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Multiscale Adjacency Matrix CNN: Learning on
Multispectral LiDAR Point Cloud via Multiscale

Local Graph Convolution
Jian Yang , Binhan Luo , Ruilin Gan , Ao Wang, Shuo Shi , Member, IEEE, and Lin Du

Abstract—Multispectral LiDAR can rapidly acquire 3D and
spectral information of objects, providing richer features for point
cloud semantic segmentation. Despite the remarkable performance
of existing graph neural networks in point cloud segmentation, ex-
tracting local features still poses challenges in multispectral LiDAR
point cloud scenes due to the uneven distribution of geometric and
spectral information. To address the prevailing challenges, cutting-
edge research predominantly focuses on extracting multiscale local
features, compensating for feature extraction shortcomings. Thus,
we propose a multiscale adjacency matrix convolutional neural
network (MS-AMCNN) for multispectral LiDAR point cloud seg-
mentation. In the MS-AMCNN, a local adjacency matrix convo-
lution module was first proposed to efficiently leverage the point
cloud’s topological relationships and perceive local geometric fea-
tures. Subsequently, a multiscale feature extraction architecture
was adopted to fuse local geometric features and utilize a global
self-attention module to globally model the semantic features of
multiscale. The network effectively captures global and local rep-
resentative features of the point cloud by harnessing the capabilities
of convolutional neural networks in local feature modeling and
the self-attention mechanism in global semantic feature learning.
Experimental results on the Titan dataset demonstrate that the
proposed MS-AMCNN network achieves a promising multispectral
LiDAR point cloud segmentation performance with an overall
accuracy of 94.39% and a mean intersection over union (MIoU)
of 86.57%. Compared with other state-of-the-art methods, such as
DGCNN, which achieved an MIoU of 85.43%, and RandLA-net,
with an MIoU of 85.20%, the proposed approach achieves optimal
performance in segmentation.

Index Terms—Deep learning, graph convolution, multiscale
structure, multispectral LiDAR, point cloud segmentation, self-
attention mechanism.
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I. INTRODUCTION

W ITH the increasing improvement of devices such as
3D laser scanners and depth sensors, the application

scope of 3D data is becoming increasingly wide. Due to affluent
geometric shape information, these data play an important role
in fields such as autonomous driving [1], [2], urban model-
ing [3], [4], and engineering surveying [5], [6]. As a typical
form, point cloud data contains spatial coordinates and related
attribute information and plays a crucial role in the recogni-
tion and segmentation of 3D scenes. Achieving accurate point
cloud semantic segmentation enables a more detailed under-
standing and description of scenes, thereby improving scene
perception capabilities. In order to enhance the discernment and
segmentation capabilities of objects, initial single-wavelength
light detection and ranging (LiDAR) systems have progressively
evolved into multispectral LiDAR systems, aiming to obtain
more comprehensive spectral information. Due to the lack of
spectral information, traditional single-wavelength LiDAR can-
not comprehensively describe the features of point cloud scenes
and obtain satisfactory segmentation results. In contrast, multi-
spectral LiDAR and hyperspectral LiDAR can simultaneously
obtain spectral information from multiple wavelengths, thereby
achieving more accurate point cloud segmentation results [7],
[8]. In real point cloud scenes, multispectral LiDAR data is
voluminous, and the feature selection is complex, making the
task of multispectral LiDAR semantic segmentation challenging
and valuable.

In recent years, two mainstream methods exist for multi-
spectral LiDAR point cloud segmentation: the image-based
approach [9], [10] and the point cloud-based approach [7], [11].
The image-based approach primarily converts the multispectral
intensity, echo, and elevation information of the multispectral
LiDAR into 2-D raster data for classification. Utilizing the
constructed multispectral imagery, a subsequent procedure is
executed to extract 2-D spectral attributes [12], texture charac-
teristics [13], and normalized vegetation indices [13], among
other representative features. Subsequently, a classic machine
learning methodology is applied to discern various land cover
types. This method simplifies the complexity of data process-
ing. However, converting 3D point clouds into 2-D image data
results in the loss of spatial 3D information and spectral in-
formation, thereby decreasing the accuracy of semantic seg-
mentation. With the advancement of computer technology and
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hardware, more research has shifted towards directly processing
multispectral LiDAR point clouds. The point cloud-based seg-
mentation method, similar to the image-based method, utilizes
intensity, elevation, and designed spatial descriptors to clas-
sify the 3D point cloud, thereby accurately segmenting spa-
tial information. Luo et al. [7] employed the random forest
algorithm to classify Titan’s multispectral LiDAR point cloud
directly, thus verifying the potential of spectral information
derived from multispectral LiDAR for land cover classification.
Shi et al. [14] performed feature selection on the spectral and
contextual attributes of the multispectral LiDAR point cloud
using an equalization-based optimization algorithm, followed
by classification of the 3-D point cloud using a support vector
machine. Their approach achieved higher classification accuracy
than solely utilizing the raw coordinate information. However,
designing optimal spatial features is a cumbersome task in
large-scale and complex scenes, which may lead to unreliable
accuracy in point cloud semantic segmentation.

Nowadays, deep learning techniques have experienced sig-
nificant advancements in various fields, including speech recog-
nition, natural language processing, and computer vision. Deep
learning has facilitated an extensive exploration of the abundant
spectral characteristics and the potential for point cloud segmen-
tation in multispectral LiDAR. In the domain of deep learning for
point clouds, PointNet [15], as a pioneering end-to-end model
for point cloud deep learning, directly utilizes raw point clouds
as input to extract point features through multilayer perceptrons
(MLP) and has demonstrated outstanding performance in tasks
such as point cloud classification and semantic segmentation.
To address the issue of poor performance in capturing local
structural information in PointNet, researchers have proposed
a series of improvement methods. DGCNN [16] employs edge
convolution operations to replace the stacked MLPs in Point-
Net in order to preserve permutation invariance while extract-
ing local geometric features from point clouds. On the other
hand, HDGCN [17] introduces the graph convolution operator,
DGConV block, which aggregates local neighborhood features
within the graph and propagates them to the neighboring points.
By utilizing a hierarchical structure of DGConV blocks, the
network achieves local and global feature extraction from point
clouds. As for DDGCN [18], it constructs a similarity matrix in
the local graph, which incorporates both point cloud distances
and orientations, thereby enabling the extraction of local fea-
tures in a dynamic neighborhood graph. Graph-based methods
model point clouds as the topological structure of graphs and
design corresponding convolutional operators, utilizing graph
convolutional neural networks (CNNs) for feature extraction
and classification. These methods [16], [17], [18], [19], [20]
have demonstrated exemplary performance in semantic seg-
mentation. However, most graph convolution-based methods
only consider the relationship between the central point and
its neighboring points in the local graph while neglecting the
importance of relationships among neighboring points. More-
over, in methods based on graph CNNs, most approaches only
extract local geometric features from a single scale, neglecting
the multiscale neighborhood structure information. This limita-
tion results in a restricted capability of the network to describe

scene features. The research [8], [21] on deep learning-based
segmentation of multispectral LiDAR point clouds encompasses
a comprehensive exploration of global and local representative
feature acquisition. Nevertheless, in the context of multispectral
LiDAR point cloud scenes, the necessity of achieving multiscale
adaptive point cloud feature extraction becomes remarkably
prominent, owing to the uneven distribution of geometric spatial
patterns and spectral information.

To address these issues, this study proposes a multiscale
adjacency matrix CNN (MS-AMCNN) for multispectral LiDAR
point cloud analysis. Specifically, we design a local adjacency
feature convolution (LAF-ConV) block to extract local features
by constructing a graph. This block builds an adjacency matrix
between the central point and its neighboring points in the local
graph, effectively utilizing spatial relationships in the 3D point
cloud to encode local features. Next, we design a multiscale
feature extraction block (MSFE block) to aggregate multiscale
local features, enriching the structural characteristics of the point
cloud. Finally, leveraging the powerful global feature learning
capability of the transformer, we further extract multiscale fea-
tures to establish the contextual information of the point cloud.

In summary, our work contributes to the following aspects.
1) MS-AMCNN is an improved approach based on graph

CNNs that aim to input raw data from a multispectral
LiDAR and directly process the irregular and unstructured
point cloud data. This approach preserves all 3D spatial
information while simultaneously ensuring the permuta-
tion invariance of the network.

2) We propose a novel algorithm called local adjacency
feature convolution. This algorithm constructs multiple
local graphs through sampling and performs self-attention
convolution on the adjacency matrices formed by the
sets of points in the graphs, effectively extracting local
information from multispectral LiDAR point clouds.

3) Based on the LAF-ConV block, we introduce a multiscale
feature extraction (MSFE) and fusion framework suitable
for multispectral LiDAR point clouds. We leverage a
global self-attention (GSA) mechanism to perform global
feature learning on the fused features, enhancing the ex-
pressive capability of the model.

II. RELATED WORKS

Semantic segmentation methods for 3D point clouds based
on deep learning include four different approaches: projection-
based methods, voxel-based methods, point-based methods, and
graph-based methods.

A. Projection-Based Method

Projection-based methods are closely related to 2D image
processing, where the fundamental idea is to project 3D point
cloud data onto a 2D plane or utilize multiple-view images and
then process them using 2D CNNs. As a pioneering work in this
approach, MVCNN [22] aggregates multiview image features
into a global feature descriptor, enhancing segmentation accu-
racy and precision by observing visual information from differ-
ent object viewpoints. To improve network robustness and the
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accuracy of multiview fusion features, several variant methods
[23], [24], [25] have been proposed based on MVCNN. GVCNN
[26] groups different visual descriptors extracted by CNNs under
different viewpoints based on discriminative scores. It then
aggregates the visual feature operators of each group through
global pooling to obtain corresponding segmentation results. In
contrast to previous methods, View-GCN [27] adopts a graph
convolutional network structure. It converts multiview point
cloud data into a View-Graph, which is used to aggregate node
features of multiple views for learning global shape descriptors.
In summary, projection-based methods integrate the projection
information of multiple viewpoints or multiple point clouds to
enhance the expressive power of point clouds. However, this
method often sacrifices the spatial 3D features of point clouds,
and the extensive use of projections brings higher time costs and
memory consumption.

B. Voxel-Based Method

Voxel-based methods are primarily based on dividing the
point cloud into multiple regular 3D grids and then utilizing
deep learning models to segment each voxel. Among these
methods, VoxNet [28] is one of the earliest point cloud segmen-
tation networks that introduced voxelization. VoxNet directly
processes sparse 3D point clouds and effectively captures their
shape information by incorporating voxel feature encoding.
These networks transform unstructured point cloud data into
structured voxel grids and employ CNNs for learning. However,
these networks frequently struggle to establish high-resolution
voxelized models. To address this issue, OctNet [29] introduces
an octree structure, which efficiently handles and represents 3D
point clouds with irregular distributions and nonuniform den-
sities, thereby enhancing network performance and efficiency.
Additionally, PointGrid [30] adopts space-filling curves to map
point cloud data onto a 3D voxel grid. It better learns local ge-
ometric feature details by performing convolutions and pooling
operations on the voxels. It is worth noting that although voxel-
based methods have performed well in point cloud segmenta-
tion, the voxelization process sacrifices specific spatial details.
Moreover, constructing and storing high-resolution voxel grids
requires substantial memory resources, resulting in typically
lower computational efficiency.

C. Point-Based Method

Point-based methods directly process 3D point clouds without
voxelization or projection. As a pioneering work, PointNet [15]
introduces a method based on MLP that can directly perform
deep learning on unstructured point clouds while ensuring per-
mutation and rotation invariance in the results. To address the
inability of PointNet to capture local features, PointNet++,
proposed by Qi et al. [31], models multiscale and multilevel local
regions through processes such as hierarchical sampling, local
feature extraction, and feature aggregation to capture a broader
range of contextual information. The PointNet series networks
have demonstrated exemplary performance in tasks such as point
cloud classification and segmentation, and many networks [32],

[33], [34] have been developed based on this foundational frame-
work. Recent research has discovered that multiscale features
exhibit robustness in capturing density variations within point
clouds and in aggregating geometric information from different
scales. To achieve this objective, 3DMAX-Net [35] has designed
a multiscale contextual feature learning block that combines
upsample and downsample unit blocks to obtain rich contextual
features from point clouds at different scales. Inspired by global
feature aggregation algorithms in image processing, 3D-PSPNet
[36] adopts a pyramid structure. At each scale of the pyramid,
local contextual information within subscenes is independently
obtained through grid pooling, and global features are obtained
through feature aggregation, thereby enhancing the interaction
between large-scale contextual information and small-scale lo-
cal details. MS-PCNN [37] employs a U-shaped structure of
upsampling and downsampling to utilize multiscale global and
local features. MNFEAM [38] accelerates semantic abstraction
and aggregation of features in the network by capturing semantic
relationships in the local feature space with different receptive
fields from multiscale neighboring point sets. Enhancing the
receptive field of networks to obtain rich local and global contex-
tual information and improve the expressive capability of point
cloud features has become a hot research topic in the current
field.

D. Graph-Based Method

With the advancement of graph neural networks, graph-based
methods have been widely used for mining unstructured data.
GACNet network proposed by Wang et al. [39] utilizes the graph
attention convolution block to establish local graphs between
points and their neighboring points. By employing attention
mechanisms to compute edge weights between the central point
and its neighbors, the relationships between different nodes
are weighted, enabling the superior propagation of important
node information. Similarly, DGCNN [16] utilizes EdgeConv
to construct dynamic local graphs to extract and learn local
semantic features efficiently. DGCNN variants have been devel-
oped to enhance the capability of extracting local features and
improve overall performance. LGGCM [40] leverages local spa-
tial attention convolution and global spatial attention module to
capture geometric features of local point cloud spaces and global
contextual information. AGConv [41] dynamically learns point
clouds of different semantic parts, generating adaptive graph
convolutional kernels, thereby enhancing the flexibility of local
convolutions. 3D-GCN [42] introduces a deformable kernel in
3-D space for extracting point cloud features at multiple scales.
By establishing topological structures and fully considering the
interrelations between points, graph-based methods have proven
effective for 3D point cloud data.

Most existing graph-based methods typically construct lo-
cal graphs using ball queries or k-nearest neighbor searches
and utilize MLPs to extract point features. However, these
approaches only consider the pairwise relationships between
the center point and its neighborhood in the local graph while
neglecting the inherent connections among the neighborhood
points. This limitation leads to insufficient network capturing of



858 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 1. Study area overview and multispectral lidar point cloud dataset partitioning.

local geometric feature correlations. Additionally, relying solely
on single-scale local features makes it challenging to describe
the shape of objects in the scene comprehensively. The most
designed local convolutional kernels struggled to adapt to vary-
ing point densities in multispectral LiDAR point cloud scenes.
Therefore, the aggregation of multiscale features is necessary to
compensate for the loss of structural information.

Currently, most multispectral LiDAR point cloud segmenta-
tion methods rely on classical machine learning algorithms [7],
[9], [43], while there is limited research on deep learning-based
approaches. Inspired by DGCNN and transformer, this article
proposes a graph-based semantic segmentation network called
MS-AMCNN. The network includes a local feature extraction
block that extracts local features by establishing an adjacency
matrix between the central point and its neighboring points in
local graphs. Moreover, a GSA is introduced to learn the fused
local features in a multiscale structure. Experimental results
demonstrate that our network performs satisfactorily in real-
world multispectral LiDAR semantic segmentation scenarios.
The evaluation metrics reach state-of-the-art levels, providing
valuable insights for further research.

III. STUDY AREA AND DATASET

A. Study Area

The study area is located near the University of Houston, USA.
The data were acquired on February 16, 2017, using an Optech
Titan MW (14SEN/CON340) LiDAR system. Optech Titan is
a multispectral LiDAR system containing three bands (1550,
1064, and 532 nm) with a pulse repetition frequency of 175
kHz per channel (525 kHz total) and a scan angle of ±26°. The
average flight height during scanning is 500 m above ground
level, and the average point density of the multispectral lidar
point cloud after data preprocessing is 11.2 points/m2. The whole

dataset covers 4167 m × 1200 m, and a total of 14 LAS datasets
were obtained, which include 20 land cover classes, e.g., healthy
grass, artificial turf, evergreen trees, deciduous trees, bare earth,
residential buildings, roads, and cars. In this study, we manually
selected 17 sample scenes from a pool of preprocesses 14 multi-
spectral LiDAR point cloud LAS datasets. These scenes covered
27 20 000 m2 and were partitioned into training, validation, and
testing sets according to the methodology illustrated in Fig. 1.
According to the study of relevant LiDAR data classification,
we mainly considered six classes of land cover, i.e., impervious
ground, grass, buildings, trees, cars, and powerlines. The sam-
ples for impervious surfaces, grass, buildings, and trees have
sufficient numbers, while the samples for cars and powerlines
are only one-eighth the size of the trees class.

B. Multispectral LiDAR Data Processing

Optech Titan is not strictly a multispectral LiDAR system. The
three channels of laser beams have different downward tilting
angles, so not every point has intensity data for all three channels
[11]. To consolidate the intensity values of the three channels
in Titan point cloud data onto a single point, the point cloud
data from the three independent channels were merged into a
single point cloud data using the method described in [7], based
on the principle that adjacent points have correlated intensity
information. Only the Titan dataset’s first channel (1550 nm)
return points were the sole determining factor for inclusion. Any
point lacking intensity return values from other channels at that
position was excluded.

To obtain the ground truth for the scene, the multispectral
LiDAR point cloud is manually labeled point by point with
corresponding class labels. Due to the limited capacity of the
GPU, the whole sample area cannot be directly input into the
network. Therefore, we constructed the multispectral LiDAR
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Fig. 2. Proposed sampling strategy for multispectral LiDAR point cloud samples.

dataset for the study area by following the S3DIS [43] and
Semantic3D [44] datasets. Typically, when using the S3DIS
dataset for deep learning-based point cloud methods, the number
of points input into the network is fixed. Meanwhile, considering
the point density of the Titan dataset in this area, we have
improved the farthest point sampling and K-nearest neighbor
(FPS-KNN) sampling method [44] to quickly obtain a fixed
number of training samples while preserving the integrity of
the scene. Fig. 2 shows the process of our sampling strategy.

1) Data Normalized: In order to accelerate the convergence
of the network, normalization of the original data is necessary.
A 9-D vector, including X,Y, Z,R,G,B,X ′, Y ′, Z ′ represent
each point in the data. Where XY Z represent the position
coordinates of each point in the scene ranging from [−1,1];
RGB represent the intensity values of the 1550, 1064, and
532 nm channels of the Titan point cloud ranging from
[0,1]; X ′Y ′Z ′ represent the position coordinates of each
point relative to its location in the scene, ranging from [0,1].
Titan multispectral point cloud data are normalized using
the mapminmax function after removing the offset. The data
normalization is implemented as follows:

Fout =
(max−min)× (Fin − Fin_min)

(Fin_max − Fin_min)
+ min (1)

where Fout is the result of feature normalization, [min,max] is
the range of values after feature normalization. Fin, Fin_min,
and Fin_max, respectively, represent the original input feature
and its minimum and maximum values. Individually the 9-D fea-
tures of every point in the original data are normalized using (1).

2) Optimized FPS-KNN: Uniform sampling [15], voxel sam-
pling [45], and block sampling [46] are standard point cloud
sampling methods. The FPS-KNN sampling method for mul-
tispectral LiDAR point cloud data can better preserve the in-
tegrity of objects and effectively generate samples that cover
the whole scene, compared with the above-mentioned methods.
KNN compensates for some pointwise spatial relationships lost
in downsampling by acquiring a fixed number of neighboring
points in FPS. Considering the density of multispectral LiDAR

point cloud and data augmentation in this study area, we im-
proved the FPS-KNN method, and the flowchart is as follows.

1) Randomly select one point from the input multispectral
point cloud scene as the initial point. Then, use this point
as the center of KNN to search for k1 and k2 nearest
neighbors in its neighborhood. To minimize the loss of
multispectral LiDAR point cloud scene features during
the sampling process, we establish a reasonable number of
sampling points based on the density of the multispectral
LiDAR point cloud in the dataset. The rationality of this
parameter setting has been validated through ablation
experiments to ensure that the sampling points adequately
represent the characteristics of the entire multispectral
LiDAR scene. In this experiment, k1 is set to 4096, and k2
is set to 1024, both including the point itself. Use the k1
nearest neighbors as a training sample and remove the k2
nearest neighbors from the point cloud scene. During the
generation process of multispectral LiDAR point cloud
samples, it is essential to record the index number of each
point in the scene to determine the presence of duplicate
regions within the samples.

2) Calculate the 3D distance from the previous seed point to
the remaining point cloud scene, and designate the point
with the farthest spatial distance as the next seed point.
Repeat the operation in step 1) to obtain another sample.

3) Iterate the operation in step 2) until the sample covers
the entire point cloud scene and obtain a fixed number of
output samples.

For point cloud samples in overlapping areas, the method uses
the class with the highest predicted count for each duplicated
point as the final segmentation result. Compared with the orig-
inal FPS-KNN sampling method, this method can effectively
perform data augmentation and expand the scene’s sample size.

IV. METHODOLOGY

Point clouds have plenty of 3D spatial features, which can
intuitively describe the characteristics of natural spatial objects.
However, point clouds have the characteristics of discrete and
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Fig. 3. Proposed MS-AMCNN.

uneven distribution, which leads to the need for a topological
relationship between points. Standard convolution operators are
powerless to deal with disordered point cloud features. Inspired
by previous related research, we proposed a novel approach to
more effectively obtain topological relationships between point
clouds and better perceive 3D spatial information and local
semantic features of points. This network enhances the topo-
logical information of point clouds by modifying the structure
of local adjacency graphs. Furthermore, it utilizes a multiscale
structure to improve point cloud segmentation efficiency and the
ability to obtain local geometric features. The designed network
mainly consists of three key components: (1) A point cloud
local adjacency matrix feature convolution that fully uses the
spatial relationship between 3D points to extract local features
effectively. (2) An MSFE block that performs feature extraction
on points at diverse levels and aggregates multidimensional
features to further encode local features. (3) A GSA block
that utilizes the excellent global feature learning ability of the
self-attention mechanism to enhance the global feature from the
multiscale feature block.

A. Network Architecture

This study highlights the importance of selecting the optimal
segmentation scale in the multispectral LiDAR point cloud
scene, where objects exist at multiple scales. To address this chal-
lenge, we designed the detailed architecture of MS-AMCNN,
as depicted in Fig. 3. The network comprises multiple MSFE
blocks, GSA blocks, and MSFE-GSA operations stacked to-
gether to output the point cloud’s semantic segmentation results
end-to-end during training.

MSFE-GSA operation effectively combines the proposed
MSFE and global self-attention mechanism. Adopting a mul-
tiscale local graph feature extraction method containing LAF-
ConV can effectively extract the local features of the multispec-
tral LiDAR point cloud. The MSFE block aggregates the multi-
scale features, while the GSA block enhances global contextual
features. Following multiple MSFE-GSA operations, extraction
of global features occurs through the maxpooling layer. After
that, global features and local features are fused and passed

through fully connected layers to output each point’s label. The
network’s details are described in the following.

First, a multispectral LiDAR point cloud sample of dimen-
sions N × d (excluding batch dimension) is inputted into the
network, whereN represents the number of points in the sample
and d represents the initial feature dimension of the input points.
The initial features undergo processing by the MSFE-GSA op-
eration layer, resulting in local features of dimensions N × 32.
Within the framework of the MSFE-GSA operation, regarding
the input multispectral LiDAR point cloud samples, a multiscale
local graph is established through KNN nearest neighbor search.
For each local graph, local adjacency matrices are constructed
utilizing the LAF-ConV approach to acquire local features.
Using MLP and pooling operations, the multiscale local features
are connected to generate the output MSFE features. Subse-
quently, these features are fed into the GSA block for global
feature modeling, thereby obtaining the output results of the
graph convolutional layers. Subsequently, the features extracted
by the previous MSFE-GSA operation layer are used as inputs
to the subsequent MSFE-GSA operation layer, resulting in two
levels of local features, each with dimensions of N × 64. Like
a CNN network, the three local features are fused and inputted
into an MLP layer, resulting in a global feature of dimensions
N × 1024, further enhanced by a max-pooling layer to obtain a
global descriptor.

Subsequently, the 1-D global descriptor is repeated to ex-
pand to each point, resulting in a new feature of dimensions
N × 1024. The global descriptor is then concatenated with the
previous three local features to obtain the fused global and local
features with dimensions of N × 1184.

Finally, the fused features are transformed into multispectral
LiDAR point cloud class labels using a fully connected layer.

B. Local Adjacency Feature Convolution

We build the local graph of each point in the scene by
searching the point cloud using KNN for the input samples.
As shown in Fig. 4, consider the local graphG(V,E) consisting
of the set of points Pi = {pi, pi1, pi2, . . . , piK}εR3+C , where
pi is the central point of the point set Pi, and pij denotes
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Fig. 4. Local adjacency feature convolution block on the local graph.

the K neighboring points of pi. Here, 3 and C, respectively,
stand for the spatial coordinate dimension and spectral feature
dimension of the multispectral LiDAR point cloud. For the local
graph, Vi = {1, 2, . . . ,K} and Ei ⊆ Vi × V̄i represent the set
of vertices and edges, respectively.

Let Fi = {fi; fi1; fi2; . . . ; fiK} be the feature set corre-
sponding to Pi. The correlation between neighboring nodes
is calculated by constructing the adjacency matrix of the lo-
cal graph using a self-attentive mechanism. In order to cap-
ture feature differences in the local neighborhood, the relative
positional coordinates Δ Pi = {Δpi1,Δpi2, . . . ,ΔpiK} and
feature differences Δ Fi = {Δfi1,Δfi2, . . . ,ΔfiK} of all
adjacent points pij to the central point pi and their corresponding
features fij are calculated. The implementation is as follows:

Δpij = pij − pi (2)

Δ fij = fi − fij . (3)

Subsequently, a self-attention mechanism is employed to
generate the adjacency matrix of the neighboring points, which
further obtains the relationship between adjacent nodes in the
local graph. This method satisfies the point cloud permutation
invariance [47]. We obtain the local autocorrelation matrix by
concating the relative positional coordinates and the differences
in high-dimensional features. The related matrix R measures
the high-dimensional spatial relationship between features of
adjacent nodes, and it is defined as follows:

R = [Δpij || γ (Δfij)]
T × [Δpij || θ (Δfij)] . (4)

In the equation, γ and θ represent two different MLPs with
nonlinear activation functions. The symbols || and × denote the
connect operation and matrix multiplication. We utilize Softmax
to diminish the redundant features among different nodes in
the related matrix and generate the adjacency matrix A. Each
element of A is defined as follows:

Aij =
exp (Rij)∑k
j=1 exp (Rij)

. (5)

Aij and Rij are the elements of adjacency matrix A and
correlation matrix R, respectively. The central node features are
updated by multiplying the adjacency matrix with the original
features. The formula is as follows:

f̃i = maxpooling (AijΔfij) . (6)

Finally, by incorporating the captured global shape structural
information fi with the local neighborhood information f̃i, the
output features of the central point pi in the local graph are
obtained. The output features of the LAF-Conv are as follows:

FLAF−Conv = LAF − Conv
(
f̃i || fi

)
. (7)

C. MSFE Block

We have designed a multiscale structure to improve the ac-
curacy of point cloud segmentation and enhance the diversity
of local features. The effectiveness of this method has been
well-established in previous studies [31], [45], [46]. Based
on the locally self-attentive adjacency matrix, LAF-ConV is
implemented to extract local features. In order to improve the
efficiency of point cloud segmentation and the sensitivity of local
feature extraction, we design an MSFE block to construct local
graphs with different numbers of neighboring points and utilize
LAF-ConV for feature extraction and multiscale feature fusion.

Previous studies have demonstrated the effectiveness of mul-
tiscale structures; therefore, we adopt the MSFE block architec-
ture, as shown in Fig. 5. For the original training samples of the
input network, we perform KNN search on different numbers
of neighboring points to construct multiscale sampling results.
We construct corresponding local graphs at different scales of
neighboring points and use the LAF-ConV block for local self-
attentive adjacency matrix feature extraction. For the extraction
results of the LAF-ConV block at each scale, we use three
different MLPs with nonlinear, learnable activation functions for
feature transformation and pool the features through a pooling
layer for feature fusion to obtain the output results. The entire
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Fig. 5. MSFE block design.

Fig. 6. GSA block structure.

process of the MSFE block is shown in the following:

FMSFE = MSFE
[
ϕ(F 12

LAF−Conv

)

|| Θ(F 20
LAF−Conv) || ψ(F 32

LAF−Conv)] (8)

where F 12
LAF−Conv , F 20

LAF−Conv , andF 32
LAF−Conv represent the

features extracted by LAF-ConV from the local graphs con-
structed at scales of 12, 20, and 32 neighboring points, respec-
tively. ϕ, Θ, and ψ are three independent MLPs, respectively.

D. Global Self-Attention Mechanism

The self-attention mechanism possesses the capability to
capture long-range dependencies between features dynamically.

Moreover, it can adaptively adjust weights based on the informa-
tion from different positions in the input model, thereby better
modeling contextual relationships and significantly enhancing
the model’s generalization ability [48].

Although LFA-ConV and MSFE block can extract local struc-
tural features of point clouds through neighborhood graphs at
different scales, they still need global contextual information of
the scene. Therefore, we introduced a GSA block to learn the
fusion of local point features at multiple scales to perceive global
contextual relationships sufficiently and improve the accuracy
and generalization ability of point cloud scene understanding.
GSA block as shown in Fig. 6.

The output features of the MSFE block are used as the
embedding layer input of the GSA block. Specifically, the input
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TABLE I
AVERAGE ACCURACY EVALUATION METRICS FOR DIFFERENT METHODS UNDER THE THREE SCENARIOS

features Y = {y1; y2; y3; . . . ; yS} . The following formula can
express the computation of the GSA block:

GSA (Q,K, V ) = Attenction
(
QWQ,KWK , V WV

)
. (9)

Among them, Q, K, and V represent query, key, and value
vectors, respectively. Where WQ

i , WK
i , and WV

i are the linear
learnable transformation matrices for the query, key, and value,
respectively. In the GSA block, the self-attention mechanism is
used to calculate attention, which can be expressed as follows:

Attenction (Q,K, V ) = σ (Softmax (Q�K) · V ) . (10)

Here, the Softmax function is used for normalization to cal-
culate the weight of each key vector, which is then multiplied by
the value vector to obtain the self-attention result of that head,
and using σ for linear transformation of the results. Finally, the
self-attention results obtained from all heads are weighted and
fused and added to the original embedding features to obtain the
output of the GSA block. The GSA block can be represented as
a whole as follows:

Fout = GSA (Y ) = GSA (Q,K, V ) + Y. (11)

E. Implementation Details

All experiments were conducted on a workstation with 64 GB
of memory, an Intel Core i7-12700k processor, and an NVIDIA
GeForce RTX 3090. In the experiments, we utilized cross-
entropy as the loss function and Adam [49] as the optimizer,
with an initial learning rate set to 0.001, and trained the model
for 500 iterations. During the model training process, we saved
and evaluated the best-performing model on the test data. To
quantitatively assess the performance of the proposed network,
we employed six commonly used metrics: overall accuracy
(OA), average precision (AP), average recall (AR), average
F1-score (A-F1), mean intersection over union (MIoU), and
Kappa coefficient [50].

V. EXPERIMENTS

A. Overall Performance

Due to the limited research on point-based deep learning
methods for multispectral LiDAR, some classic point cloud
deep learning semantic segmentation algorithms were selected
as comparison methods in this study, including PointNet++

[31], GACNet [39], RandLA-Net [51], DGCNN [16], LDGCNN
[52], and PointTransformer [53]. These methods have achieved
significant results in the point cloud and have been widely used
for semantic segmentation tasks with point cloud data.

The average accuracy evaluation metrics table and the
segmentation comparison chart of several methods are shown in
Table I and Fig. 7, respectively. In general, the network architec-
ture proposed in this study achieved state-of-the-art performance
in most metrics. Compared with other models, it improved
by 2 to 3 percentage points. Our model accurately delineated
the contour shapes of different categories in the multispectral
LiDAR point cloud scenes, effectively extracting the boundaries
of objects when compared with the ground truth. Due to the
sparse point cloud density in the multispectral LiDAR point
cloud scenes considered in this study, PointNet++ and GACNet,
which are suitable for indoor point cloud scene semantic
segmentation, struggled to effectively extract local information
in complex urban scenes, making the extraction and recognition
of categories such as power lines, cars, buildings, and trees
difficult. RandLA-Net and PointTransformer methods involve
downsampling operations on the sample point clouds and,
while compensating for key point information loss by designing
local feature aggregation modules or self-attention layers, still
experience some degree of local and global information loss.
These two networks exhibited limited recognition capabilities
for small impervious ground and grassland regions in the
scene, making them inadequate for comprehensive semantic
feature modeling of multispectral LiDAR scenes. Due to the
similarity of spectral features between impervious ground and
grassland categories, as well as the similarity in height between
buildings and trees, many of the comparative methods exhibited
lower accuracy when classifying these categories. Conversely,
graph-based methods such as DGCNN, LDGCNN, and our
proposed model performed well in the semantic segmentation of
scenes.

Our model showed higher consistency with the ground truth
and fewer misclassified outlier points compared with the other
two graph-based methods, demonstrating its strong ability to
extract geometric features. Our network achieved average OA
and MIoU of 94.39% and 86.57% on three test datasets, respec-
tively. Compared with other methods, our approach achieved
the best segmentation performance, demonstrating our method’s
superiority.
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Fig. 7. Results of different segmentation methods in the context of testing scenarios.

TABLE II
SEMANTIC SEGMENTATION RESULTS ON THE MULTISPECTRAL LIDAR DATASET EVALUATED

In particular, Table II depicts the intersection over union (IoU)
evaluation results of our proposed method for various classes
in TestArea3. Within multispectral LiDAR point cloud scenes,
our approach exhibits remarkable segmentation accuracy for
grass, buildings, trees, and impervious surfaces compared with
previous methods. It is worth noting that our method achieves
an impressive OA of 95.82%. However, our model’s identifica-
tion of cars and powerlines falls short of ideal performance.
This can be attributed to the diverse shapes observed in the
powerline category within multispectral LiDAR scenes and the
substantial discrepancies in their spectral characteristics and
uneven distribution, resulting in segmentation ambiguity. Gener-
ally, our model performs exceptionally well in the IoU rankings
for several categories, effectively enabling the segmentation
and recognition of objects in multispectral LiDAR point cloud
scenes.

B. Specific Scenario

As shown in Fig. 8, to better showcase the model’s per-
formance, we selected four typical subscenes from three
test sets. We conducted a comparative analysis to highlight
the distinctions between our proposed method and DGCNN
and PointTransformer. DGCNN is a graph-based approach,

whereas our method was developed based on a variant. On the
other hand, PointTransformer is a Transformer-based method.
Both of these approaches demonstrate remarkable semantic
segmentation accuracy. In Scene A, the area represents a grass re-
gion in a parking lot. Compared with DGCNN, our model can ex-
tract the grass area more accurately, mainly due to constructing
the adjacency autocorrelation matrix in the local neighborhood
graph, effectively allocating weights to capture the relevance
between neighboring points. Similarly, in Scene B, the area con-
sists of complex impervious ground and grassland. DGCNN’s
EdgeConV block, in constructing the local graph, needs a fixed
number of points in its KNN search, resulting in relatively
limited local geometric features that fail to fully reflect the actual
characteristics of the impervious ground and grassland in this
scene. In Scene C, the area is mainly composed of buildings and
trees. The buildings are surrounded and obscured by trees with
uneven distribution. Our model performs better segmentation
in recognizing edge points among different object types. For
example, DGCNN misclassifies several building edges as tree
points in this area, struggling to distinguish building points
close to trees effectively. Our model’s MSFE block successfully
integrates neighborhood graph features extracted at multiple
scales by LAF-ConV, enhancing the interclass separability of
our model. In Scene D, the area represents a parking lot with
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Fig. 8. Comparison of segmentation methods in different scenes (highlighted in black box for differences).

many cars. Similarly, although our model still faces challenges
in recognizing and extracting car and impervious ground edge
categories in this area, where some boundaries that belong to the
impervious ground are misclassified as buildings, our model still
outperforms DGCNN. It should be noted that PointTransformer
exhibits unsatisfactory performance in differentiating between
impervious surfaces and grass, particularly in scenarios A and B,
with the issue being most pronounced in scenario C. Similarly,
in scenario D, PointTransformer wrongly classifies impervious
surfaces in parking lots as building categories. These segmenta-
tion disparities are validated in Table II. Due to the lower point
density generated by airborne multispectral LiDAR and the point
cloud downsampling operations utilized in PointTransformer,
RandLa-Net, and similar networks, the learned features fail to
capture local semantic information adequately. These detailed
visualization results further validate the effectiveness of our
model in capturing spatial geometric structures and extracting
local features.

C. Analysis of Computational Cost

We compared our proposed method with other net-
works regarding network parameter count and computational
complexity on the multispectral LiDAR dataset. Table III shows

that our method has a higher number of parameters com-
pared with PointNet++, GACNet, RandLA-Net, DGCNN, and
LDGCNN networks. Additionally, our method also exhibits
relatively higher FLOPs (floating-point operations). Despite
having a larger parameter count, our method achieves the highest
accuracy regarding OA and MIoU within acceptable hardware
constraints, striking a good balance between accuracy and com-
putational cost.

On the other hand, when comparing the approaches with and
without the MSFE block and GSA block, it is evident that the
majority of model parameters are concentrated in the MSFE
block. This is primarily due to the increased computational cost
of the multiscale local LAF-ConV.

D. Ablation Experiments

1) Effectiveness of Optimized FPS-KNN: Different quanti-
ties of training samples from multispectral LiDAR point clouds
reflect varying scene semantics, object continuity, and integrity.
To validate the effectiveness of the improved FPS-KNN method,
we tested the model’s performance under different training sam-
ple configurations. Considering the limitations of GPU memory,
we set the maximum sample quantity to 4096, consistent with the
settings of other datasets such as ModelNet40. Additionally, we
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TABLE III
FLOPS AND PARAMETERS OF DIFFERENT METHODS ON MULTISPECTRAL LIDAR DATASETS (“M” AND “G” FOR MEGABYTES AND GIGABYTES)

TABLE IV
EVALUATION METRICS FOR DIFFERENT PARAMETERS OF THE MSFE BLOCK ON TEST AREA 3

compared the two sample generation methods: random sampling
[51] and FPS-KNN [21].

From Table V, as the sample quantity increases, models
trained with samples generated using the same sampling strat-
egy exhibit an upward trend in accuracy. When the sample
point quantity is set to 4096, the accuracy improves by ap-
proximately 0.5% compared with the experiments with 1024
and 2048 points. In other words, the size of the multispec-
tral LiDAR point cloud samples is positively correlated with

the accuracy of scene segmentation. On the other hand, when
the sample points are all set to 4096, our proposed sampling
method achieves the highest semantic segmentation accuracy
for multispectral LiDAR compared with Random Sampling and
FPS-KNN. This can be primarily attributed to our method’s
ability to expand the sample quantity, enhance the expression
of scene semantics in multispectral LiDAR point clouds, and
better match the density of airborne multispectral LiDAR point
clouds.
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TABLE V
TEST RESULTS OF MS-AMCNN WITH DIFFERENT SAMPLING METHODS ON TEST AREA 3

2) Effectiveness and Performance of LAF-ConV: To fur-
ther extract localized geometric and spectral information
from multispectral LiDAR point clouds, we propose the
LAF-ConV method based on extracting features from the local-
ized adjacency matrix. As presented in Table III, we investigate
the effectiveness of the LAF-ConV model by substituting the
conventional convolutional kernels in our model with alternative
graph convolutional kernels from established literature.

Compared with GAC [39], AdaptConv [20], and EdgeConV
[16], our LAF-ConV model demonstrates superior performance
in accuracy evaluation metrics, with the highest achieved MIoU.
Hence, our proposed LAF-ConV method facilitates improved
capture of the local characteristics of multispectral LiDAR by
the network, thereby enhancing its robustness.

3) Effectiveness and Performance of MSFE Block: In order
to fuse multiscale local geometric features, we designed an
MSFE structure to enhance the diversity of local features. In
the MS-AMCNN model, the number of LAF-ConV blocks in
the MSFE block and the number of KNN neighbor points in
each local graph are two key parameters. In our model, the
default number of LAF-ConV blocks in the MSFE block is
set to 3, corresponding to neighborhood point numbers 12,
20, and 32, respectively. To set these parameters reasonably,
we conducted a series of comparative experiments on Test
Area 3 to verify the effectiveness of multiscale structure in
improving network accuracy. The specific evaluation metrics are
shown in Table IV.

For the number of LAF-ConV blocks in the MSFE block,
we can observe that when the number of LAF-ConV blocks
is set to 1 or 2, the network’s performance is poor compared
with the MSFE block with three layers of LAF-ConV blocks,
especially in terms of MIoU. However, as the LAF-ConV blocks
increase to three layers, there is a significant improvement in the
fusion of local features and perception capability. This increase
also allows for a more diverse range of geometric informa-
tion among different objects without significantly increasing
time consumption. However, when the number of LAF-ConV
layers increases to 4, the network’s performance decreases
with the increase in layers. Therefore, moderately integrating
multiple LAF-ConV blocks can increase the model’s receptive
field. However, excessive stacking may negatively impact the
model’s performance. Consequently, the optimal setting that
balances performance and effectiveness is determined to be three
layers.

4) Number of Neighboring Points in LAF-ConV: The num-
ber of selected neighboring points in the LAF-ConV block sig-
nificantly impacts the extraction of local features in multispectral
LiDAR data. In the MSFE block, we observed that the network’s
performance improves as the number of neighborhood points in
the LAF-ConV blocks increases beyond 8. However, when the
number of neighborhood points reaches 16, there is no signifi-
cant improvement in network accuracy compared with when the
number of neighborhood points is 12. Instead, it increases both
time and memory consumption. Since the geometric information
constructed by the two different neighborhood point settings
may be similar, we chose the smaller option of 12 neighborhood
points to minimize the cost. Additionally, when the number of
neighborhood points is set to 20 or 32, there is a significant
improvement in network performance. Therefore, based on the
MSFE block with three layers of LAF-ConV blocks, we select
12, 20, and 32 as the KNN search points for the three local
neighborhood graphs, respectively.

5) Effectiveness and Performance of GSA Block: Despite
integrating multiscale local geometric features in the MSFE
block, we introduce the GSA block to perceive global contextual
semantic information more comprehensively. We investigate the
impact of different global feature learning methods based on
self-attention mechanisms on network accuracy. As shown in
Fig. 9, we compare and analyze the self-attention mechanism
modules in P-A [54], A-SCN [55], and PCT [56] through
experiments. This examination explores their contributions to
global feature learning and demonstrates, through experimental
evidence, the influence of various global feature learning ap-
proaches on model accuracy.

As shown in Fig. 10, when the network does not utilize a
self-attention mechanism, although it does not directly affect
the segmentation’s OA, there are more mis-segmentation results
in the model, resulting in an MIoU of only 86.90%. Therefore,
it is crucial to employ a self-attention mechanism when fusing
local geometric information for global modeling in the MSFE
block. When attempting to replace the GSA block with other
self-attention mechanisms, the model’s performance further
declined, with both the OA and MIoU of the segmentation
results being lower than the results obtained using the GSA
block, which achieved an OA of 94.52% and an MIoU of
90.38%. These results confirm the significant advantage of the
transformer-based GSA block in modeling global contextual
information.
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Fig. 9. Architecture of various self-attention mechanisms in 3D point cloud processing.

Fig. 10. Comparison of model impact evaluation metrics using different self-attentive mechanisms.

VI. CONCLUSION

This article proposes an MS-AMCNN for multispectral Li-
DAR point cloud segmentation scenes. To effectively utilize
the local topological structure of the point cloud, we design
a local adjacency feature convolution (LAF-ConV) block to
better encode and capture local features by establishing a local
adjacency self-attention matrix. Subsequently, we introduce an
MSFE block for fusing multiscale local neighborhood features
and utilize a GSA block based on the self-attention mecha-
nism for global semantic contextual modeling. By applying
MS-AMCNN to the Titan dataset, we achieve excellent mul-
tispectral LiDAR point cloud segmentation performance with
an OA of 94.39%, an MIoU of 86.57%, and a Kappa of
91.80%, demonstrating the exceptional semantic segmentation

capability of our network on multispectral LiDAR. Compared
with other state-of-the-art models, our approach demonstrates
a more comprehensive capability in extracting object outlines
for multispectral LiDAR classification. Furthermore, the results
of comparative experiments revealed that our model could ef-
fectively capture the local features of multispectral lidar point
clouds and acquire multiscale contextual semantic information,
demonstrating superior performance in classifying edge points
of various terrains.

Although this study achieves satisfactory segmentation ac-
curacy on multispectral LiDAR, the network’s computational
efficiency and memory consumption are relatively high due
to the involvement of multiscale processing and self-attention
mechanism learning. Therefore, future directions include
designing a lightweight, high-precision network to handle
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large-scale multispectral LiDAR point cloud scenes. Addition-
ally, this experiment is limited to the Titan multispectral LiDAR
dataset, which includes only three spectral channels, far fewer
than the corresponding high spectral imaging channels. Further
exploration of the potential to effectively classify scenes using
the rich spectral information of hyperspectral LiDAR is yet to
be developed.
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