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Abstract—Deep-learning techniques have made significant ad-
vances in remote sensing change detection task. However, it re-
mains a great challenge to detect the details of changed areas from
high-resolution remote sensing images. In this study, we propose a
full-scale difference feature fusion network (FDFF-Net) for change
detection, which can alleviate pseudochanges and reduce the loss
of change details during detection. In the encoding stage, a dense
difference fusion module is proposed to effectively mine and fuse
the multiple differences for each feature level between bitemporal
images, leading to a substantial reduction in missed detection of
change areas. Additionally, the different levels of difference fea-
tures are aggregated through a full-scale skip connection, allowing
the network to detect multiple changed objects with various sizes.
In the decoding stage, a strip spatial attention module is designed
to enhance the perception of the change areas, which improves the
ability to detect detailed changes. The experiments on three change
detection datasets, CDD, LEVIR-CD, and S2Looking, demonstrate
that FDFF-Net outperforms the compared state-of-the-art methods
and can detect more complete changes of small objects and clear
contours of changed areas.

Index Terms—Attention mechanism, change detection, deep
learning, difference feature fusion.

I. INTRODUCTION

CHANGE detection is the technique that identifies changes
occurred on the Earth’s surface by using images acquired

on the same geographical area at different times [1], which
has extensive applications in varied fields, such as urban land-
scape monitoring [2], agricultural investigation [3], land cover
mapping [4], and natural resource management [5]. With the
advancement of Earth observation technology, a large quantity
of high-resolution remote sensing images with abundant ground
object information is available [6]. However, change detection
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methods relying on manual features suffer from limited general-
ization ability and robustness, resulting in inferior performance
when applied to complex scenes. Deep learning has revolution-
ized remote sensing change detection by enabling the automatic
learning of representative and discriminatory features directly
from images [7].

Various deep neural networks have been used for change
detection and have achieved admirable results [8], [9], [10],
[11]. Full convolutional neural network (FCN) [12] replaces the
last fully connected layer of convolution neural network (CNN)
[13] with a convolution layer, which is suitable for pixel-level
prediction, and thus used in pixelwise change detection as a
basic structure [14], [15], [16], [17], [18]. UNet is a typical
FCN [19], which obtains the features of different levels in the
encoding stage, restores the image resolution in the decoding
stage, and recovers the semantic information lost in the down-
sampling through the skip connection. By utilizing aggregated
multilevel features, UNet has achieved excellent accuracy in
change detection task [20], [21]. Based on UNet, UNet++ [22]
uses denser skip connections to aggregate features at different
levels. Comparing the change detection results on the same
dataset, UNet++ has achieved higher accuracy than UNet [23],
which shows that the efficient use of features at different levels
can achieve advantages in change detection [24], [25]. Moreover,
UNet3+ [26] has been used as a backbone network for change
detection, which has a denser skip connection than UNet++.

In addition to connecting the multilevel features of the encoder
with the decoder, the strategy of aggregating features at different
levels in both the encoder and decoder is used to improve the
detection capability. For example, CLNet [27] extracted multi-
scale and multilevel features in the encoder to improve the ability
of detecting pixel-level changes. ADS-Net [28] used various
weights to fuse the difference features of different levels in the
decoder to generate the predicted change map. Mining and uti-
lizing multilevel features of images to improve the identification
capacity of networks on various ground objects is a crucial aspect
to be considered. However, it is equally important to focus on
the time correlation between images during change detection, in
order to suppress the interference of pseudochanges. Therefore,
after obtaining features of different phases, the method of fusing
the features from different phases needs to be further considered.

The change detection feature fusion methods could be di-
vided into prefusion and postfusion [29]. The prefusion method
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involves concatenating images from different phases as the input
of the network, then fuses them and extracts the features in the
encoder, and finally generates the change map in the decoder.
However, this approach fails to capture the multilevel features
of individual original images, leading to a loss of details that
cannot be adequately compensated during upsampling. Postfu-
sion method, on the other hand, allows the bitemporal images
to be fed into the dual-stream structure to extract respective
features and then fuses them in the decoder to generate a change
map, which has been proved better than the prefusion method
[30]. Some studies made improvements based on the two fusion
paradigms, such as introducing the gate module [31] and using
a differential pyramid [32] to highlight the changing features.

The utilization of attention mechanisms [33] in feature fusion
can also significantly improve the results of change detection
since the attention mechanism is able to improve the effective-
ness of feature fusion and obtain discriminant feature represen-
tations. The attention model used for change detection mainly
includes the convolution-based attention model [34], [35] and
the self-attention model [36], [37]. The convolution-based at-
tention module adaptively selects and enhances input features in
both channel and spatial dimensions, enhancing change features
while restraining irrelevant features. For example, DDCNN
[25] integrated both spatial attention and channel attention in
the network, which enhanced the representation of detailed
change. DSA-Net [38] introduced a cross-layer connection mod-
ule guided by the designed spatial attention model to focus on
the change areas. The self-attention model can obtain global
context information by calculating the correlation between each
pixel and other pixels in the image. For example, H-SALENet
[39] utilized multilayer and multihead self-attention to enhance
the representation capability of hierarchical and long-range-
dependent features, and CSANet [40] combined self-attention
to improve the feature representation of images at different
phases and used cross-temporal attention to integrate different
embedded features.

Despite the remarkable improvement achieved by deep-
learning-based approaches in change detection, certain lim-
itations persist that impact the detection ability of intricate
change details. First, the existing methods focus on obtaining
the multilevel features of a single-temporal image and neglect
to explore the connections between bitemporal image features.
If the bitemporal image features are concatenated directly, there
will be a problem of heterogeneity feature fusion when utilizing
the concatenated features as a supplement of the difference
features to recover the lost semantic information. On the other
hand, subtracting the bitemporal image features can overcome
this problem. However, due to the limited exploration of feature
differences, it results in missed detections of the changed areas.
Second, the convolution-based attention module has a limited
receptive field, making it unable to obtain long-range depen-
dence. While the utilization of a self-attention module enables
the network to obtain long-range contextual information, it
also increases computational complexity due to calculating the
correlation between each pixel and other pixels within the feature
map. Therefore, in the task of change detection, when designing
attention modules to capture the spatial relationship of long

range, the shape characteristics of changed objects, especially
the small objects, should be taken into consideration to avoid
unnecessary connections between distant locations.

In this study, we design a full-scale difference feature fusion
network (FDFF-Net) to overcome the aforementioned problems.
Considering the integrity of the detected change areas, the
dense difference fusion module (DDFM) is designed to mine
the multiple differences between the same level features before
feature fusion, which helps to comprehensively explore the dif-
ference between features. Moreover, we employ a full-scale skip
connection to concatenate the multilevel difference features,
enabling the effective detection of changes in ground objects
of varying sizes. Furthermore, to enhance the representation of
change area edges and strip-shaped small objects, We propose a
strip spatial attention module (SSAM). This module combines
a spatial attention mechanism with strip pooling, applied prior
to each upsampling, thereby enhancing the representation of
change area edges and small strip-shaped objects. The main
contributions of this study are as follows.

1) An FDFF-Net is proposed for change detection, which
makes full use of multilevel differences between bitempo-
ral images, allowing to detect a variety of changed objects.

2) A DDFM is designed to mine and fuse the multiple differ-
ences for each feature level between bitemporal images,
which improves the completeness of the detected changed
objects and the ability to alleviate pseudochanges.

3) A SSAM is designed to capture local spatial details and
long-range dependencies of discrete regions, helping to
detect the details of changed areas.

II. METHODOLOGY

A. Network Architecture

FDFF-Net adopts the typical encoder–decoder architecture
(see Fig. 1). The bitemporal images are first fed into a fully con-
volutional dual-stream feature extraction structure with shared
weights to obtain the features of different levels. In the encoding
stage, DDFM is proposed to connect the features of bitemporal
images to obtain difference feature. By mining multiple differ-
ences for each feature level, a complete representation of the
changes is acquired. In the decoding stage, the multilevel of
difference features is concatenated through a full-scale skip con-
nection [26]. This dense connection can integrate fine-grained
details and coarse-grained semantics, allowing the network to
detect multiple changed objects with various sizes. SSAM is
designed to enhance the perception of changing areas, especially
small objects, during the fusion of full-scale difference features.
Capturing local spatial features and long-range dependencies
can help networks focus on change areas, especially the detailed
changes.

In the encoding stage, FDFF-Net uses VGG16 with param-
eters pretrained on ImageNet to extract the multilevel features
of bitemporal images (T1 and T2), respectively. For each input
image, the encoder can extract five features at different levels,
with respective sizes of 256 × 256, 128 × 128, 64 × 64,
32 × 32, and 16 × 16. The channels of those feature maps
are 64, 128, 256, 512, and 512, respectively. These feature
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Fig. 1. Structure diagram of the FDFF-Net. DDFM represents the dense difference fusion module, and SSAM represents the strip spatial attention module.

maps are fed into DDFM to obtain the difference features
(DF1, DF2, DF3, DF4, and DF5) with reduced channels of 64.
In the decoding stage, after connecting the difference features
at different levels by full-scale skip connection, each decoder
layer contains five difference features with a channel number
of 320. Then, a conv block is used to fuse difference features.
SSAM is used to enhance the attention to detailed changes before
each upsampling. After four upsampling operations, the spatial
resolution is restored to 256 × 256, generating the predicted
change map by a 1 × 1 convolution and activating by a Sigmoid
function. Moreover, in each decoder layer, four change maps in
the intermediate layer (DS1, DS2, DS3, and DS4) are obtained by
a 1 × 1 convolution and bilinear interpolation, resulting in maps
of equal size to the input image. Moreover, during the training
stage, individual loss values are calculated for each intermediate
layer of the decoder, which helps to alleviate the vanishing
gradient problem. The total loss value is determined through
the utilization of the four intermediate layer change maps and
final predicted change map, which is computed by summing up
the five individual losses, where each loss is assigned an equal
weight of 1.

B. Dense Difference Fusion Module

The accuracy of detected changes in Siamese architecture-
based change detection networks is influenced by the connection
methods employed for bitemporal features. If only the orig-
inal image features are subtracted to generate the difference
features, the difference between the features is not completely

mined, which may result in the occurrence of missed detection.
Furthermore, seasonal variation, shadows, and illumination can
interfere with the detection of actual changes, resulting in the
detection of pseudochanges. Therefore, we propose a DDFM
to extract the multiple difference features between bitemporal
images, which helps to obtain substantive change and improve
the integrity of detected change objects.

The DDFM has three branches (see Fig. 2). In the first branch,
DDFM calculates the value of elementwise addition between
bitemporal features to enhance the representation of contour
information. In this branch, the channel dimension of the feature
map is reduced to 64 by a convolution layer of 1 × 1. The details
are given as follows:

DF a = f1×1 (F1 + F2) (1)

where F1 and F2 denote the bitemporal image features, respec-
tively, and f1×1 denotes the 1 × 1 convolution operation.

In the second branch, DDFM uses multiple convolutions to
obtain features at different scales. If only the fixed receptive
field of convolution is used to extract the difference features, the
context information is unable to be effectively utilized, resulting
in limited ability to distinguish changes and background. While
applying convolution kernels of varying sizes during process-
ing, the extraction of multiscale features is possible. However,
additional parameters are introduced to increase the computa-
tional effort. Therefore, DDFM uses atrous convolutions [41]
to replace the larger convolution kernel in the second branch
for extracting difference features at different scales. This branch
consists of three convolution operations with the 3 × 3 kernel
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Fig. 2. DDFM. F1 and F2 are the input features from different phase images and DF is the difference feature obtained using this module.

size, including two normal convolutions with a dilation rate of 1
and one atrous convolution with a dilation rate of 2. The number
of channels in each output feature map is 64. In addition, the
dense connection is used to correct the difference feature. The
operations are as follows:

DFb = DFb1 +DFb2 +DFb3 (2)

DFb1 = f3×3
r=1 (F ) (3)

DFb2 = f3×3
r=1 (DFb1) (4)

DFb3 = f3×3
r=2 (DFb2) (5)

where F denotes the feature after concatenating bitemporal im-
age features (F1 and F2) together; DF b1, DF b2, and DF b3 de-
note the difference features obtained using the three convolution
operations, respectively; f3×3

r = 1 denotes the 3 × 3 convolution
operation; f3×3

r = 2 denotes the 3 × 3 convolution operation with
a dilation rate of 2.

In the third branch, DDFM calculates the absolute value of
elementwise subtraction between bitemporal features. Although
the direct subtraction of bitemporal features cannot obtain the
accurate difference features, the approximate location of the
change areas can be retained. In this branch, the channel dimen-
sion of the feature map is also reduced to 64 by a convolution
layer of 1 × 1. The details are as follows:

DFc = f1×1 (|F1− F2|) . (6)

Finally, DDFM concatenates multiple feature maps obtained
by the three branches. Then, these features are fused to obtain
difference feature by a 3 × 3 convolution operation, as follows:

DF = f3×3
r=1 ([DFa;DFb;DFc]) (7)

where [; ] denotes the concatenate operation, and DF is the
output difference feature.

C. Strip Spatial Attention Module

Attention mechanisms can enhance the perception of change
areas and obtain discriminant feature representations. Most of
the changed objects have regular edges and the changes of

small objects are always strip-shaped. Therefore, we design an
SSAM to capture local spatial features as well as to expand
the perception of long range. The detailed structure is shown in
Fig. 3, which can be divided into three stages.

In the first stage, the channel dimension information of the
feature map is aggregated as FMax and FAvg using max pooling
and average pooling, and then concatenated before being sent to
the second stage

FMax = MaxPool (F ) (8)

FAvg = AvgPool (F ) (9)

where MaxPool and AvgPool denote the max pooling and aver-
age pooling operations along the channel dimension.

In the second stage, the first step is to utilize a 7 × 7 convolu-
tion to obtain the relation between each pixel and surrounding
pixels and obtain local change details to generateFS . The second
step involves the utilization of strip pooling [42] to acquire
extensive spatial correlations in both the horizontal and vertical
directions. Due to its long and narrow kernel shape, strip pooling
establishes long-range dependencies of discrete regions, focuses
on capturing details and prevents interference from unrelated
areas. Then, the current location and its neighbor feature by
one-dimensional (1-D) convolution with a kernel size of 3.
Finally, the horizontal feature and vertical feature are restored
to the same size as the original feature map to obtain FH and
FV by interpolation. The details are as follows:

FS = f7×7 ([FMax;FAvg]) (10)

where f7×7 denotes a 7 × 7 convolution and [; ] denotes a
concatenate operation

FH = I
(
f3 1D (SPH ([FMax;FAvg]))

)
(11)

FV = I
(
f3 1D (SPV ([FMax;FAvg]))

)
(12)

where I denotes the interpolation operation; f3 1D denotes the
convolution operation with a kernel size of 3 in 1-D space; SPH

denotes the pooling calculation in the horizontal direction; and
SPV denotes the pooling calculation in the vertical direction.

In the third stage,FS ,FH , andFV are concatenated and fused
by a 2-D convolution of 1 × 1 size, and then the fusion feature
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Fig. 3. SSAM. The module obtains two parts of features, one extracts long-range strip feature, and the other extracts local spatial features.

is activated using the Sigmoid function to obtain the weight
matrix M . Finally, the M is elementwise multiplied by the
input features to obtain the FSSAM after strip spatial attention
refinement, as follows:

M = σ
(
f1×1 ([FS ;FH ;FV ])

)
(13)

Fssam = M ⊗ F (14)

where f1×1 denotes the 1 × 1 convolution in 2-D space; σ
represents the Sigmoid function; and ⊗ denotes the pixel mul-
tiplication.

D. Loss Function

In the change detection task for remote sensing images, there
is a huge quantitative difference between the unchanged pixels
and the changed pixels, leading to a proportion imbalance of
changed and unchanged areas. To weaken the effect of imbalance
distribution of samples, a hybrid loss function is employed,
which combines binary cross-entropy loss and dice coefficient
loss.

Binary cross entropy [43] is usually chosen as the loss function
of binary change detection, and its representation is shown as
follows:

Lbce = − 1

N

N∑

n = 1

[yn log pn + (1− yn) log (1− pn)] (15)

where N denotes the total number of pixels; yn denotes the
ground truth value of the nth pixel; andpn denotes the probability
that the nth pixel is predicted to be changed.

Dice coefficient loss [44] is adopted to alleviate the effect of
class imbalance, and its representation is shown as follows:

Ldice = 1− 2PY

P + Y
(16)

whereP andY denote the probability that all pixels are predicted
to be in the change class and ground truth value, respectively.

The hybrid loss function is formulated as the summation of the
binary cross-entropy loss and dice coefficient loss, as expressed

in the following equation:

L = Lbce + Ldice (17)

III. EXPERIMENT AND ANALYSIS

A. Datasets

We design a series of experiments on three change detection
datasets CDD [45], LEVIR-CD [46], and S2Looking [47] to
evaluate the effectiveness of FDFF-Net.

The CDD dataset is composed of seven pairs of seasonally
varying remote sensing images, which include objects at differ-
ent scales and seasonal variations in natural features. The size
of these images is 4725 × 2700 pixels with a spatial resolution
of 3–100 cm. To facilitate the deep-learning task, each image in
CDD is cropped into 256 × 256 pixels and randomly rotated.
The training, validation, and test sets consist of 10 000, 2998,
and 3000 pairs of cropped images, respectively.

The LEVIR-CD dataset contains a total of 637 pairs of remote
sensing images, which focus on building-related changes. The
size of these images is 1024 × 1024 pixels with a spatial
resolution of 0.5 m. To alleviate the computational burden on
GPUs during training, each image is cropped into 256 × 256
pixels. Finally, the training, validation, and test sets consist of
7120, 1024, and 2048 pairs of cropped images, respectively.

The S2Looking dataset contains a total of 5000 pairs of
side-looking satellite images captured at various off-nadir an-
gles. The size of these images is 1024 × 1024 pixels with a
spatial resolution of 0.5–0.8 m. Each image in this dataset is
also cropped into 256 × 256 pixels without overlapping. The
training, validation, and test sets consist of 56 000, 8000, and
16 000 pairs of cropped images, respectively.

Several data augmentation strategies are used for both datasets
during the training stage to increase the diversity of the training
data.

1) Random flip: Image pairs are flipped randomly, including
horizontal and vertical flips, with a flip probability of 0.5.
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2) Random rotation: Rotating the image pairs randomly with
a rotation angle between −45° and 45° with a rotation
probability of 0.4.

3) Random fixed-angle rotation: Image pairs are randomly
rotated at a randomly selected angle among 90°, 180°,
and 270° with a rotation probability of 0.7.

4) Adding Gaussian noise: Adding Gaussian noise to the
image pairs at random with an additional probability of
0.3.

B. Implementation Details

FDFF-Net is implemented in the PyTorch framework and
uses a single NVIDIA GeForce RTX 2080Ti GPU for training,
validating, and testing. During the training stage, the Adam
is used as an optimization algorithm, with the batch size of
10 and weight decay of 0.0005. We train the FDFF-Net for
200 epochs on the CDD and LEVIR-CD datasets, and 50 epochs
on the S2Looking dataset. The initial learning rate is set as
0.0001, following the learning rate decay strategy that involves
a reduction factor of 0.3 after every 30 epochs of training.

C. Evaluation Metrics

To quantitatively evaluate the effectiveness of the FDFF-Net,
the precision (P), recall (R), F1-score (F1), intersection over
union (IoU), and overall accuracy (OA) metrics are utilized.
Precision measures the extent of false detection of changed
pixels, with higher values indicating a lower occurrence of false
detections. Recall measures the extent of missed detection of
changed pixels, with higher values indicating fewer instances
of missed detections. F1-score, as a composite metric combin-
ing precision and recall through harmonic averaging, presents
a comprehensive evaluation of change detection. Intersection
over union quantifies the spatial overlap between predicted and
ground truth, and offers a focused assessment of the localization
accuracy in change detection tasks. Additionally, the overall
accuracy quantifies the proportion of correctly predicted pixels
(both changed and unchanged) in relation to all the pixels.

D. Ablation Study

We design ablation experiments on CDD and LEVIR-CD
datasets to verify the validity of the DDFM and SSAM modules.
The baseline model is set up the same as the network proposed
in this study except that the absolute value of the bitemporal fea-
tures was directly used when extracting the difference features.

The accuracies of change detection are improved by using
DDFM and SSAM, and the integration of these two modules
maximizes the improvement in accuracy. The F1-score improves
by 0.63% and 0.44%, and IoU improves by 1.19% and 0.75%,
compared with the baseline model on the CDD and LEVIR-CD
datasets, respectively (see Tables I and II). After replacing the
module for extracting difference features in the baseline model
with DDFM, the recall is improved by 0.30% and 0.64% on
the two datasets, indicating that mining and fusing multiple
difference is helpful to reduce missed detections. Furthermore,
we conducted experiments on two datasets to analyze the effects

TABLE I
CHANGE DETECTION ACCURACIES OF ABLATION STUDY ON CDD DATASET

TABLE II
CHANGE DETECTION ACCURACIES OF ABLATION STUDY ON

LEVIR-CD DATASET

Fig. 4. Heat map comparison of the results of difference feature extraction.
(a)–(e) Difference features obtained using different levels of features. (f) Ground
truth. The top row shows the heat map for obtaining the difference features by
subtracting the image features, while the bottom row shows the heat map for
obtaining the difference features using DDFM.

of different dilation rates of the three convolution layers on
the balance between the expansion of the receptive field and
the preservation of local spatial information. The experimental
results show that the optimal combination of the dilation rates of
the second branch in DDFM is 1, 1, 2 (see Table III). We verify
the effectiveness of DDFM in comprehensively mining differ-
ences between bitemporal features by visualizing the difference
feature map (see Fig. 4). In Fig. 4, it can be seen that DDFM can
detect more precise changes than the baseline model.

By adding SSAM to baseline model, the precision increases
by 0.82% and 0.49% on the two datasets, respectively. It indi-
cates that SSAM makes the network focus on changed area and
reduces false detection. We also added only SAM on baseline
model to verify the effectiveness of strip pool branch in SSAM
(see Tables I and II). The results show that, compared with
SAM, adding SSAM makes F1-score and IoU further improved.
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TABLE III
ANALYSIS OF DILATION RATES OF THE SECOND BRANCH CONVOLUTIONAL LAYER OF DDFM

TABLE IV
CHANGE DETECTION ACCURACIES OF ABLATION STUDY OF DIFFERENT SPATIAL ATTENTION MECHANISM

Fig. 5. SSAM output weight maps of difference feature extraction. (a) Ground
truth. (b)–(f) Represent the weight maps output by SSAM at different levels of
the decoder.

Moreover, we compared SSAM with the state-of-the-art (SOTA)
spatial attention modules (global-local Transformer block
(GLTB) [48] and spatial reconstruction unit (SRU) [49]) to
demonstrate its superiority, and the results show that SSAM
achieves higher F1-score and IoU on the two datasets (see
Table IV). We confirm that SSAM concentrates on changed areas
through the visualization of the output weight map (see Fig. 5).
It can be seen that the brightness of the changed regions is higher
than unchanged regions.

The FDFF-Net employs a deep supervision strategy [50] to
alleviate the issue of gradient vanishing during network training.
To evaluate the effectiveness of the deep supervision strategy,
an ablation study is also conducted on two datasets separately
to compare the network with this network without the deep
supervision strategy (see Table V). Compared with the full
model, F1-score of removing deep supervision from the network
decreases by 0.12% and 0.19% on the two datasets, respectively.
This indicates that training the intermediate layer of the network
can further improve the accuracy of change detection.

TABLE V
CHANGE DETECTION ACCURACIES OF ABLATION STUDY OF DEEP SUPERVISION

E. Comparison

We compare our method with the SOTA methods, FC-Siam-
diff [30], STANet [46], IFN [50], SNUNet-CD [51], AMAC
[52], and ConvTransNet [53], to verify the advantages and
effectiveness of FDFF-Net.

1) FC-Siam-diff [30] is based on the UNet network. This
network inputs the absolute value of subtracted bitemporal
features into the decoder to generate change maps.

2) STANet [46] incorporates a self-attention mechanism into
the network. Spatial–temporal attention module is de-
signed to capture spatial–temporal relations at long range
to improve the ability to capture details.

3) IFN [50] uses both attention mechanisms and deep su-
pervision strategies to improve the capability to detect
changes. The utilization of an attention module facilitates
the efficient fusion of multilevel features. Moreover, the
implementation of a deep supervision strategy enhances
the discriminative ability of the network to distinguish
differences.
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TABLE VI
CHANGE DETECTION ACCURACIES OF COMPARED METHODS ON

CDD DATASET

TABLE VII
CHANGE DETECTION ACCURACIES OF COMPARED METHODS ON

LEVIR-CD DATASET

4) SNUNet-CD [51] utilizes the dense skip connections
of the UNnet++ architecture as its foundational frame-
work. This network reduces the loss of deep information
through dense connection and focuses on representative
features by integrating the channel attention module. Here,
SNUNet-CD with the best accuracy of 48 channels is
selected for comparison.

5) AMCA [52] uses multiple attention modules to enhance
and fuse multiscale contextual information. By effectively
utilizing feature at different scales, the accuracy of change
detection is improved.

6) ConvTransNet [53] combines the transformer and CNN
in the encoder, which uses CNN branch and transformer
branch to extract local and global features, respectively.
In this way, the ability to detect multiple changed objects
with various sizes is improved.

FDFF-Net achieves the best accuracy on CDD, LEVIR-CD,
and S2Looking datasets (see Tables VI–VIII), as indicated by the
higher F1-score, IoU, and OA than other methods. Compared
with IFN using a pretrained VGG16 for feature extraction during
the encoding stage, FDFF-Net achieves an improvement of
7.11% in F1-score and 12.63% in IoU on the CDD dataset, and
improves by 1.77% in F1-score and 2.96% in IoU on the LEVIR-
CD dataset. Furthermore, when evaluated on the S2Looking

TABLE VIII
CHANGE DETECTION ACCURACIES OF COMPARED METHODS ON

S2LOOKING DATASET

dataset, our method improves by 6.22% in F1-score and 6.80%
in IoU. In contrast to SNUNet-CD/48, which uses a dense skip
connection, FDFF-Net achieves the enhancement of 1.19% and
1.97% in F1-score on the CDD and LEVIR-CD datasets, and
improves by 10.38% on the S2Looking dataset. Compared with
AMAC, which introduces multiple attention modules, there is
an enhancement of 2.02% and 0.27% in F1-score on the two
datasets, respectively. In contrast to ConvTransNet, FDFF-Net
achieves the enhancement of 1.32% and 0.84% in the F1-score
on the CDD and LEVIR-CD datasets, respectively.

We conduct a visual comparative analysis between FDFF-Net
and other methods to validate the advantages of our method
in detecting small object change detection and changed object
contours detection. The visualization comparison results show
that FDFF-Net detects the changes of multiple ground objects
while still retaining change details. For example, in Fig. 6, there
are red boxes in the second, third, and fifth rows, with multiple
small car changes. Compared with other methods, FDFF-Net
can not only detect more complete small object changes but
also identify the gap between the cars well. In the fourth row of
Fig. 6, the detection of changes in the small trees within the red
box is exclusively accomplished by our method, which due to
FDFF-Net mines the multiple differences between bitemporal
images, enabling the precise identification of changes in various
objects.

FDFF-Net detects the contours of the changes more clearly
than other methods. In Fig. 7, the two fences within the red
boxes labeled in the third and fourth rows are detected com-
pletely without overlap, and the results in the fifth row are
close to SNUNet-CD/48, but the fine fence contours in the
red boxes are captured and detected. This indicates that the
attention mechanism used by FDFF-Net enhances the perception
of change details and that the use of SSAM makes the network
accurate in the detection of strip-shaped objects. In Fig. 8, all five
methods have good detection effects, but FDFF-Net has obvious
advantages for the detection of building edges. The building edge
details, such as the red boxes in the first, fourth, and fifth rows,
are marked with closely connected buildings and small gaps.
The other four methods are unable to detect such change details,
while FDFF-Net can detect them.

IV. DISCUSSION

A. Advantage of FDFF-Net for Alleviating Pseudochanges

The precision of change detection is always influenced by
the pseudochanges caused by seasonal variation, shadows, and
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Fig. 6. Visualization comparison of different methods for change detection on CDD dataset, which shows our superiority on detecting changes of small objects.
(a) Pretemporal images. (b) Posttemporal images. (c) Ground truth. (d) FC-Siam-diff. (e) STANet. (f) IFN. (g) SNUNet-CD/48. (h) FDFF-Net.

Fig. 7. Visualization comparison of different methods for change detection on CDD dataset, which shows our superiority on detecting contours of changed
objects. (a) Pretemporal images. (b) Posttemporal images. (c) Ground truth. (d) FC-Siam-diff. (e) STANet. (f) IFN. (g) SNUNet-CD/48. (h) FDFF-Net.
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Fig. 8. Visualization comparison of different methods for change detection on the LEVIR-CD dataset, which shows our superiority on detecting contours of
changed objects. (a) Pretemporal images. (b) Posttemporal images. (c) Ground truth. (d) FC-Siam-diff. (e) STANet. (f) IFN. (g) SNUNet-CD/48. (h) FDFF-Net.

viewing angles’ differences [54]. Two effective strategies for
alleviating pseudochanges involve expanding the receptive field
of the convolution layer and leveraging the deep features of
changed ground objects. For instance, the positional bias of the
same object in two images is caused by different satellite imaging
angles. By expanding the receptive field beyond the object,
positional bias can be captured, preventing the network from
erroneously flagging nonoverlapping areas as changed. Simi-
larly, within the deep feature map, the pixel count of changed
ground objects is reduced, minimizing positional bias between
the same objects in the two images, which makes it easier for
the receptive field of the convolutional layer to cover all pixels.
We employed both two approaches to alleviate pseudochanges.
First, we designed DDFM to expand the receptive field during
the process of extracting difference features, making the FDFF-
Net obtain the local feature of different ranges. Second, we used
a full-scale skip connection methodology to merge deep features
with shallow features, providing a continuous refinement to
change detection. Experimental results show that FDFF-Net
can alleviate these pseudochanges. For example, in Fig. 6, the
snow cover on the grassland caused by seasonal variation is not
classified as change, and the shadows of the trees are also not
identified as changes. Furthermore, in contrast to other methods,
FDFF-Net achieves the best F1-score and IoU on the S2Looking
dataset, whose images are captured at various off-nadir angles
(see Table VIII).

Although the experiments prove that our method has ad-
vantages in alleviating pseudochanges, there exists potential

for refinement. This is attributed to the complexity of remote
sensing images, where multiple ground objects coexist, with
varying dimensions for even identical objects. Consequently,
a static enhancement of the receptive field might fall short
of comprehensively addressing the complex scenes of remote
sensing images.

B. Limitations and Prospects

Although FDFF-Net has achieved impressive performance, it
still has limitations. In the decoding stage, FDFF-Net utilizes
the multilevel features extracted by the encoder to supplement
the lost change information due to downsampling. However,
compared with the deep feature, the shallow feature contains
more noise due to fewer convolution operations, which will
interfere accuracies of the detection results [55]. Therefore, there
is a need to optimize the backbone of feature extraction to reduce
noise in shallow feature.

Due to the limited receptive field of convolution, semantic
information will be lost during the feature extraction process,
and this loss will increase as network layers get deeper. The
advantage of transformers in extracting global feature may solve
this problem [56], [57]. It is assumed that combining the CNN,
which extracts local feature, and transformer, which extracts
global feature, as the backbone network of feature extraction
can improve the completeness of changed objects.

In addition to the use of transformers to extract image features
in the encoding stage, single-temporal image features can also be
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decoded to reconstruct features of objects and eliminate noise.
Multitask learning framework for change detection [21], [58]
has an extra dual decoder to obtain segmentation results of
images, which offers semantic constraints for change detection.
The network with multitask architecture can not only alleviate
the noise and improve the robustness of the network but also
further explore the application in “from–to” change detection.

V. CONCLUSION

In this study, we propose an FDFF-Net for change detec-
tion. Our method incorporates two key components, namely
the DDFM and the SSAM. The DDFM is designed to mine
multiple differences between bitemporal images and the SSAM
is designed to enhance change features. Aggregating DDFM
and SSAM shows superiority in the detection of change de-
tails. Extensive evaluations conducted on three datasets, CDD,
LEVIR-CD, and S2Looking, substantiate that FDFF-Net outper-
forms the compared SOTA methods and is effective in detecting
change details. Furthermore, in comparison with other methods,
FDFF-Net demonstrates enhanced capability in alleviating the
pseudochanges caused by shadows, viewing angles’ differences,
and seasonal variation.
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