ice preprocessing methods. We expect these

two subdatasets will contribute to solving the complexities
associated with SD in challenging ice-covered scenes and pro-
vide a robust pathway toward achieving reliable detection mod-
els in ice-covered regions.

2) Small Scale of Instance: With reference to the scale divi-
sion for object detection in MS COCO, bounding box regions
below 32 x 32 pixels are referred to as small objects, regions
from 32 x 32 pixels to 96 x 96 pixels are categorized as medium
objects, and bounding box regions larger than 96 x 96 pixels are
considered large objects [18]. Considering the practical applica-
tions of wide-range monitoring, most images in IceRegionShip
have lower resolutions, making most ship targets small objects.
Thus, IceRegionShip—IRSI was primarily proposed for detecting
complex ice area scenes with low spatial resolution, where ship
targets are mostly small, with an average bounding box region
of 221 pixels. Fig. 10 presents the distribution of ship instance
sizes in IceRegionShip—RGB and IceRegionShip—IRSI. It is
evident that small objects dominate the dataset, posing certain
challenges for detection.
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Fig. 7. Detection results in RGB images. (a) Ship. (b) False alarm, polynya
was falsely detected as a ship.

3) Diversity: The diversity of the dataset enables it to en-
compass a broad range of states that may occur in real-world
scenarios, making the dataset representative of practical appli-
cations. The IceRegionShip dataset sources data from multiple
publicly available optical remote sensing satellites with different
sensors, containing images with different spatial resolutions and
quality. The IceRegionShip dataset considers different sea—ice
concentrations in [IW. As shownin Fig. 11, regions with low sea—
ice concentration primarily consist of seawater with minimal
sea—ice presence. Seawater separates ice in regions with medium
ice concentration, forming multiple fragmented pieces with a

(b) (©)

Comparison of the effects of NDWI and IRSI on ship targets. (a) Preprocessed Image. (b) NDWI-processed Image. (c) IRSI-processed Image.

,‘4"‘*

iy
M

Fig. 8.
IRSI.

(a) Detection results in IRSI images. (b) Ship target processed by the

significant proportion of broken ice. Regions with ice concentra-
tions mainly feature large, solid ice blocks with relatively smooth
sea—ice-surrounding ship targets. In addition to diverse scenes,
the dataset also features various ship instances varying in deck
color, size, orientation, and position, thus representing scenarios
ranging from freely navigable sea surfaces with minimal sea ice
to ice-congested situations where ships are surrounded by thick
ice and mimicking ships beset in ice, among others.

IV. BENCHMARK FOR SHIP DETECTION OF ICE REGION

In this section, we evaluate the IceRegionShip—-RGB and
IceRegionShip—IRSI datasets using state-of-the-art detection
models. We employ multiple metrics, including average pre-
cision (AP), to assess the experimental results.
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Fig. 9.

Numbers
:

1500

1000

1000 1250 1500 1750 2000

Area (pixel)

(@)

250

500 750

Fig. 10.

A. State-of-the-Art Detection Models

1) Faster R-CNN: Faster R-CNN [23] is one of the classical
two-stage models composed of a backbone network [region
proposal network (RPN)] and classification and detection heads.
The RPN network can rapidly generate proposal boxes by
abandoning the original sliding window and selective search
methods, considerably improving detection efficiency and ac-
curacy. The introduction of the feature pyramid network (FPN)
has further enhanced the multiscale detection capability of faster
R-CNN, making it a commonly used benchmark model.

2) Cascade R-CNN: Detectors that employ an anchoring
mechanism typically utilize an intersection over union (IoU)
threshold to distinguish positive and negative samples based on
bounding boxes. Predicted bounding boxes with IoU below the

Sample images chosen from low spatial resolutions of 10, 15, and 16 m from two datasets. (a) IceRegionShip—RGB. (b) IceRegionShip—IRSI.
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(b)

Ship size distributions in (a) IceRegionShip—RGB and (b) IceRegionShip—IRSI, with the majority of small targets.

threshold are considered negative samples. Cascade R-CNN [24]
utilizes a multistage object detection framework consisting of a
series of detectors with progressively increasing loU thresholds.
By gradually training the detectors, high-quality detection mod-
els can be obtained, reducing overfitting.

3) RetinaNet: RetinaNet [25] is a classical single-stage
model consisting of a backbone network, FPN, and box re-
gression and classification subnetworks. The model employs
a simple and effective loss function called focal loss, which
reduces the weight of negative samples to address the issue of
class imbalance in single-stage detection models. Compared to
two-stage models, RetinaNet improves detection accuracy while
ensuring good detection quality.

4) Sparse R-CNN: Sparse R-CNN [26] is a purely sparse
object detection method that utilizes a predefined number, K,
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TABLE IV
DETECTION PERFORMANCE OF STATE-OF-THE-ART MODELS ON ICEREGIONSHIP-RGB

Model Backbone Sched. FPS Param (M) AP50 AP75 mAP
ResNet-50+FPN 68.0 42.12 7950 2440 3595

Faster R-CNN 1x 553
ResNet-101+FPN : 60.11 7920 2190  35.06
ResNet-50+FPN 48.7 68.93 86.00 2370  38.59

Cascade R-CNN 1x 185
ResNet-101+FPN : 87.92 8630  28.40  40.42
ResNet-50+FPN 82.1 36.1 8380 2520 3771

RetinaNet 1x 500
ResNet-101+FPN : 55.1 83.80 2650 3824
ResNet-50+FPN 45.2 105.94 8770 2350 37.57

Sparse R-CNN Ix

ResNet-101+FPN 34.9 124.94 89.10 2360 39.67
ResNet-50+FPN 74.3 31.89 88.10 2690 39.67

ATSS 1% sex
ResNet-101+FPN : 50.88 8690 2350 37.36

The bold font indicates the best result in an evaluation metric.

i A% ¢
(a) (b) ©

Fig. 11. Images of waters with different sea—ice concentrations: (a) low,
(b) medium, and (c) high.

of candidate boxes (e.g., 100) instead of relying on a dense set
of hundreds of thousands of candidate boxes. It primarily con-
sists of a backbone network, learnable proposals, and multiple

dynamic instance heads. The learnable proposal module learns
the initial distribution of targets and generates the initial K of
candidate boxes. The dynamic instance interaction heads take
the ROI features extracted from each box and input them into
their dedicated heads for target localization and classification.
The model is trained using one-to-one label assignment and
set prediction loss, avoiding the postprocessing nonmaximum
suppression step in the results.

5) ATSS: In recent years, the anchor-free methods have
rapidly developed due to their reduced reliance on hyperparame-
ters and enhanced generalization capabilities. Adaptive training
sample selection (ATSS) is one of the more novel approaches in
this regard. It introduces the ATSS method, demonstrating the
crucial significance of sample selection for detectors. Automat-
ically selecting positive and negative samples based on target
statistical features [29] significantly improves the detector’s
performance.

B. Experimental Setup

All experiments were conducted on a personal computer with
an Intel Core 17-12700KF CPU, 32 GB of RAM, and NVIDIA
RTX3090 GPU (24 GB VRAM). The software used included
Python 3.8, CUDA 11.7, and PyTorch 1.13.0.

In many previous benchmark tests, different models were
implemented using different codebases [18], making fair com-
parisons among algorithms on the same benchmark difficult.
To address this issue and unify the implementation differences
across models, all models in this section were trained and tested
using MMDetection [27]. All detectors were optimized using
the AdamW [28] algorithm. The initial learning rate is set to
0.0001. Each batch consisted of 4 images, and a weight decay
0.05 was applied. A learning rate warm-up was employed for
the first 500 iterations.
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C. Evaluation Metrics

In this article, we employ authoritative and standard detection
evaluation metrics, such as IoU, precision, recall, and AP, to
quantitatively evaluate the detection performance of the detec-
tors mentioned above on IceRegionShip. From a localization
perspective, IoU is introduced as a measure of the overlap
between the predicted and ground truth regions. It represents
the ratio of the overlapping area between the two regions to
their total area. A higher IoU indicates a closer match between
the prediction and the ground truth, indicating more accurate
localization. The calculation of IoU is given by the following
formula:

area(Bbox,, N Bboxy)

IoU = 2
¢ area(Bboxp, N Bboxg) @

where Bbox,, represents the predicted bounding box and
Bboxgrepresents the ground truth box.

During ship classification, the model can make misclassifi-
cations, confusing targets with the background. Each target can
have four outcomes: true positive (TP), false positive (FP), true
negative (TN), and false negative (FN). TP represents the number
of ship targets correctly classified; FP represents the number of
nonship targets incorrectly classified as ships; FN represents the
number of ship targets incorrectly classified as background; and
TN represents the number of nonship targets correctly classified.
Precision reflects the model’s accuracy in predicting positive
samples, while recall measures the proportion of correctly de-
tected positive samples among all positive samples. The specific
calculation equations are given as follows:

Preci TP 3)
recison = ——
TP + FP
TP
Recall = ——. 4
TP + FN

AP represents the AP of the detector at different recall levels.
It is calculated as the mean precision values at all recall levels.
The formula for AP is as follows:

1
AP:/ P(r)dr %)
0

where P represents precision and rrepresents recall. MS COCO
has established a comprehensive and rigorous metric system.
Similarly, we adopt three metrics, namely AP50, AP75, and
mAP, to comprehensively evaluate the performance of the de-
tector. AP50 uses an IoU threshold of 0.50, considering predicted
boxes with an overlap more significant than this threshold as cor-
rect predictions for calculating AP. AP75 uses an IoU threshold
of 0.75. mAP is calculated by setting the IoU threshold between
0.5 and 0.95 with a step size of 0.05, computing AP at each
threshold, and averaging the 10 obtained AP values.

D. Experimental Results and Analysis

Table IV presents the detection results for several advanced
detectors on the IceRegionShip—RGB dataset, which includes
images with spatial resolutions of 2, 10, 15, and 16 m. The
notation “1x” represents training for 12 epochs. To address
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the multiscale variations in the dataset, the FPN structure was
employed in all models. The model parameter sizes are also
listed as essential references for application. From the results,
the cascade R-CNN with ResNet101 backbone achieves the best
performance with an mAP of 40.42 and the highest AP75. ATSS
demonstrates promising results, reaching high levels of AP75
and mAP with the smallest Param size. Sparse R-CNN, as a
sparse object detector, also performs well, achieving the highest
AP50 value of 89.10, which can be attributed to the sparsity of
ships on the ice-covered sea surface. Fig. 12 visually shows the
detection effect of the model.

To assess the detection performance on low-resolution data
processed using IRSI, we conducted a comparative experiment
between IceRegionShip—RGB and IceRegionShip—IRSI. To ob-
tain fairer results, we extracted the low-resolution parts of 10,
15, and 16 m from IceRegionShip—RGB into a new dataset,
IceRegionShip—RGBx, for comparison with IceRegionShip-
IRSI. The results are presented in Table V. Owing to the over-
all lower resolution, the mAP for IceRegionShip—RGBx* was
considerably lower than that for IceRegionShip However, it is
evident that all benchmark models tested on IceRegionShip—
IRSI exhibit notable improvements. In the context of the
IceRegionShip—IRSI dataset, ATSS achieved a notable mAP
value of 42.51, which is significantly higher than its mAP value
of 38.07 on the IceRegionShip—RGB dataset. Similarly, Cas-
cade R-CNN also increased from 33.85 to 40.11. Other models
also have very significant growth. Particularly, for the more
stringent high-precision metric, AP75, faster R-CNN demon-
strated a 6.00 improvement and cascade R-CNN exhibited a 7.3
improvement.

V. DISCUSSION

In this article, we have built a novel ship dataset tailored
explicitly for SD in IIW, IceRegionShip, which fills a gap in
the existing ship datasets. We introduced the IRSI index and
constructed IceRegionShip—IRSI. Our experimental results have
shown that applying the IRSI index enhances the contrast be-
tween ships and the background sea ice, resulting in a substantial
improvement in the performance of all detection models. Com-
pared to the IceRegionShip—RGB dataset, the models exhibited
the highest detection performance improvement of 8.72 (cascade
R-CNN) on the IceRegionShip—IRSI dataset. On average, all
models showed an improvement of 4.60. Visualizations of the
detection results further confirm it, as depicted in Fig. 13.

The performance of different models is also worth noting.
First, one-stage models exhibit high FPS and low Param, ren-
dering them more suitable for applications. Among these, ATSS
demonstrated outstanding results, emphasizing the significance
of positive and negative sample selection for IceRegionShip
[29]. Among the two-stage models, cascade R-CNN outper-
formed faster R-CNN, illustrating the advantages of the cas-
cading structure and different IOU thresholds [22].

We tested the dataset using end-to-end detection networks
based on transformers (DETR, deformable-DETR) and the Swin
Transformer-Tiny (Swin-T) backbone network. Regrettably, due
to its slow convergence, end-to-end detection networks based
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Fig. 12.  Visualization of the detection results of cascade R-CNN on IceRegionShip—-RGB.

TABLE V
DETECTION PERFORMANCE OF STATE-OF-THE-ART MODELS ON ICEREGIONSHIP-RGB* AND ICEREGIONSHIP-IRSI

Model Backbone FPS Dataset Sched. AP50 AP75 mAP
68.2 IceRegionShip—RGB" 78.40 11.90 30.55
ResNet-50+FPN . .
67.4 IceRegionShip—IRSI 80.00 17.90 34.26
Faster R-CNN o R Ix
55.5 IceRegionShip—-RGB 78.00 15.10 30.50
ResNet-101+FPN . .
504 IceRegionShip—IRSI 86.80 17.40 33.72
46.8 IceRegionShip—RGB" 77.20 15.90 28.95
ResNet-50+FPN . A
46.0 IceRegionShip—IRSI 87.30 23.20 37.67
Cascade R-CNN i . B 1%
38.6 IceRegionShip-RGB 83.20 19.90 33.85
ResNet-101+FPN . .
37.9 IceRegionShip—IRSI 87.50 26.10 40.11
80.6 IceRegionShip—-RGB" 78.90 11.20 29.65
ResNet-50+FPN . .
) 78.8 IceRegionShip—IRSI 80.90 12.70 31.32
RetinaNet . . B 1x
58.8 IceRegionShip-RGB 81.60 19.10 32.80
ResNet-101+FPN . .
61.1 IceRegionShip—IRSI 83.30 19.70 33.04
46.9 IceRegionShip—RGB” 77.50 8.20 26.65
ResNet-50+FPN . .
46.1 IceRegionShip—IRSI 87.30 16.30 33.80
Sparse R-CNN i . . 1x
38.6 IceRegionShip-RGB 87.80 11.90 31.89
ResNet-101+FPN . .
384 IceRegionShip—IRSI 88.50 20.70 37.29
72.3 IceRegionShip-RGB” 87.50 21.90 38.07
ResNet-50+FPN . .
ATSS 72.1 IceRegionShip—IRSI | 89.90 27.40 42.51
. . « X
55.7 IceRegionShip—RGB 86.50 16.80 33.72
ResNet-101+FPN . .
55.5 IceRegionShip—IRSI 88.20 23.50 38.99

Note: * indicates that IceRegionShip—-RGB utilized data from the low spatial resolution portion for a fair comparison with IceRegionShip—IRSI.
The bold font indicates the best result in an evaluation metric.
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TABLE VI
DETECTION PERFORMANCE OF SWIN-T BACKBONE MODELS ON ICEREGIONSHIP-RGB* AND ICEREGIONSHIP-IRSI

Model Backbone FPS Dataset Sched. APS0 AP75 mAP
. 414 IceRegionShip-RGB” 86.70 26.30 37.80
Cascade R-CNN Swin-T+FPN . . 1x
40.8 IceRegionShip—-IRSI 86.80 20.60 38.05
. 41.8 IceRegionShip-RGB* 87.90 15.60 33.24
Sparse R-CNN Swin-T+FPN . ) 1x
38.1 IceRegionShip—-IRSI 85.70 16.00 34.09
, 593 IceRegionShip-RGB’ 86.10 1920 34.88
ATSS Swin-T+FPN ) ) Ix
61.1 IceRegionShip—IRSI 89.20 25.40 42.01

The bold font indicates the best result in an evaluation metric.

Fig. 13. Visualization of the detection results of cascade R-CNN on
(a) IceRegionShip—RGB* and (b) IceRegionShip—IRSI. Green bounding boxes
are ships that are correctly detected. Red bounding boxes are false alarms.

on transformers (DETR, deformable-DETR) need an extremely
long training schedule on large-scale datasets like COCO [30].
The number of instances in our dataset challenges meeting

their convergence requirements. Table VI presents the detection
results using Swin-T as the backbone network. Clearly, this
outcome also underscores the role of IRSI, as all three models
exhibited improved detection performance to some degree.

In the next phase of this article, we will explore the integration
of multimodal RGB and IRSI data to enhance target detection
accuracy. RGB data retain radiometric information from three
spectral bands of the target, allowing for differentiation from
the surrounding environment based on color variations. IRSI
data enhance distinctions between targets and the environment
in terms of spatial features, such as texture and geometry. In
the future, this fusion can be achieved by combining RGB and
IRSI data at the shallow layers (or input layers) of deep-learning
models. By jointly considering the differences in color features
and spatial features between targets and the environment, we
aim to improve the precision of target detection.

VI. CONCLUSION

This article proposes the IceRegionShip dataset for SD in
ITW. This dataset includes subdatasets IceRegionShip—RGB and
IceRegionShip-IRSI. To the best of our knowledge, this is the
first optical remote sensing dataset designed specifically for
SD in IIW. During the dataset processing, we constructed IRSI
through spectral measurement experiments. The IRST was used
to reduce the influence of sea ice on SD and enhance ship
outlines. Comparative experiments demonstrate that the use of
IRSTI facilitates SD in ITW. We extensively benchmarked various
state-of-the-art deep-learning-based methods on this dataset.
Thus, the obtained results of the experiment can be used as a
useful baseline and contribute to the advancement of SD in ITW.
In the future, we aim to continue to conduct research in related
areas, further enlarge the dataset, and develop detection models
that are more suitable for ITW.
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