
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024 1419
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Abstract—Band selection (BS) is an effective dimensionality
reduction technique for hyperspectral images. Although many
relevant methods have been proposed, they often only focus on
the bandwise information and the correlation between the bands,
and few of them pay attention to the manifold preservation in
low-dimensional space, which may lead to the intrinsic structure of
the data being damaged. In this article, we propose a novel method
called sparse principal component analysis and adaptive multi-
graph learning (SPCA-AMGL) to address this issue. First, it applies
SPCA to the BS task to learn the projection weight matrix, which
utilizes the orthogonal constraint to remove redundant bands and
uses the L2,1 norm to impose a sparse regularization on the weight
matrix to ensure the selection of effective bands. Then, to select
the bands with manifold preserving capability, AMGL is proposed
to capture the local neighbor structure of data by combining the
benefit of multiple graphs, which can not only adaptively learn
the graph structure but also obtain the analytical solution of the
multigraph coefficients. Finally, an alternate iterative algorithm is
designed to optimize the proposed method. Abundant experiments
on three hyperspectral datasets prove the reliability and superiority
of the proposed method.

Index Terms—Adaptive multigraph learning (AMGL), local
manifold preserving, sparse principal component analysis (SPCA),
unsupervised band selection (BS).

I. INTRODUCTION

W ITH the rapid development of remote sensing technol-
ogy, the current spectral imaging technology can image

ground objects with an extremely high spectral resolution to
obtain hyperspectral images (HSIs), which usually have hun-
dreds of bands and can provide fine information reflecting the
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characteristics of ground objects [1]. Therefore, it is widely
used in the geological survey [2], vegetation detection [3],
environmental monitoring [4], and many other fields. However,
this also causes a problem that HSI has a huge amount of data
compared with the traditional three-channel image, which brings
great difficulties to the storage, transmission, and processing of
images. Meanwhile, dense spectral sampling results in a high
correlation between the adjacent bands, which makes the HSI
contain many redundant bands. In addition, the existence of
noise bands, irrelevant bands, and the curse of dimensionality
phenomenon also increases the difficulty of HSI analysis. To
solve the above issues, it is an effective means to apply dimen-
sionality reduction technologies to HSI analysis for reducing
the amount of data while preserving the discriminative spectral
information [5].

The current dimensionality reduction technologies mainly
include two types: feature extraction [6], [7] and feature se-
lection [8], [9], [10] [also called band selection (BS) in HSI
processing]. Feature extraction obtains low-dimensional data by
combining or projecting the original features to generate new
features. However, it changes the spectral values of the data,
which results in the loss of the statistical property and physical
meaning contained in the original bands, making it difficult for
some scenes that need these original spectral values. Different
from feature extraction, the idea of BS is to select a discrimina-
tive and representative band subset from the original band space,
while it can well preserve the physical meaning of the bands [11].
Therefore, BS is more suitable for HSI dimensionality reduction
in most cases.

From the perspective of label information usage, BS methods
can be classified as supervised [12], [13], semisupervised [14],
[15], and unsupervised methods [16], [17], [18]. In general, the
label information can effectively promote the selection of high-
quality bands and achieve better performance in supervised and
semisupervised band methods. Nevertheless, it is very expensive
work to obtain the label information of data, which hinders the
application of these two methods in reality. On the contrary,
unsupervised BS methods mine information from the data itself
without using additional label information, which makes it of
great application value. Therefore, unsupervised BS is the focus
of this article.

Currently, the unsupervised BS methods mainly include
ranking-based [19], clustering-based [20], and sparsity-based
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methods [21]. Specifically, ranking-based methods generally
sort the bands under a certain criterion and then select the
top-ranked bands. For example, maximum-variance principal
component analysis [19] chooses bands according to their cor-
responding variance. However, the selected bands are usually
highly corrected and may not be satisfactory because of the
influence of noise bands. Clustering-based methods utilize clus-
tering algorithms to divide the band space and select the most
representative bands from each cluster. Ward’s linkage and
divergence information [22] and optimal clustering framework
(OCF) [20] are two typical examples. The selected bands can
effectively avoid redundancy, but the overall usefulness cannot
be guaranteed, and these methods highly depend on the clus-
tering algorithms. Sparsity-based methods try to learn a sparse
representation of HSI to obtain the target subset. The typical
methods include sparse representation-based band selection [21]
and correntropy-based sparse spectral clustering [23]. Never-
theless, the sparse representation is sensitive to the quality of
HSI data, which greatly influences the performance and stability
of these methods. Recently, there has been a surge of interest
in deep learning-based approaches for BS. This is primarily
due to their remarkable ability to learn intricate features from
data. In [24], a deep neural network-based method (BS-Nets) is
introduced for BS, which transforms the task of BS into a spectral
reconstruction task. In [25], a dual-GCN based on band attention
and sparse constraint (BSD-GCN) is proposed for the BS. It
uses the local and nonlocal correlations among spectral bands
by constructing two types of graphs and aggregating the band
information with the topological structure to select a better band
subset. Despite the advancements in deep learning, traditional
methods still hold significance, especially in scenarios with
limited data or computational resources.

Although the above methods have achieved great success in
HSI dimensionality reduction tasks, they only utilize the spectral
information of HSIs while neglecting the spatial information,
which can help to select bands with distinguishability. In [26],
the spatial information of HSIs is preserved by adopting su-
perpixel segmentation to segment their first principal compo-
nent into diverse homogeneous regions. To promote BS, Shang
et al. [27] utilized hypergraph to characterize the local structure
of bands. By combining feature extraction and feature selection,
the method in [28] learns a spectral-spatial feature representation
through graph Laplacian. In recent years, some studies have
shown that using both spectral and spatial information from HSIs
simultaneously can help improve the classification accuracy of
HSIs.

In spectral–spatial methods, there are three key aspects that
need to be addressed. First, how to ensure that the selected bands
have sufficient information and discriminability. For instance,
while the original PCA can capture the most informative fea-
tures, it is sensitive to outliers. Hence, the presence of noise
and outliers in HSIs may significantly affect its performance.
Second, how to fully utilize the spatial information in HSIs. Most
methods rely on constructing similarity graphs to describe the
geometric relationships between pixels or bands. However, these
methods often employ a single graph construction approach,
such as using the heat kernel graph. Different graph construction

methods can capture different structural information, so the
graphs constructed by these methods may not comprehensively
represent the spatial information in HSIs. Third, how to effec-
tively integrate spectral and spatial information. Most methods
adopt a two-step process, first constructing a similarity graph,
and then using it for BS. However, in these two-step methods,
the similarity graph relies on the raw data and is fixed, which
fails to fully promote the interaction and collaboration between
these two tasks (BS and graph construction).

To address the aforementioned issues, we propose a sparse
principal component analysis and adaptive multigraph learn-
ing (SPCA-AMGL) method for hyperspectral BS in an un-
supervised manner. This method assumes that there is a low-
dimensional orthogonal subspace, and the original HSI can be
mapped to this subspace through a projection matrix, which
reveals the importance of each original band in construct-
ing low-dimensional features. Its goal is to find such a pro-
jection matrix that can optimally measure the importance of
each band. In the proposed method, an SPCA term is used to
project the original high-dimensional data into a orthogonal
low-dimensional subspace and ensure that the new features have
high information content and low correlation. A local manifold
preserving constraint utilizes the spatial information of pixel
nearest neighbor structure to constrain the projection matrix,
assigning greater weights to bands with manifold preserving
ability, making them easier to select. In order to learn a better
quality similarity graph, this method utilizes an AMGL strat-
egy that combines the advantages of multigraph learning and
considers the complementary information of different similarity
graphs. It learns a more complete and robust similarity graph
from multiple similarity graphs, and embeds this multigraph
learning process into BS, achieving an adaptive learning ap-
proach. Then, an alternate iterative algorithm is given to opti-
mize the SPCA-AMGL, which iteratively updates the projec-
tion matrix, the similarity graph, and the corresponding fusion
weights.

In detail, the main contributions of this article are summarized
as follows.

1) This article proposes a novel unsupervised method for
hyperspectral BS. Its goal is to find an optimal projection
matrix that enables the projected new features to have a
large amount of information and low correlation, while
maintaining the local geometric structure between pixels.
Then, based on the obtained projection matrix, selecting
a certain number of bands that contribute significantly to
the construction of the low-dimensional subspace.

2) An SPCA term with L2,1 norm regularization is proposed
to learn the projection matrix, which can effectively selects
bands with high information content and low redundancy,
and reduce the impact of outliers. The advantages of
manifold learning are integrated into the model to help
describe the nearest neighbor structure between pixels.
To give a comprehensive description of the neighborhood
graph between pixels, multiple graphs from different per-
spectives are utilized. This can overcome the inadequacy
of using a single graph and help construct a more complete
description of the interpixel structure.
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3) In this article, we integrate the BS and multigraph learn-
ing into a unified framework, where they can promote
each other and further improve their performance during
optimization process. Furthermore, an alternate iterative
algorithm is given to obtain the optimal solution of the
proposed method.

II. PRELIMINARY

A brief review of PCA, locality preserving projections (LPP),
and AMGL, which are related to our proposed method, are
presented in this section.

A. Principal Component Analysis

Assume that X = [x1, x2, . . . , xn] ∈ Rb×n is an HSI matrix,
and X has been centralized, where b is the number of bands and
n is the number of pixels. From the perspective of PCA, the aim
is to seek out an orthogonal projection matrix W ∈ Rb×d with
d � b, making the reconstruction error minimized as follows:

min
W

‖X −WWTX‖2
F

s.t. WTW = I (1)

where WT is the transposed matrix of W and I is an identity
matrix of size d× d. WT is first used to project the X into a
low-dimensional space, and then W is used to recover the X. After
learning an optimal projection matrix W, the low-dimensional
data can be denoted asY = WTX ∈ Rd×n, and its each column
is a principal component [29]. As a projection weight matrix,
the row vector Wi reveals the importance of the ith band in
constructing low-dimensional space.

B. Locality Preserving Projections

Manifold learning is an effective dimensionality reduction
technology in machine learning, which is designed to investigate
the intrinsic structure of data. Representative methods, include
isometric mapping [30], locally linear embedding [31], and
Laplacian eigenmaps (LE) [32]. Among them, LE constructs
a Laplacian graph to preserve the local neighbor information
of data. However, since these manifold learning methods are
nonlinear projections, they cannot derive an explicit projection
matrix to achieve the transformation of the out-of-samples [33].
To address this problem, LPP [34] is proposed based on LE,
which is a linear approximation of the LE and can generate an
explicit projection matrix to directly produce a low-dimensional
representation of data. Given the data pairwise similarity matrix
S ∈ Rn×n containing the edge weights on a graph with n nodes,
the formula of LPP is expressed as follows:

min
n∑

i=1

n∑
j=1

‖WTxi −WTxj‖2
2Sij

s.t. WTXXTW = I (2)

where Sij is the (i, j)th element of S, and I is an identity matrix
of size d× d. The purpose of the constraint here is to eliminate
the influence of an arbitrary scale factor.

It can be seen that if Sij is large, then the value of ‖WTxi −
WTxj‖2

2 is likely to be small. Therefore, by minimizing the
function in (2), the low-dimensional representation of data can
preserve the local nearest neighbor relationships in the high-
dimensional space [35].

C. Adaptive Multiple Graph Learning

Graph representation-based methods have been proved to be
effective for representing the structure of data. It has been widely
used in the related methods of feature selection. For example, Lu
et al. [35] used a heat kernel graph to describe the weights
between adjacent data points for preserving the local mani-
fold structure, and Yuan et al. [36] adopted an adaptive graph
constraint to learn the relationships among data. Compared
with these monotonous graph construction patterns, in [37], a
more robust AMGL algorithm is proposed to learn an adap-
tive graph from multiple initial graphs. Given multiple initial
graphs S(1), S(2), . . . , S(K) ∈ Rn×n constructed by different
metric methods for representing the similarity of pairwise data
points. The aim is to simultaneously learn a consensus graph
S ∈ Rn×n from these initial graphs during the feature selection
process. For each initial graph S(k), it should satisfy the follow-
ing constraints. 1) S(k)

ij ≥ 0; and 2)
∑n

j=1 S
(k)
ij = 1. Through

these constraints, each row (i.e., S(k)
i ) can be regarded as a

clear probability distribution. Therefore, the Kullback–Leibler
divergence [38] is used for consensus measuring, i.e., minimize∑

k α
2
k

∑
i KL(S

(k)
i , Si), where αk is the weight of the kth

initial graph. The function is defined as follows:

min
S,α

K∑
k=1

α2
k

n∑
i=1

n∑
j=1

S
(k)
ij log

S
(k)
ij

Sij

s.t.
n∑

j=1

Sij = 1, 0 ≤ Sij ≤ 1;
K∑
k=1

αk = 1, αk ≥ 0 (3)

where the first constraint ensures that each row of S is also a
probability distribution and the second one guarantees that the
sum of all graph weights is 1.

III. PROPOSED MODEL

The details of SPCA-AMGL are introduced in this section,
including the construction of the model and the corresponding
optimization algorithm.

A. Model Construction

1) Learning projection matrix: Given the problem defined
in (1), we want to learn an optimal W that can project the
original bands space to a best approximation of low-dimensional
manifold [15]. The Wij is the projection weight of the ith
band to reconstruct the jth low-dimensional band. Therefore,
the importance of the b bands can be measured according to
{‖W1‖2, ‖W2‖2, . . . , ‖Wb‖2}, from which the most important
bands can be selected [39]. Further, to discard redundant and
irrelevant bands, each low-dimensional band ought to be recon-
structed from the most effective original bands [40]. To this end,
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the L2,1 norm is integrated into PCA for guaranteeing the row
sparse of W. This forms the formula of sparse PCA as follows:

min
W

‖X −WWTX‖2
F + λ1‖W‖2,1

s.t. WTW = I (4)

where λ1 is a balance parameter to adjust the sparse regulariza-
tion, and ‖W‖2,1 is defined as

‖W‖2,1 =
b∑

i=1

‖Wi‖2 =
b∑

i=1

⎛
⎝ d∑

j=1

W 2
ij

⎞
⎠

1/2

. (5)

2) Preserving local manifold: In fact, adjacent pixels are
relevant in real images and are more likely to come from the
same class [28]. Related studies have shown that the nearest
neighbor relationship is important for HSI classification [41],
[42]. Based on this fact, we want to make the bands that are
capable of keeping the local manifold structure of HSI more
likely to be selected. Specifically, if the pixels xi and xj in
the original space are similar, then their corresponding pixels
in the low-dimensional space WTxi and WTxj should also be
similar [43]. Based on the aforementioned idea, a local manifold
preserving constraint is introduced into our model to achieve this
goal, which can be expressed as follows:

min
W

λ2

2

n∑
i=1

n∑
j=1

‖WTxi −WTxj‖2
2Sij (6)

where λ2 is a balance parameter, where Sij represents the
similarity between xi and xj , and the similarity matrix is S.

According to the spectral graph theory and manifold learning
theory, constructing a nearest neighbor graph is an excellent
way to represent the local manifold structure of data. Hence, our
method utilizes the k-nearest neighbor (KNN) graph to calculate
the S, which is defined as

Sij =

{
f(xi, xj), if xj ∈ N(xi) or xi ∈ N(xj)

0, otherwise
(7)

where N(xi) denotes the set of KNN of xi, and f(xi, xj) is a
function for calculating the similarity between xi and xj .

3) Learning similarity graph using AMGL: The quality of
graph will greatly affect the effect of BS. In the previous work,
most of the constructed graphs are fixed, because they are cal-
culated directly according to the given original data. The graphs
obtained by this construction way are sensitive to redundant
bands and outliers to a great extent. To solve this problem,
we need to reduce the dependence of the model on the initial
graphs. An effective method is to learn an adaptive graph in the
process of BS [44]. Besides, there are many ways to build graphs
according to different metric methods. Graphs with different
definitions can depict a variety of structure information, and in
most cases, these graphs can complement each other to form a
more complete description of the data structure [37]. Therefore,
an AMGL strategy is utilized in this article to learn an adaptive
graph from multiple initial graphs that are constructed in various
ways. It combines the advantages of multiple graphs and uses
the adaptive learning method to reduce the dependence of the

model on the initial graphs. Its formula is defined as follows:

min
S,α

λ3

K∑
k=1

α2
k

n∑
i=1

n∑
j=1

S
(k)
ij log

S
(k)
ij

Sij

s.t.
n∑

j=1

Sij = 1, 0 ≤ Sij ≤ 1;
K∑
k=1

αk = 1, αk ≥ 0 (8)

where λ3 is a regularization parameter, and others have been
introduced before.

Note that, the graphs constructed in our method are all self-
connected, i.e., S(k)

ii has the largest value in the ith row. Con-
sidering that the scales of graphs constructed in different ways
may be different, we need to normalize all graphs first. Through
the transformation ofS(k)

ij /
∑n

j=1 S
(k)
ij → S

(k)
ij , each row vector

of S(k) satisfies
∑n

j=1 S
(k)
ij = 1. After the normalization, the

elements in each row (i.e., S(k)
i ) have a probability distribution.

The larger the S
(k)
ij , the greater the similarity between the ith

pixel and the jth pixel in the kth graph.
More importantly, the multigraph patterns are flexible, which

can be constructed through multiple similarity metrics of the
same kind but with different parameter values or multiple sim-
ilarity metrics of different kinds. For example, in the AMGL
model, multiple graphs based on the Gaussian kernel function
can be constructed, which have different values of the scale
parameter σ.

Finally, by integrating (4), (6), and (8), the objective function
of SPCA-AMGL is obtained as follows:

min
W ,S,α

‖X −WWTX‖2
F + λ1‖W‖2,1

+
λ2

2

n∑
i=1

n∑
j=1

‖WTxi −WTxj‖2
2Sij

+ λ3

K∑
k=1

α2
k

n∑
i=1

n∑
j=1

S
(k)
ij log

S
(k)
ij

Sij

s.t. WTW = I

n∑
j=1

Sij = 1, 0 ≤ Sij ≤ 1;
K∑
k=1

αk = 1, αk ≥ 0.

(9)

B. Model Optimization

As we can see from (9), there are three variables that need to
be optimized: W, S, and α. This article uses an alternate iterative
update optimization algorithm to optimize these variables. Its
main idea is to optimize one variable while fixing the other
variables.

1) Optimize W by fixing S and α: When fixing the S and α,
we can get the following formula:
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min
W

‖X −WWTX‖2
F + λ1‖W‖2,1

+
λ2

2

n∑
i=1

n∑
j=1

‖WTxi −WTxj‖2
2Sij

s.t. WTW = I. (10)

Here, we need to make some transformations to (10) for facil-
itating its optimization. Specifically, (10) is equivalent to the
following trace minimization problem:

min
W

−Tr
(
WTXXTW

)
+ λ1Tr

(
WTQW

)
+ λ2Tr

(
WTXLXTW

)
s.t. WTW = I (11)

where Q ∈ Rb×b is a diagonal matrix, and its diagonal element
Qii is defined as

Qii =
1√∑d

j=1 W
2
ij + θ

, (i = 1, 2, . . . , b). (12)

The θ is a positive constant with a sufficiently small value
to ensure that the denominator makes sense during the actual
coding process. And L ∈ Rn×n is the Laplacian matrix, which
is calculated byL = D − (S + ST )/2. The D is a degree matrix
and its diagonal element Dii =

∑n
j=1(Sij + Sji)/2.

Noting A = −XXT + λ1Q+ λ2XLXT , the (11) can be
rewritten as

min
W

Tr
(
WTAW

)
, s.t. WTW = I. (13)

The eigenvectors of the first d minimum eigenvalues of A
constitutes the optimal solution of W. Here, an orthogonal
iteration-based method is proposed to solve the problem (13),
and the algorithm is presented in Algorithm 1.

2) Optimize S by fixing W and α: When the W and α are
fixed, the (9) is equivalent to the following formula:

min
S

λ2

2

n∑
i=1

n∑
j=1

∥∥WTxi −WTxj

∥∥2

2 Sij

− λ3

K∑
k=1

α2
k

n∑
i=1

n∑
j=1

S
(k)
ij logSij

s.t.
n∑

j=1

Sij = 1, 0 ≤ Sij ≤ 1. (14)

Since each row of S can be analyzed independently, here we
take the ith row as an example. We can see that if Si satisfies∑n

j=1 Sij = 1 andSij ≥ 0, thenSij must also satisfySij≤1. So
we can remove the constraintSij ≤ 1 safely. Using the Lagrange
multiplier method, we can get the following Lagrange function:

L =
λ2

2

n∑
j=1

BijSij − λ3

n∑
j=1

Cij logSij

+ λ

⎛
⎝ n∑

j=1

Sij − 1

⎞
⎠−

n∑
j=1

μjSij (15)

Algorithm 1: Algorithm for Solving (13).

Input: The HSI matrix X ∈ Rb×n, the initial projection
matrix W ∈ Rb×d, the similarity graph matrix
S ∈ Rn×n,
and the parameters λ1, λ2.

Output: The projection matrix W ∈ Rb×d.
1: Calculate Q by

Qii =
1√∑d

j=1 W
2
ij + θ

.

2: Calculate L = D − (S + ST )/2.
3: Calculate A = −XXT + λ1Q+ λ2XLXT .
4: Calculate λA that is the greatest eigenvalue of A

calculated by power iteration method [45].
5: Calculate Ã = λAI −A.
6: repeat
7: Calculate M = ÃW .
8: Calculate USV T = M via the compact SVD method

where U ∈ Rb×d, S ∈ Rd×d, and V ∈ Rd×d.
9: Update W = UV T .

10: until convergence.

where λ and μj (j = 1, 2, . . . , n) are Lagrange multipliers.

Bij = ‖WTxi −WTxj‖2
2 and Cij =

∑K
k=1 α

2
kS

(k)
ij .

Since problem (14) is convex and has a lower boundary, a so-
lution that satisfies the Karush–Kuhn–Tucker (KKT) conditions
is the global optimal solution [37]. Therefore, we can get the
following KKT conditions:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ2
2 Bij − λ3

Cij

Sij
+ λ − μj = 0∑n

j=1 Sij = 1

Sij ≥ 0

μjSij = 0

μj ≥ 0.

(16)

For all j that satisfy Cij �= 0, according to (16), we can get
Sij =

λ3Cij
λ2
2 Bij+λ−μj

and Sij �= 0, so μj = 0. Then, Sij =

λ3Cij
λ2
2 Bij+λ

. For all j that satisfy Cij = 0, we can get λ2
2 Bij + λ −

μj = 0 and μj =
λ2
2 Bij + λ ≥ 0.

Obviously, the smallest value in Bi is Bii, which is equal
to 0, and the corresponding Cii �= 0, so μi = 0. Therefore, we
can first calculate the value of λ by solving

∑
j:Cij �=0 Sij =∑

j:Cij �=0
λ3Cij

λ2
2 Bij+λ

= 1 in the range (− λ2
2 Bii, +∞), i.e.,

(0, +∞). Here, we define a function f(λ) =
∑

j:Cij �=0
λ3Cij

λ2
2 Bij+λ

.

It can be seen that limλ→0+ f(λ) → +∞ and limλ→+∞ f(λ) =
0. Since f(λ) decreases monotonically in (0, +∞), the equation
f(λ) = 1 must have a unique solution in (0, +∞). After solving
the value of λ, we set Sij =

λ3Cij
λ2
2 Bij+λ

and μj = 0 for all j

that make Cij �= 0. And for all other j, we can set Sij = 0
and μj =

λ2
2 Bij + λ. The detail algorithm for solving (16) is

presented in Algorithm 2.



1424 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Algorithm 2: Algorithm for Solving (16).

Input: The HSI matrix X ∈ Rb×n, the projection matrix
W ∈ Rb×d, the initial similarity matrices S(1), S(2), . . .,
S(K) ∈ Rn×n, and the
parameters λ2, λ3, and α.

Output: Similarity graph matrix S ∈ Rn×n.
1: Calculate B and C according to their definition.
2: for i = 1 to n do
3: Calculate λ via solving

f(λ) =
∑

j:Cij �=0
λ3Cij

λ2
2 Bij+λ

= 1.

4: for j = 1 to n do
5: if Cij �= 0 then
6: Set Sij =

λ3Cij
λ2
2 Bij+λ

.

7: else
8: Set Sij = 0.
9: end if

10: end for
11: end for

3) Optimize α by fixing W and S : When the W and S are
fixed, the problem (9) can be rewritten as

min
α

K∑
k=1

α2
kck, s.t.

K∑
k=1

αk = 1, αk ≥ 0 (17)

where ck =
∑n

i=1

∑n
j=1 S

(k)
ij log

S
(k)
ij

Sij
.

According to the Cauchy–Schwarz Inequality, we can get the
solution of problem (17) as follows:

αk =
c−1
k∑K

i=1 c
−1
i

. (18)

It can be seen from the (18) thatαk can update adaptively during
the optimization process. Moreover, αk and ck show a negative
correlation, i.e., the smaller ck is, the larger αk is. According to
the definition of ck, it represents the divergence between S(k)

and S. Thus, the small ck indicates that S(k) is closer to S, that
is, S(k) has a greater quality [37]. In this respect, the learned αk

does play the role of weight.
We iteratively optimize W, S, and α until they converge. After

obtaining the optimal W, we sort all bands according to ‖Wi‖2

in descending order and select the top d ranked bands to form
the target band subset. The whole BS process is summarized in
Algorithm 3.

C. Computational Complexity Analysis

Computational complexity is a critical metric for evaluating
an algorithm. In this section, the computational complexity
of SPCA-AMGL is analyzed. According to Algorithm 3, the
overall optimization process involves the update of two matrices
and one vector (in three steps). In each iteration, updating W
needs bd+ 2nb2 + n2b+ b2 + b2d+ d3 + bd2 flmlt (a floating-
point multiplication), updating S needs bdn2 +Kn2 + n2 flmlt,
updating α needs Kn2 flmlt. In most cases, K < d, d < b,

Algorithm 3: Band Selection via SPCA-AMGL.

Input: The HSI matrix X ∈ Rb×n, the initial similarity
matrices S(1), S(2), . . ., S(K) ∈ Rn×n, the parameters λ1,
λ2, λ3, and the number of selected bands d.

Output: d selected bands.
1: Initialize a random projection matrix W ∈ Rb×d that

satisfies WTW = I .
2: Initialize S =

∑K
k=1 S

(k)/K and αk = 1/K.
3: repeat
4: Update W via Alg. 1.
5: Update S via Alg. 2.
6: Update αk via Eq. (18).
7: until W convergence.
8: Sort all bands according to ‖Wi‖2 in descending order

and select the top d ranked bands.

and b < n. Thus, the computational complexity of the proposed
method is O(nb2 + n2b).

IV. EXPERIMENTS

This section shows detailed experiments to verify the effec-
tiveness of SPCA-AMGL.

A. Experimental Setup

1) HSI datasets: This article uses three popular public HSI
datasets for experiment and analysis, which are Indian Pines,
Pavia University, and WHU-Hi-HanChuan, respectively.

a) The Indian Pines dataset was developed in collaboration
with Purdue University, West Lafayette, IN, USA and
NASA, Washington, DC, USA, which was collected by
AVIRIS sensor over the Indian Pines test site in Indi-
ana, USA, in 1992. The original size of this dataset is
145×145×224, of which 145×145 represents the pixel
size, 224 represents the number of bands. The entire image
collection scene is relatively rich, including farmland,
trees, roads, railways, and houses. In the experiment, this
article focuses on the information of 16 types of ground
truth and excludes 24 invalid bands: [104–108], [150–
163], 220.

b) The Pavia University dataset was collected and provided
by the remote sensing laboratory of Pavia University in
Italy, which was acquired by the ROSIS sensor over Pavia,
Northern Italy. It contains 610 × 610 pixels and 103
consecutive spectral bands. The dataset covers various
types of land objects, including different types of vege-
tation, buildings, roads, etc. In this article, we focus on the
information of nine types of ground truth.

c) The WHU-Hi-HanChuan dataset was collected in
Hanchuan City, Hubei Province, China, in June 2016, with
a 17-mm focal length Headwall Nano-Hyperspec imaging
sensor equipped on a Leica Aibot X6 UAV V1 platform.
The study area is a rural–urban fringe zone with buildings,
water, and cultivated land, which contains seven crop
species: strawberry, cowpea, soybean, sorghum, water
spinach, watermelon, and greens. The size of this dataset
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TABLE I
CLASSIFICATION PERFORMANCE OF DIFFERENT BS METHODS USING 50 BANDS ON INDIAN PINES DATASET

TABLE II
CLASSIFICATION PERFORMANCE OF DIFFERENT BS METHODS USING 50 BANDS ON PAVIA UNIVERSITY DATASET

is 1217 × 303 pixels. There are 274 bands from 400 to
1000 nm, and the spatial resolution of the UAV-borne
hyperspectral imagery is about 0.109 m. Its image contains
16 types of ground truth [46], [47].

2) Comparison methods: To more intuitively evaluate the
performance of SPCA-AMGL, six representative BS meth-
ods are used for comparison: 1) OCF [20], 2) ISSC [48],
3) ONR [49], 4) ASPS [50], 5) FNGBS [51], and 6) MGSR [52],
In addition, the experimental results obtained by using all bands
are used as the baselines.

3) Classifiers: To evaluate the quality of the bands selected
by the above methods, we adopt two widely used hyperspec-
tral classifiers for classification experiments, which are support
vector machine (SVM), and KNN. For each classifier, 10% of
samples in each category are selected as training set, and the
remaining 90% are used as test set. To make the experimental
results more credible, the average of ten experimental data is
taken as the experimental result.

The kernel function in SVM is set as “RBF”, and the param-
eters C and gamma are set as 10 000 and 1/(number of bands ×
variance of data), respectively. Regarding KNN, the parameter
k is initialized to 5.

4) Accuracy measures: In this article, three popular quan-
titative indices, i.e., overall accuracy (OA), average accuracy

(AA), and kappa coefficient (Kappa), are selected to calculate
classification results.

5) Parameter setting: For the SPCA-AMGL, there are four
main parameters that need to be adjusted: λ1, λ2, λ3, and k
in the initial KNN graphs. We use the grid search strategy to
determine the values of these parameters. First, we make a rough
adjustment in the range of {10−3, 10−2, 10−1, 1, 101, 102, 103},
and then adjust the values of parameters more finely in a small
step. Finally, in this article, we set the parameters λ1 = 1,
λ2 = 300, and λ3 = 0.3, respectively, and the value of k is set to
6. The specific contents of parameter analysis will be described
in Section IV-D.

For the comparison methods, all parameters are set according
to their references or determined via experiment. For example,
the β in ISSC is set as 0.0001. For MGSR, the regularized
parameter λ and noise probability p are set as 0.5 and 1 on
the Indian Pines dataset, 0.6 and 0.1 on the Pavia University
dataset, and 0.1 and 0.01 on the WHU-Hi-HanChuan dataset,
respectively.

B. Comparison of Classification Performance

In this section, we assess the classification accuracy of
various band subsets obtained through distinct BS methods. The
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Fig. 1. Classification performance of different methods under varying band subset sizes. (a)–(c) Classification results of using SVM on Indian Pines, Pavia
University, and WHU-Hi-HanChuan datasets, respectively. (d)–(f) Classification results of using KNN on Indian Pines, Pavia University, and WHU-Hi-HanChuan
datasets, respectively.

Fig. 2. Classification maps of Indian Pines dataset obtained by different methods. (a) Ground truth. (b) OCF. (c) ISSC. (d) ONR. (e) ASPS. (f) FNGBS.
(g) MGSR. (h) SPCA-AMGL.

Fig. 3. Classification maps of Pavia University dataset obtained by different methods. (a) Ground truth. (b) OCF. (c) ISSC. (d) ONR. (e) ASPS. (f) FNGBS.
(g) MGSR. (h) SPCA-AMGL.

OA achieved by these methods is presented in Fig. 1(a)–(f),
where the band subset sizes range from 5 to 50 with a step
of 5. In addition, we provide a comprehensive performance
evaluation in Tables I–III. For Indian Pines, Pavia University,
and WHU-Hi-HanChuan datasets, the band subset sizes are set to
50, respectively. This table includes class accuracy, OA, AA, and
Kappa. Moreover, we conduct a visual analysis of the classifica-
tion maps generated by the SVM classifier, utilizing different BS

techniques on the experimental datasets. Figs. 2–4 display these
results. Notably, the proposed SPCA-AMGL method demon-
strates a consistent superiority over the alternative BS methods.

First, as shown in Fig. 1, SPCA-AMGL achieves the best
OA across all datasets, both in the case of SVM and KNN
classifiers. Notably, even with a relatively small band subset
size, such as the number of bands is 15, SPCA-AMGL still has
a better OA compared with other BS methods. This indicates
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TABLE III
CLASSIFICATION PERFORMANCE OF DIFFERENT BS METHODS USING 50 BANDS ON WHU-HI-HANCHUAN DATASET

Fig. 4. Classification maps of WHU-Hi-HanChuan dataset obtained by different methods. (a) Ground truth. (b) OCF. (c) ISSC. (d) ONR. (e) ASPS. (f) FNGBS.
(g) MGSR. (h) SPCA-AMGL.

that SPCA-AMGL can select a more informative band subset.
In addition, ASPS and FNGBS demonstrate competitive perfor-
mance by leveraging subspace partitioning strategies to reduce
interband redundancy. However, these methods do not surpass
the performance achieved by SPCA-AMGL. The MGSR model,
which prioritizes band clustering performance, fails to select
representative bands for classification, resulting in the lowest
OA among all BS methods.

Second, the band subset size significantly impacts classifica-
tion performance. Generally, as the band subset size increases,
all BS methods tend to achieve better classification performance.

However, due to the limitations imposed by the availability
of labeled samples, the Hughes phenomenon emerges as the
band subset size further increases. For instance, in Fig. 1(b),
the OA of ISSC starts to decline when the number of bands
exceeds 35. Similarly, in Fig. 1(d), OCF and MGSR experience
decreasing OA values when the number of bands surpasses 30
and 25, respectively. Despite this, SPCA-AMGL still avoids
this phenomenon across all datasets, suggesting its capability
to select more representative bands.

Third, when compared with using all bands, SPCA-AMGL
consistently achieves better or comparable performance on
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Fig. 5. Classification performance of different methods under different numbers of training samples. (a)–(c) Classification results of using SVM on Indian Pines,
Pavia University, and WHU-Hi-HanChuan datasets, respectively. (d)–(f) Classification results of using KNN on Indian Pines, Pavia University, and WHU-Hi-
HanChuan datasets, respectively.

all three datasets. For example, on the Indian Pines dataset,
SPCA-AMGL matches the OA achieved using all bands with
just 40 bands in SVM classification, and even with only ten
bands in KNN classification, SPCA-AMGL surpasses the OA
of using all bands. In contrast, other methods either fall short
of or require more bands. This indicates that the complete
band set contains noisy bands that can degrade classification
performance. Similar trends are observed in the Pavia University
and WHU-Hi-HanChuan datasets, where SPCA-AMGL tends to
achieve better OA with fewer bands than other BS methods.

Fourth, SPCA-AMGL demonstrates superior performance
across class accuracy, OA, AA, and Kappa. Tables I–III show
that SPCA-AMGL is the best method under 50 bands. Specif-
ically, on the Indian Pines dataset, SPCA-AMGL achieves
the highest class accuracy for eight ground objects, and this
number is five and nine for the Pavia University and WHU-
Hi-HanChuan datasets, respectively. Moreover, SPCA-AMGL
consistently achieves better performance in terms of OA, AA,
and Kappa. While ONR, ASPS, and FNGBS also exhibit com-
petitive classification performance among other BS methods,
the proposed SPCA-AMGL consistently outperforms them. In
addition, from Figs. 2–4, it is evident that our proposed method
generates superior classification maps and fewer misclassified
points, further substantiating its effectiveness.

For the experimental results, we summarize the following
aspects to explain why our method achieved better accuracy.

1) From the perspective of reconstruction, our method of
selecting high-quality bands is a global strategy. On the
contrary, methods, such as OCF, ONR, ASPS, and FNGBS
adopt a subspace partitioning strategy, which select the
most representative bands in each group, resulting in a
more localized BS. Because in some cases, multiple rep-
resentative bands may be located in the same group, but
only one band is ultimately selected. On the other hand,

some groups may contain many bands with poor quality,
but some of them may still be selected.

2) When selecting bands, our method fully considers main-
taining the local neighborhood structure of low dimen-
sional data to enhance its separability. We achieve this by
applying local manifold preserving constraint on the pro-
jection matrix. Furthermore, unlike MGSR, our method
does not use a fixed similarity matrix. It integrates the
similarity matrix and projection matrix into a unified
framework, achieving mutual promotion and updating
during the optimization process.

C. Classification Performance With Different Numbers of
Training Samples

This experiment compares the classification accuracies of
SPCA-AMGL with other six methods by changing the training
samples. The percentage of training samples is changed from
5% to 40%. The band subset sizes on the Indian Pines, Pavia
University, and WHU-Hi-HanChuan datasets are 30, 30, and
30, respectively. All the parameters in the six methods are the
same as in experiment in Section IV-B.

Fig. 5 shows the OA curves obtained by seven methods
using SVM and KNN classifiers on three datasets. Similar to
Fig. 1, SPCA-AMGL exhibits excellent performance in most
cases. Among other methods, ISSC, ONR, ASPS, and FNGBS
perform differently on different datasets. For example, FNGBS
outperforms other comparison methods on the Indian Pines
dataset. On the Pavia University dataset, ONR outperforms other
comparison methods, and even outperforms SPCA-AMGL in
the KNN classifier case [see Fig. 5(e)]. On the WHU-Hi-
HanChuan dataset, ASPS performs well. But from an overall
perspective, SPCA-AMGL achieves advanced performance and
wide applicability to datasets.
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Fig. 6. OA under different choice of λ1, λ2, and λ3 on three datasets. (a)–(c) Indian Pines. (d)–(f) Pavia University. (g)–(i) WHU-Hi-HanChuan.

D. Analysis of Parameters Sensitivity

In this section, we conduct extensive parameter analysis on the
proposed algorithm to evaluate the impact of different parameter
settings on algorithm performance. Specifically, we focus on
the following key parameters: λ1, λ2, λ3, and the value of k
in the initial KNN graphs (note that this is not the same as k in
the KNN classifier).

First, we calculate the effects of λ1, λ2, and λ3 on the values of
OA, and the results are shown in Fig. 6. We use the grid search
strategy to guide the optimal parameter setting. Specifically, in
the sensitivity test ofλ1, the other two parameters are fixed. Then,
λ1 takes a value from {10−3, 10−2, 10−1, 1, 101, 102, 103}, and
the number of selected bands ranges from 5 to 50. As depicted in
Fig. 6, it is evident that the parameter λ1 has the most significant
influence on OA. A substantial decline in OA is observed when
λ1 is relatively small. For instance, as illustrated in Fig. 6(a), on
the Indian Pines dataset with 30 selected bands, OA is notably
lower when λ1 is 0.001 compared with the case when λ1 is

1. Another notable observation is that λ2 and λ3 have minimal
impact on OA across all tested datasets. Moreover, after selecting
an appropriate range for λ1, SPCA-AMGL consistently achieves
excellent OA values over these datasets. Therefore, we believe
that after selecting suitable values for λ1, λ2, and λ3, they can
be used on varying datasets, which demonstrates the widespread
applicability of SPCA-AMGL. This stands in stark contrast to
MGSR, which is highly sensitive to parameter choices, severely
limiting its practicality. For our method, we suggest that the
value of λ1 should be between 1 and 100, and the values of λ2

and λ3 should be greater than 0.
Second, to explore the impact of the initial KNN graphs on

the SPCA-AMGL model, we conduct an evaluation with varying
the value of neighbors. In this experiment, we construct multiple
initial KNN graphs by setting k from 1 to 19, while selecting 15
and 30 bands. The experimental results are presented in Fig. 7.
It is evident that across the three datasets, when the value of k
is less than five or greater than 15, the OA is lower than when k
falls within the range of 5 to 15. Our interpretation is that when
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Fig. 7. Influence of k in KNN graph for (a) Indian Pines, (b) Pavia University, and (c) WHU-Hi-HanChuan.

Fig. 8. Classification performance of different graph construction methods. (a) Indian Pines. (b) Pavia University. (c) WHU-Hi-HanChuan.

k is excessively small, the neighboring structure depicted by
the constructed graph remains relatively simplistic. Conversely,
with overly large k values, the construction of graph becomes
susceptible to the influence of noisy pixels. Consequently, based
on empirical observations, setting k within the range of 5 to 15
is considered appropriate.

E. Ablation Experiment

To investigate the efficacy of an AMGL, we conduct ablation
experiments on the three datasets. Specifically, we conduct three
comparative experiments, i.e., no any graph, a neighborhood
graph based on Gaussian kernel, and three neighborhood graphs
within SPCA-AMGL: Gaussian kernel, Laplacian kernel, and
Cosine similarity. The results are presented in Fig. 8, where it
is evident that methods employing multigraph learning outper-
form those relying solely on a single graph, and both of these
approaches outperform the strategy that do not use graph. It is
worth noting that the efficacy of employing multiple graphs is not
a universal maxim, and arbitrary utilization of multiple graphs
does not necessarily guarantee superiority over other methods.
Different combinations of graphs need to be carefully considered
for comprehensive evaluation.

F. Comparison of Running Time

To quantify the impact of computational efficiency, we
conduct a thorough runtime analysis of the proposed algorithm
against existing state-of-the-art techniques. The experiments are

performed on a computer with Intel Core i5-12490F (4.2 GHz)
CPU and 32 GB RAM, and all the methods are implemented
in MATLAB R2021b. Table IV represents the running time
of different methods when 15 bands are selected on the three
datasets. All values are the average of ten independent runs.

The results of the runtime comparison, as depicted in Table IV,
highlight notable differences among the methods. The proposed
algorithm significantly reduces processing times on large-scale
datasets compared with its counterparts. For instance, on the
WHU-Hi-HanChuan dataset, the proposed method achieves a
runtime reduction of 88% when compared with OCF and 60%
when compared with FNGBS. This substantial improvement in
runtime efficiency stems from the algorithm’s implementation
strategy of selecting a fixed number of data inputs. These opti-
mizations not only accelerate the computational process but also
enhance the scalability of the algorithm to handle larger datasets
without sacrificing accuracy.

G. Convergence Analysis

In order to assess the convergence behavior of our proposed
algorithm, we conduct a series of convergence experiments
across the three datasets. The purpose of these experiments is to
analyze the rate and stability at which the algorithm converges
toward an optimal solution. We initialize the algorithm and track
the changes in objective function values over iterations.

The results, depicted in Fig. 9, indicate that our algorithm con-
sistently converges toward a stable solution for all datasets (less
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TABLE IV
RUNNING TIME (S) OF DIFFERENT METHODS TO SELECT 15 BANDS ON THREE DATASETS

Fig. 9. Convergence curves of objective function values in SPCA-AMGL on three datasets. (a) Indian Pines. (b) Pavia University. (c) WHU-Hi-HanChuan.

than ten iterations). The convergence curves exhibit a smooth
and rapid descent initially, followed by a gradual stabilization
of the objective function values. The consistent convergence
behavior across different datasets demonstrates the robustness
and reliability of our algorithm. These findings underscore the
algorithm’s ability to efficiently optimize the BS process, en-
suring the selection of informative and discriminative spectral
bands for hyperspectral data classification applications.

V. CONCLUSION

In this article, we represent a novel unsupervised BS method
called SPCA-AMGL for HSI dimensionality reduction. The
SPCA-AMGL assumes that there is a low-dimensional embed-
ding subspace, where the most important information of HSI
is retained. Therefore, this approach revolves around the idea
that identifying the band significance for projecting the original
HSI data into the low-dimensional subspace. To this end, SPCA-
AMGL proposes to apply SPCA withL2,1 norm sparse constraint
to learn the projection matrix. In this way, the most of informa-
tion in the original data is retained and the orthogonal constraint
also reduces the correlation between low-dimensional bands.
Meanwhile, a local manifold preserving constraint based on LPP
is proposed to preserve the local neighbor structure of HSI in the
low-dimensional subspace. To obtain a sufficient description of
the data geometry, an AMGL strategy is introduced to learn a
better quality similarity matrix. Moreover, the proposed method
integrates BS and multigraph learning into a framework so that
they can promote each other during the process of optimization.
Therefore, our method ensures that the bandwise information,
interband correlation, and manifold-preserving capability of
selected bands are simultaneously considered. Finally, the band
significance is expressed in a projection weight matrix.

Related experiments are conducted on three HSI datasets:
1) Indian Pines, 2) Pavia University, and 3) WHU-Hi-HanChuan.
Through experiments, we can conclude that SPCA-AMGL are

excellent in selecting high-quality bands, stability, and parame-
ter sensitivity. Therefore, it can effectively reduce the dimension
of HSI for subsequent hyperspectral tasks. In future work, we
hope to further improve the AMGL model. For example, the 2-D
spatial relationship of pixels in image data is naturally a measure
of similarity, which can be used to construct a new graph to
characterize the local nearest neighbor structure of HSI.
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