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Segmentation of Water Bodies From Sentinel-
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Abstract—This study introduces the S1S2-Water dataset—a
global reference dataset for training, validation, and testing of con-
volutional neural networks (CNNs) for semantic segmentation of
surface water bodies in publicly available Sentinel-1 and Sentinel-2
satellite images. The dataset consists of 65 triplets of Sentinel-1
and Sentinel-2 images with quality-checked binary water mask.
Samples are drawn globally on the basis of the Sentinel-2 tile-grid
(100 km × 100 km) under consideration of predominant landcover
and availability of water bodies. Each sample is complemented
with metadata and digital elevation model (DEM) raster from
the Copernicus DEM. On the basis of this dataset, we carry out
performance evaluation of CNN architectures to segment surface
water bodies from Sentinel-1 and Sentinel-2 images. We specifically
evaluate the influence of image bands, elevation features (slope)
and data augmentation on the segmentation performance and
identify best-performing baseline-models. The model for Sentinel-1
achieves an Intersection over Union (IoU) of 0.845, Precision of
0.932, and Recall of 0.896 on the test data. For Sentinel-2 the best
model produces an IoU of 0.965, Precision of 0.989, and Recall
of 0.951, respectively. We also evaluate the performance impact
when a model is trained on permanent water data and applied to
independent test scenes of floods.

Index Terms—Convolutional neural networks (CNNs), reference
dataset, semantic segmentation, Sentinel-1, Sentinel-2, surface
water monitoring.
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I. INTRODUCTION

MONITORING and understanding the spatio-temporal
dynamics of surface water bodies with seamless geo-

graphical coverage and over large areas is important for scien-
tists, economy, and political decision makers. Compared to con-
ventional hydrological monitoring systems that rely on networks
of point-wise rain and stream gauging stations, satellite remote
sensing can provide complementary information on surface
water extent over large geographical areas, at high temporal
frequency and low cost. Satellite-based water monitoring can
contribute relevant information on hydrology in ungauged areas,
support the development of infrastructure projects or help to
understand the impacts of changes in hydrology on environment,
economy, and human health at different spatial and temporal
scales. In particular, being able to detect and quantify spatio-
temporal anomalies, such as flooding or hydrological droughts
is essential to support measures across all phases of the disaster
risk management cycle.

With the launch of the Sentinel-1 (April 2014, April 2016)
and Sentinel-2 (June 2015, March 2017) satellites large-scale
monitoring of land surface dynamics at high spatial resolution
(∼10 to 20 m ground sampling distance), temporal revisit period
(∼2 to 6 days depending on geographical location) and with
large swath width (>250 km) became possible. In contrast to
previous satellite missions, data of the Copernicus missions
are acquired systematically over the entire global landmass and
are openly available. The Sentinel-1 satellites carry a synthetic
aperture radar (SAR) C-band sensor acquiring data in VV and
VH polarization amongst others with a capability of penetrating
through clouds and acquiring images during day and night.
The Sentinel-2 satellites carry a multispectral instrument that
collects data in the visible, near- and short-wave-infrared across
13 spectral bands. Segmentation of water bodies in SAR data is a
difficult task and misclassifications are largely related to similar
backscatter reflectance patterns between different land cover
classes. False positives are in particular caused by confusion
with other low-backscattering targets, such as sand, concrete,
or salt pans. False negatives can be caused by strong winds,
which increase the surface roughness of water bodies and prevent
specular reflection [1]. Multispectral satellite images, on the
contrary, are influenced by atmospheric effects and the presence
of clouds and cloud shadows, which may obstruct objects of
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interest and introduce bias to further image analysis [2]. Similar
spectral response characteristics of shadow and water pixels
are a common source for misclassifications. Independent of the
observing sensor system, automated water segmentation from
satellite images is a challenging task because of significant
variations in the reflected signal, size, and shape of water bodies.
Sediment, debris, ice, vegetation, infrastructure, boats, or other
vehicles interact with the water surface or subsurface and modify
the appearance of water bodies in the satellite images. These
conditions are, moreover, highly dynamic and dependent on the
geographical location and acquisition time. The fractal geometry
of the land-water border further increases the complexity of the
segmentation task, since the definition of a hard class bound-
ary may be subjective and strongly dependent on the image
resolution.

Surface water monitoring is an important topic in remote
sensing and detailed reviews can be found in Huang et al. [3]
and Bentivoglio et al. [4]. While rule-based algorithms have
long dominated water mapping studies with multispectral and
SAR satellite sensors [5], [6], [7], convolutional neural networks
(CNNs) have seen a rapid development in recent years [8], [9],
[10], [11]. Liu et al. [12] use a modified U-Net architecture
to analyze bi-temporal and dual-polarized Sentinel-1 images of
floods caused by Hurricane Harvey in the U.S. in 2017. They
evaluate the impact of different polarizations as input bands (IBs)
to train a model and show that using VV-VH polarization or
VH polarization achieves better results than VV polarization
alone. Nemni et al. [13] compare variations of CNNs based
on the U-Net architecture for their performance to segment
water in Sentinel-1 images. They developed a dataset of 15
Sentinel-1 images around flood events in eight countries of
Eastern-Africa and South-East-Asia. The dataset consists of
VV-polarized images and corresponding quality-checked flood
extent masks from UNOSAT analyses. Bonafilia et al. [14]
introduce a dataset of VV-VH polarized images from Sentinel-1
acquired during 11 flood events (Sen1Floods11). They report
loss in accuracy when models trained on images depicting only
permanent water bodies are being applied to images showing
flood events. The Sen1Floods11 dataset has further been used
by Bai et al. [15] to test a modified U-Net architecture and to
examine the influence of data augmentation (DA) as well as
fusing Sentinel-1 and Sentinel-2 data.

Despite increasing availability of input data due to the sys-
tematic acquisitions of the Sentinel satellites, we observe a
general lack of annotated reference data in remote sensing and
in particular for the task of water segmentation. Limitations in
geographical coverage reduce the significance of results with re-
spect to the global applicability of trained models. In this regard,
Mateo-Garcia et al. [16] developed the WorldFloods dataset that
consists of Sentinel-2 images with corresponding water masks
for 119 globally distributed flood events. They compiled flood
water masks from rapid mapping activities carried out by various
disaster response organizations. The authors state that the quality
of their dataset is varying and label noise is widely present by
temporal misalignments between Sentinel-2 image and water
mask. This is attributed to the fact that most water masks have
been derived semi-automatically from SAR images during rapid

mapping. The Sentinel-2 images of the dataset are, moreover, not
the source of the water masks, causing temporal misalignments
between images and masks. Especially in highly dynamic flood
situations, even differences of a few days between acquisitions
may potentially introduce large degrees of misalignments and
deteriorate the quality of a dataset. The same issues are relevant
for the OMBRIA [17] dataset, which is directly compiled from
rapid mapping products of the Copernicus Emergency Man-
agement Service (CEMS). The aforementioned Sen1Floods11
dataset [14] is released openly and covers larger geographical
areas. However, Helleis et al. [18] indicate issues of this dataset
with regards to spatial autocorrelation and expressiveness of the
samples. Other relevant reference datasets for Sentinel-1 and /
or Sentinel-2 include Zhu et al. [19], Alemohammad and Booth
[20], and Hong et al. [21]. These datasets contain a water class
but were not specifically created for the task of water segmenta-
tion. Therefore, the applied sampling scheme does not consider
intra- and inter-class variability of the water class. Furthermore,
their geographical coverage is limited and annotation efforts
are of varying quality. The Sen12ms dataset [22] contains over
180 000 samples (each 256 × 256 pixels in size) with triplets of
Sentinel-1, Sentinel-2 image patches and corresponding MODIS
land cover data annotations. The dataset has global coverage
and samples are well distributed in space and time. Due to its
general focus on image fusion and landcover classification it,
however, does not specifically account for the variability of a
water class. In addition, its annotations are from an independent
source and at a much coarser native resolution (500 m) than the
image data (10–20 m), which renders them not applicable for
fine grained water segmentation. The Sen12-Flood [23], [24]
is another dataset that provides Sentinel-1 and Sentinel-2 image
patches for flood events. It is based on the MediaEval [25] dataset
and provides image-level labels (“image contains a flood or not”)
rather than pixel-level annotation masks of flooded areas.

Based on the need for globally applicable, validated water
segmentation methods and the observed lack of appropriate
benchmark datasets for this task, we introduce S1S2-Water—a
global dataset for semantic segmentation of water bodies from
Sentinel-1 and Sentinel-2 satellite images. This multimodal
benchmark dataset consists of 65 triplets of Sentinel-1 and
Sentinel-2 images with quality-checked binary water masks.
Tiling it into non-overlapping 256 × 256 pixels patches results
in 100 000+ samples per sensor. Each sample is complemented
with detailed metadata and digital elevation model (DEM) raster
from the Copernicus DEM [26]. Samples are distributed globally
on the basis of the Sentinel-2 tile-grid (100 km × 100 km)
and under consideration of landcover and availability of water
bodies. On the basis of S1S2-Water, we carry out performance
evaluation of CNN architectures to segment water bodies from
Sentinel-1 and Sentinel-2 images. We specifically evaluate the
influence of image bands, elevation features (slope) and DA on
the segmentation performance and identify the best-performing
baseline-models for each sensor. We also evaluate the perfor-
mance impact when a model is trained on normal water data
(S1S2-Water) and applied to independent test scenes of flood
events. This aims at testing the applicability of S1S2-Water for
normal water monitoring as well as flood mapping and allows
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Fig. 1. Spatio-temporal distribution of samples in the S1S2-water dataset across geographies, months of the year, landcover [19], elevation, and slope.

to identify limitations and future improvements to the dataset.
The dataset is released openly alongside this publication [27].

The rest of this article is organized as follows. Section II
provides an overview of requirements for remote sensing refer-
ence datasets and introduces the S1S2-Water dataset. Section III
describes the methods used to compile the S1S2-Water dataset
and explains the experimental setup of the performance evalua-
tion of CNN architectures. Results are presented in Section IV,
discussed in Section V, and concluded in Section VI.

II. DATA

Reference data for the analysis of Earth observation data
should primarily be adapted to the requirements of practical
application and be geared to the properties of interpretation
algorithms. Essentially, the creation of reference data in this
context is aimed at training, testing, and validating machine
learning methods for the semantic segmentation of water bodies.
Accordingly, the reference dataset should consist of sufficient
and as accurately annotated samples as possible, which explicitly
cover the expected challenges in practical application scenarios.
Based on these assumptions and following the guidance of
building remote sensing benchmark datasets outlined by Long
et al. [28], the following requirements were considered when
constructing the S1S2-Water dataset.

1) Diversity: Diversity means that samples of the same class
should cover as wide a spectrum as possible in terms
of appearance, size, shape, and orientation. Differences
in background (e.g., water surrounding landcover), scale,
acquisition time, and geographical context should also be
considered.

2) Richness: While diversity emphasizes the semantic oth-
erness of samples, the richness of a dataset refers to
the variation of image features. These include light-
ing, background, occlusion, radiometry, pixel resolution,
and sensor characteristics, amongst others. In this con-
text, the selection of time periods, geographical cover-
age, and acquisition sensors is influenced by the use
case.

3) Scalability: Scalability refers to the ability to change and
expand a dataset. It should be possible to easily integrate
newly annotated images into an existing dataset and to up-
date dataset parameters such as the classification scheme.
For this reason, data formats and the storage structure of
annotations and images as well as metadata are important
to control the scalability of a data set.

A. S1S2-Water Dataset

The S1S2-Water dataset follows recent guidelines for the
construction of remote sensing benchmark datasets as much
as possible. A stratified random sampling was performed to be
representative of a variety of climatic, atmospheric, and land
cover conditions, to cover different seasons and to ensure that
samples always include water areas in addition to other land
cover classes (see Fig. 1). In addition, a fixed division into train-
ing, validation and test splits is defined to ensure the transparency
and repeatability of experiments. The dataset follows Open
Source standards regarding data formats and structure. Each
sample consists of Sentinel-1 ground range detected (GRD)
interferometric wide swath data and Sentinel-2 L1C images with
associated quality-controlled binary water mask annotations,
elevation and slope layers as well as metadata (see Fig. 2). Each
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Fig. 2. Examples of S1S2-water samples with Sentinel-1 (VV polariza-
tion) and Sentinel-2 (SWIR-NIR-green) satellite images, associated water/valid
masks as well as elevation and slope information. Scenes cover an area of 100
km × 100 km.

sample is aligned to the Sentinel-2 tile-grid and covers an extent
of 100 km × 100 km with a pixel-spacing of 10 m.

The final dataset consists of 65 samples (each 100 km ×
100 km in size) that are spread across 29 countries and cover
an area of approximately 650 000 km2. The samples cover 18
pre-dominant landcover types and show a wide distribution
across elevation and slope. Images have been acquired between
2018-05-21 and 2020-11-26 and are distributed across nearly
all months of the year (no samples are available for December).
The difference between Sentinel-1 and Sentinel-2 acquisitions
per sample is 1 day in average with a standard deviation of 4
days.

We decided against tiling the samples into smaller patches,
but provide a Python package along with the data to do so
instead. This way, the user has greater flexibility to prepare the
samples according to the requirements of the desired network
architecture and hardware setup. A tiling of S1S2-Water into
non-overlapping 256 × 256 pixels patches, results in a total of
50 000+ patches for training and 25 000+ patches for validation
and testing respectively. Class distribution in the training data is
1 (water) to 7.5 (background). Dataset and preparation package
are released openly alongside this publication [27].

B. Independent Flood Water Dataset

The S1S2-Water dataset covers normal water bodies and does
not specifically consider anomalously flooded areas. To evaluate
the performance impact when a model is trained on normal water
data (S1S2-Water) and applied to floods, we developed an inde-
pendent reference dataset S1S2-Flood that covers 12 major flood
events across the globe (see Table I). Similar to S1S2-Water, each

TABLE I
OVERVIEW OF FLOOD EVENTS AND RESPECTIVE SOURCE IMAGES IN THE

S1S2-FLOOD DATASET

sample of this S1S2-Flood dataset consists of Sentinel-1 GRD
and Sentinel-2 L1C images with associated quality-controlled
binary water mask annotations, elevation, and slope layers as
well as metadata (see Fig. 3). Maximum time difference between
acquisition dates of Sentinel-1 and Sentinel-2 images has been
limited to one day to ensure spatial and temporal consistency of
the flood masks. We used the same procedure as for S1S2-Water
samples to annotate the satellite images. First, water bodies are
roughly identified using a threshold procedure based on NDWI
and then manually refined for each sensor specifically in multiple
iterations using extensive quality checks and corrections.

We did not rely on the available rapid mapping products of the
CEMS to ensure consistency between input images and target
masks. Most flood delineation products of the CEMS are derived
from very high-resolution optical or SAR satellite images. Using
their products directly as annotation masks alongside Sentinel-1
or Sentinel-2 images could cause significant amounts of label
noise related to geometric or temporal differences between the
annotation source and reference image. CEMS flood delineation
products that were derived directly from Sentinel-1 or Sentinel-2
images could potentially be very valuable samples. However,
these products seem to be extracted in a semi-automated manner
with unclear levels of manual improvements and quality checks.
They are, moreover, produced in a rapid mapping context where
production time is critical and usually of higher priority than
annotation quality. This means that even these samples should
be treated with care and would require additional quality and
consistency checks before including them in a reference dataset
like S1S2-Flood.
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Fig. 3. Examples of S1S2-flood samples with Sentinel-1 and Sentinel-2 satel-
lite images as well as associated water / valid masks, elevation, and slope
information. Scenes are of varying size and coverage details are provided in
Table I.

A fixed random split into training, validation, and test samples
is finally applied. Due to the limited number of available samples
and to increase the significance of the results, a larger preference
(in terms of number of samples) is given to the test split.
Therefore, the S1S2-Flood dataset should be considered as an
independent test dataset. Small training and validation splits are
separated only for transfer learning experiments.

III. METHOD

In the following, we describe methods applied to compile
the S1S2-Water dataset, including the design of the sampling
scheme, image preparation, and annotation procedures as well as
data format and structure considerations. To test the applicability
of S1S2-Water for normal water monitoring and flood mapping
we carry out a performance evaluation of CNN architectures.
All experiments are carried out separately for Sentinel-1 and
Sentinel-2. First, we compare the performance of different
network architectures and choose a baseline model (BM) for
each sensor. Further, we evaluate the influence of different input
image bands and the effects of DA methods on the performance.

A. Sampling Scheme

A reference dataset for machine learning should represent the
real probability distribution of the data, which is to be expected in
the operational use of the developed methods. Since the number
of samples in a dataset is always limited, care must be taken when
selecting the samples so that they are representative of the task.
Simple random samples often cannot meet this requirement. It
is important to cover both the distribution of the target class and

the variance of environmental parameters as well as possible. A
suitable tool for this is the stratified random sample, which makes
the selection of samples dependent on additional information
about desired properties. For the S1S2-Water dataset, we use
the global Sentinel-2 tile-grid with 100 km × 100 km grid
cells as the geographical reference grid from which we choose
the samples. For each grid cell, we compute the predominant
landcover type from a global landcover map of the ESA CCI
Land Cover project with a native spatial resolution of 300 m [29].
Since we want each sample to contain a minimum percentage
of water, we remove grid cells that do not cover any water
bodies. We use the Global Surface Water maximum water extent
layer developed in [30] as indicator for the presence of water.
The remaining grid cells contain water bodies have an assigned
predominant landcover type and form the strata for our stratified
random sampling. During sampling, we also apply a minimum
distance constraint of 370 km, which equals twice the swath
width of a Sentinel-2 scene, to avoid choosing neighboring grid
cells.

Developing a supervised machine learning model requires a
reference dataset, which is commonly split into training, vali-
dation, and test data. Each of these parts has a specific function
and is assigned to a phase of model development. The interaction
of the three data splits requires at least that they should come
from the same data-generating process, the data should follow
the same probability distribution and be independent as well as
randomly distributed. A fixed split of the data is also important
for model comparison. Only when different models are evaluated
using the same test data, their performance can be compared.
Moreover, for geospatial data, it is crucial to minimize the
spatial autocorrelation between samples. Spatial autocorrelation
describes the assumption that the similarity of the properties
of two samples increases with decreasing spatial distance. In
practice, this means that one should avoid tiling individual large
satellite scenes and dividing the resulting smaller patches into
the different data splits, since neighboring tiles could end up
in the training and test splits. Therefore, we decided to apply a
fixed train, validation, and test splitting at the level of individual
satellite scenes that have themselves already been sampled under
consideration of a minimum distance constraint as described
above.

B. Data Format and Structure

The S1S2-Water dataset exposes all samples as spatio tempo-
ral asset catalog (STAC) items to make spatio-temporal searches
and attribute filtering easy and according to Open Source stan-
dards [31]. STAC defines a basic metadata format for geodata
with the aim of unifying access to and querying geodata from a
wide range of providers and enabling it with the help of a single
application programming interface (API). Metadata items in
S1S2-Water contain information about the sample footprint and
spatial reference system as well as properties, such as landcover,
split (train, validation, test) or source-ids of the Sentinel-1 and
Sentinel-2 scenes that have been used to generate the sample.
The STAC item further contains references to the assets which
are the actual raster data layers (Sentinel-1 and Sentinel-2
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Fig. 4. Workflow scheme for generation of S1S2-Water samples.

images, water masks, valid pixel masks, as well as elevation
and slope layers).

Raster data layers are stored and made available as cloud
optimized GeoTIFF (COG) [32]. While with standard GeoTIFF
format, it is necessary to download raster data completely, even
if the section to be examined only occupies a small part of the
raster file, the COG format allows the targeted download of the
desired image section. The conversion to the COG format is
based on two general steps: On the one hand, the raster data is
internally divided into tiles, which can later be made available
directly via an HTTP request. On the other hand, one or more
low-resolution variants of the grid are created, which enable the
data to be provided more quickly, e.g., for graphical represen-
tation. The combination of the STAC and COG standards with
an object storage service optimized for data storage on cloud
platforms such as AWS simple storage service therefore enables
the exploration of the data sets with a uniform API and the
targeted streaming of the desired bytes, thus laying the basis for
cloud-based processing.

C. Data Preparation and Annotation

Fig. 4 gives an overview of the processing steps used to
prepare the S1S2-Water samples. The Sentinel-1 images are ge-
ometrically corrected and radiometrically calibrated according
to the method described by Twele et al. [33]. Both VV and VH
polarizations are used and stored in separate image channels.
All images are cropped to the spatial extent of the sample. In
case multiple Sentinel-1 images are required to cover a sample,
they are stitched together prior to cropping. For each sample,
additional Sentinel-2 scenes are acquired within a maximum
time difference of 21 days (the average time difference between
acquisition times is 1 day) to the Sentinel-1 image. The choice
of a respective Sentinel-2 image is further constrained by a
filter on the cloud-cover (5%). Once acquired, the Sentinel-2
image is resampled to a uniform resolution and stored in separate
image channels. Based on findings from previous work and as

described in [11], only the spectral channels blue (B), green (G),
red (R), near infrared (NIR), shortwave infrared I (SWIR1) and
II (SWIR2) are used.

Multispectral Sentinel-2 scenes are usually easier to interpret
compared to SAR images of Sentinel-1. Therefore, we used
Sentinel-2 images as a starting point for the annotation of water
masks. These distinguish the classes “water” from “no water”
(background). We use a semi-automated annotation procedure,
in which water bodies are first roughly identified using a thresh-
old procedure based on a Normalized Difference Water Index
(NDWI) and then refined using extensive manual quality checks
and corrections. The manual editing is performed in multiple
iterations by three independent image interpretation experts to
ensure the quality and consistency of the resulting reference
masks. Within each iteration, water masks are visually compared
with the reference images by the expert and in case of discrep-
ancies are corrected accordingly. Water masks are adjusted to
the images of each sensor specifically. This is required since
in some areas even minor differences in the acquisition time
can result in major discrepancies of the observed water extent.
For example, in highly dynamic water regimes (e.g., tidal areas
or during floods) the water extent can significantly change in
short time and thus even images acquired at the same day but at
different hours may not be comparable. In addition to the water
masks, valid pixel masks are created to identify areas where the
reference data is of insufficient quality or where no image data
is available (e.g., due to partial cloud cover). Each sample is
also supplemented by metadata and a DEM. Both elevation and
slope information are provided.

D. Model Hyperparameters and Training Setup

All models are trained using the same values for initial
learning rate (1e-3) and weight decay (1e-2), which have been
obtained through initial experiments. Model parameters are
initialized as described in He et al. [34]. For the optimization
algorithm, we select AdamW with β1 = 0.9 and β2 = 0.9 [35].
We use a weighted combination of cross-entropy and Lovász loss
that optimizes the IoU score during backpropagation. Following
the results of Helleis et al. [18], we equally weight cross-entropy
and Lovász loss. To account for class-imbalance we, moreover,
weight cross-entropy according to the positive class distribu-
tion in the training data. We train the networks in batches of
64 until convergence for a maximum number of 100 epochs.
The learning rate is step-wise reduced by a factor of 0.1 if
no improvement is seen for three epochs. If no improvement
is observed for nine consecutive epochs, we apply early stop-
ping. During training the best model state is determined by the
lowest validation loss, which is also stored for evaluation. All
experiments are performed on a machine running CentOS 8.2
with two NVIDIA Tesla K80 GPUs and Intel Xeon E5-2697A
CPUs.

We split the scenes contained in the training and valida-
tion sets into nonoverlapping tiles with a size of 256 × 256
pixels. The input image feature space in all experiments is
standardized to zero mean and unit variance. Mean and stan-
dard deviation have been computed on the training dataset and
are applied to the validation and testing sets. During testing,
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we split the test image scenes into overlapping tiles of 256
× 256 pixels before feeding them to the trained models for
inference. The resulting segmentation maps are then recom-
bined to the original scene size and a tapered cosine window
function is used to smoothly blend overlapping tiles together
with the aim to reduce prediction errors close to the tile borders
[11].

E. Performance Metrics

To assess the segmentation performance, we report standard
accuracy metrics Intersection over Union (IoU) score, Precision
(Prec), and Recall (Rec). Overall accuracy is not reported in this
study due to the imbalanced class distribution of the datasets
under evaluation, which would render this metric unreliable and
misleading. Prediction probabilities are converted into binary
segmentation masks by applying a threshold of 0.5 to the proba-
bilities. A pixel belongs to the water class if its probability >=
0.5, otherwise, it belongs to the background class. We compute
the performance metrics for every scene in the test set and further
compute the weighted averages across all scenes. Our implemen-
tation of the used metrics is published as an open-source Python
package [36]. Given the overall dataset size and the number of
experiments in this study, cross-validation is not considered be-
cause of the computational overhead of running each experiment
multiple times. Instead, we fix a random seed (4) for Numpy,
PyTorch, and Python and apply it to all components of the
experimental setup that involve randomness (e.g., data shuffling,
weight initialization, etc.). Deterministic GPU floating point
calculations are enforced to ensure that results are reproducible
and comparable. We further report model throughput measured
in megapixel per second (mp/s). Measurements per experiment
are averaged across five prediction runs on 5000 tiles with shape
(256, 256, n), with n being the number of image bands.

F. Baseline Model

The models that we test in this study are based on the widely-
used U-Net architecture [37], which has proven to deliver highly
accurate results for water segmentation tasks in high-resolution
satellite images at relatively low computational complexity
[11], [18]. In combination with the U-Net architectures, we
compare different encoders, namely MobileNet-V3, ResNet-50,
EfficientNet-B0, and EfficientNet-B4. We selected these for
our experiments since they show a good trade-off between the
number of model parameters and Imagenet Top-1 accuracy [38].
The hypothesis is, that more complex models may allow the
model to have a higher level of image understanding, which
may positively impact the segmentation performance and in
particular the generalization ability.

G. Input Bands

For Sentinel-2, we use only spectral bands that are available
across different satellite sensors (e.g., Landsat OLI) to ensure
a high degree of transferability of the trained models. Water
shows low reflectance in the NIR and SWIR wavelengths as
it absorbs more energy, while nonwater generally has a higher

reflectance. This leads to a high contrast in reflectance values
between water and nonwater landcover classes in the NIR and
SWIR spectral bands compared to the visible R, G, and B
bands. Moreover, atmospheric aerosols have a stronger effect
on shorter wavelengths and affect mainly the visible spectrum.
This means that particularly the SWIR spectral bands show
improved atmospheric transparency and hence can support in
the distinction between landcover and atmospheric effects like
clouds or haze. In this regard, we test the influence of the NIR and
SWIR spectral bands on the water segmentation performance.
In addition, we also consider slope information derived from the
freely and globally available Copernicus DEM. We compute the
slope in degrees at the 30-m native spatial resolution of the DEM
and resample it to match the respective sample image resolution
of 10 m. We apply different band combinations separately on
the training dataset to test their individual contribution to the
segmentation performance. Similar to Sentinel-1, we test the
influence of different available polarizations (VV and VH) and
their combination with slope information.

H. Data Augmentation

Satellite images are affected by changes in landcover, at-
mospheric conditions, seasonality and other scene, and image
properties such as sun elevation or radiometric resolution. Due
to this very large variability of influencing factor, even large ref-
erence datasets may not cover all possibilities that may occur in
real-world applications. In this regard, DA enables a network to
learn invariance to changes in the augmented domains to a degree
that may go beyond what is present in the raw training image.
In this experiment, we test the influence of different DA tech-
niques on the segmentation performance. Specifically, we apply
random contrast, brightness, scale, and image flipping. Factors
are randomly applied within predefined ranges to contrast [-0.1,
0.1], brightness [-0.1, 0.1], and scale [0.9, 1.1]. Flipping is
performed in a left-right direction, which flips an image around
its vertical axis. We do not apply rotation augmentation since
it may introduce unrealistic SAR image characteristics [39].
All augmentations are applied with equal probability. We apply
the different augmentation methods separately on the training
dataset to test their individual influence. In an additional test,
we combine all augmentations and test their joint influence on
the segmentation performance during training. We also perform
an experiment with test-time augmentation, in which we predict
the original input image and five randomly augmented versions
of it. The final prediction is then based on the averaged class
probabilities.

I. Transfer Model

In this experiment, we aim at answering the question, whether
a model trained on images depicting normal water can be
transferred to flood images. Compared to normal water, flood
water is mostly characterized by higher contents of sediment
and debris. Flooded vegetation, infrastructure, or vehicles may
further interact with the water surface and modify the reflectance
characteristics of the target class in the satellite images. As a
baseline, we evaluate the performance of sensor-specific models
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TABLE II
RESULTS FOR DIFFERENT BMS

TABLE III
RESULTS FOR DIFFERENT SENTINEL-1 IBS AND ADDITIONAL SLOPE

INFORMATION

that have been trained solely on normal water (S1S2-Water) and
apply them to the test images of our independent flood water
dataset (S1S2-Flood). We then compare these results to models
that have been trained on a joint dataset that includes normal and
flood water images (S1S2-Water + S1S2-Flood). Starting from
pretrained weights can improve performance, because low-level
features that are being learned in early network layers are similar
across image domains. Therefore, we further test models that
have been pretrained on S1S2-Water and fine-tune them on
S1S2-Flood.

IV. RESULTS

Table II shows results for different BMs. Models have been
trained for each sensor separately with all available image bands
and additional slope information. No DA has been performed
at this stage. It can be seen that the tested encoders have a
significant impact on the inference speed, with the more complex
models like ResNet-50 or EfficientNet-B4 having much lower
throughput compared to Mobilenet-V3 and EfficientNet-B0. In
terms of accuracy, however, the differences between tested BMs
are rather small. The Sentinel-1 models perform equally well,
with EfficientNet-B4 showing a marginally higher IoU across
all test images. Differences between models are slightly more
visible for Sentinel-2. In this case, EfficientNet-B0 performs
better than the other BMs. In general, we can observe higher
test scores for Sentinel-2 compared to Sentinel-1. This difference
between sensors is largely attributed to higher recall values for
Sentinel-2. Sentinel-1 models, therefore, seem to miss more
water pixels and hence produce large amounts of false negatives.
Considering throughput and test scores as equally weighted

TABLE IV
RESULTS FOR DIFFERENT SENTINEL-2 IBS AND ADDITIONAL SLOPE

INFORMATION

decision criterions, we select EfficientNet-B0 as the preferred
BM for further experiments.

Fig. 5 compares the BMs individually for each test scene.
Larger variance across scenes can be observed for Sentinel-1
compared to Sentinel-2. While the variance of IoU values for
different models within scenes is generally relatively small, a few
scenes seem to dominate the overall metrics. Fig. 6 shows two
examples of scenes with larger discrepancies between different
models. Sentinel-1 scene 88 depicts an arid landscape with large
patches of bare soil and sand (pre-dominant landcover type
“bare areas”). The more complex models (BM-0 and BM-3)
show better performance in this setting (0.901 IoU for BM-0
and 0.913 IoU for BM-3), which is particularly challenging for
water detection in SAR images, compared to BM-1 and BM-2
(0.878 IoU for BM-1 and 0.851 IoU for BM-2). Similarly, the
complex water situation in scene 89 (predominant landcover
type “water bodies”) with several shallow sandbanks and par-
tially high turbidity seems to strongly influence the performance
of the Sentinel-2 BMs. Here, BM-0 and BM-2 show better
performance (0.806 IoU for BM-0 and 0.872 IoU for BM-2)
compared to BM-1 and BM-3 (0.409 IoU for BM-1 and 0.537
IoU for BM-3). The overall performance on this scene, however,
leaves room for improvement.

Tables III and IV show the influence of different IBs and
additional slope information on the performance of the selected
BM BM-2 (U-Net with EfficientNet-B0 encoder). For Sentinel-1
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Fig. 5. Comparison of BMs for each test scene.

Fig. 6. Comparison of BM predictions for selected test scenes. Each scene covers an area of 100 km × 100 km.

(see Table III), it can be seen that VH polarization is supe-
rior to VV polarization in discriminating water bodies from
the background. A combination of VV and VH polarizations
can further improve the test scores of the water segmentation
by a large margin. A similar improvement is achieved when
slope information is added to the input feature space. The main
contribution to the overall gain in IoU is attributed to Prec. The
additional IBs seem to support the reduction of false positives.

The major contribution to test score improvement in Sentinel-
2 images can be explained by adding the NIR spectral band.
Compared to using R-G-B bands only, we can achieve an im-
provement of 0.089 IoU. SWIR bands do not improve the overall
test scores, while slope information does. The SWIR bands even
seem to have a negative effect on a few scenes (see Fig. 7). In
particular, aforementioned Sentinel-2 scene 89 seems to benefit
from removing the SWIR bands from the input feature space.

Contrary to Sentinel-1, we can observe that by adding additional
IBs the recall improves while precision stays relatively stable.
This indicates that NIR spectral band and slope information
mainly contribute to reducing false negatives.

Table V summarizes the results for different DA techniques
using the best-performing model setups from previous exper-
iments (U-Net with EfficientNet-B0 encoder for both sensors
with IB-3 for Sentinel-1 and IB-6 for Sentinel-2). While aug-
mentation during training slightly improves IoU for Sentinel-2,
no improvements can be observed for Sentinel-1. The best results
are achieved for DA-4, which combines several augmentations
(left-right flip, scale and crop, brightness, and contrast). Test-
time augmentation (DA-8) does not improve results. Since every
image is augmented and predicted multiple times before the final
prediction can be assigned, the inference times of this approach
are longer compared to train-time augmentation.
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Fig. 7. Comparison of models with different IBs and additional slope information for each test scene.

TABLE V
RESULTS FOR DIFFERENT DA TECHNIQUES

Table VI shows the results for model transfer between normal
and flood water scenes. In this experiment, we compare three dif-
ferent training scenarios. Directly applying the sensor-specific
models that have been trained solely on normal water (S1S2-
Water) to the test images of our independent flood water dataset
(S1S2-Flood) produces reasonable results with IoU of 0.752 for
Sentinel-1 and 0.816 for Sentinel-2 transfer model (TM-0). In
comparison to training and testing on S1S2-Water, however, we
can observe a clear drop in test scores for Sentinel-1 (-0.086
difference in IoU) and Sentinel-2 (-0.110 difference in IoU).
The largest influence on the performance loss for both sensors

can be attributed to lower recall values, which indicates that the
models trained on S1S2-Water tend to under-detect flood water.
Training on S1S2-Water with additional flood scenes for training
and validation splits, we can achieve slightly better results in
all test scenarios (TM-1). Improvements on the S1S2-Flood
test dataset are especially visible for Sentinel-2, for which we
can achieve an increase in IoU of 0.039 compared to training
on S1S2-Water only. We further test models that have been
pretrained on S1S2-Water and fine-tune them on S1S2-Flood
(TM-2). However, fine-tuning does not improve the performance
on any of the datasets and in this experimental setup training on
S1S2-Water with additional flood scenes is the preferred option
to gain models with better generalization ability.

Fig. 8 shows the results of the best-performing models (TM-
1) for Sentinel-1 and Sentinel-2 test images of S1S2-Water.
The models can produce highly accurate segmentation masks
that are, moreover, largely consistent between Sentinel-1 and
Sentinel-2 scenes for the same sample. Discrepancies between
sensors occur mainly over bare soil and sand, where the Sentinel-
1 model tends to overestimate water, while the Sentinel-2 model
predicts correctly no water (e.g., sceneid 88). Moreover, water
with partial vegetation cover (e.g., sceneid 29) and narrow rivers
(e.g., sceneid 23) are better segmented in Sentinel-2 than in
Sentinel-1. Wind-induced roughening effects over large open
water bodies are known to negatively impact on the detection
of water in SAR images as they prevent specular reflection [1].
While our model seems to be able to deal well with such effects
over inland water bodies, we could still observe related false
negatives in a few samples over the open ocean (e.g., sceneid
89). Other discrepancies are likely caused by the difference in
acquisition dates for some of the samples that depict highly
dynamic surface water environments (e.g., sceneid 75 with 3
days between acquisitions).

Fig. 9 shows examples of the best-performing models (TM-1)
for Sentinel-1 and Sentinel-2 images tested on S1S2-Flood



1094 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 8. Examples of best-performing models (TM-1) for Sentinel-1 and Sentinel-2 on test images of S1S2-water.

Fig. 9. Examples of best-performing models (TM-1) for Sentinel-1 and Sentinel-2 on test images of S1S2-flood.
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TABLE VI
RESULTS FOR MODEL TRANSFER BETWEEN NORMAL AND FLOOD WATER SCENES

Fig. 10. Results of best-performing models (TM-1) for Sentinel-1 and Sentinel-2 on test images of S1S2-water and S1S2-flood grouped by predominant landcover.

samples. The flood scene over Thessaloniki, Greece (sceneid
1) shows generally good overlap between water segmentations
derived from Sentinel-1 and Sentinel-2. Minor discrepancies
occur along narrow water channels where Sentinel-2 segments
the existing water extent more accurately. However, also false
positives can be observed in the Sentinel-2 water masks; these
occur especially in areas where cloud-shadow has not been fully
detected by the cloud and cloud-shadow mask algorithm as
part of the valid mask [2]. Similar to our observations on the
S1S2-Water test dataset, some discrepancies between sensors are
the result of a highly dynamic surface water situation coupled
with a time difference between acquisition dates. In the case of
floods, even shorter differences between acquisitions can cause
large variations in the water extent and thus induce discrepancies
in segmentation masks between Sentinel-1 and Sentinel-2 (e.g.,
sceneids 3 and 6 with 1 day between acquisitions).

Fig. 10 depicts the results of the best-performing models
(TM-1) for Sentinel-1 and Sentinel-2 on test images of S1S2-
Water and S1S2-Flood grouped by predominant landcover. With
IoU values above 0.8 Sentinel-2 generally performs better than
Sentinel-1 across all landcover types. The Sentinel-1 model
seems to have issues in scenes that are dominated by “sparse veg-
etation,” “tree cover, needleleaved, deciduous, closed to open,”
and “grassland”. A large spread in IoU values can, moreover,
be observed in “cropland rainfed” scenes. Relative to the other
classes, “Grassland” and “cropland rainfed” scenes also show
inferior performance with the Sentinel-2 model.

Table VII shows the performance of the TM-1 model on
the test splits of Sen1Floods11 (Sentinel-1) and WorldFloods
(Sentinel-2) datasets. A performance decrease on both datasets
can be observed when compared to the results on our S1S2-Flood
dataset. This is largely attributed to lower recall values, which
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TABLE VII
RESULTS OF BEST-PERFORMING MODELS (TM-1) ON SEN1FLOODS11 AND

WORLDFLOODS DATASETS

indicates that our model tends to predict less water compared to
the reference annotations of Sen1Floods11 and WorldFloods.

V. DISCUSSION

This study introduces a new global reference dataset for se-
mantic segmentation of surface water bodies in single-temporal
Sentinel-1 and Sentinel-2 satellite images. Our S1S2-Water
dataset aims to overcome the observed lack of appropriate re-
mote sensing benchmark datasets for the segmentation of water
bodies in multimodal satellite images. It distinguishes itself from
similar available datasets in that it follows recent guidelines for
the development of remote sensing benchmark datasets [28]
and specifically considers sample diversity and richness by
applying a dedicated stratified sampling scheme. Moreover, the
dataset aims to be scalable and builds on recent cloud-optimized
open-source geospatial standards, namely STAC for metadata
handling and COG as a raster data format. Compared to other
remote sensing reference datasets, we leave critical choices
about data preparation (e.g., tile size, band selection) up to the
user and provide a Python package to individually prepare data
for training, validation, and test of machine learning models.

Further differences with respect to the closely related World-
Floods [16], OMBRIA [17], Sen1Floods11 [14], and Sen12ms
[22] datasets are that we specifically adjust annotations between
multiple satellite acquisitions of a sample and base the anno-
tation procedure directly on the underlying images rather than
independent sources. Spatial and temporal differences between
annotation source and reference image can introduce significant
degrees of label noise into a dataset. While this can be intended
to increase training data with minimal annotation effort and even
may support the generalization ability of a trained model [40], it
is not acceptable for a representative independent test split used
for benchmarking of models. Our experiments highlight the im-
portance of the spatio-temporal alignment between images and
annotation masks, especially in highly dynamic flood situations
(see Fig. 9).

Image annotation is time- and resource-consuming even
with the semiautomated procedure used in this study. Novel
approaches to semiautomated labeling of satellite images as
proposed by Geiss et al. [41] could potentially provide more
accurate initial segmentation masks and hence reduce the man-
ual interventions required to adjust them during postprocessing.
Quality checks by several independent operators are, however,
essential for producing accurate annotations and more efforts
should be spent on providing guidelines and standards for quality
control of remote sensing benchmark datasets.

On the basis of S1S2-Water, we provide a performance evalua-
tion of CNNs and assess the influence of image bands, elevation
features (slope), and DA on the segmentation performance for
Sentinel-1 and Sentinel-2 images. On the basis of a U-Net de-
coder, we compared different encoders with varying complexity
to identify a suitable BM. While the differences in test scores
of the trained BMs are small, differences in model throughput
dominate the final decision for a U-Net with Efficientnet-B0
encoder (see Table II). While the average IoU values across all
scenes for the tested BMs are high (IoU>= 0.842 for Sentinel-1
and IoU>= 0.911 for Sentinel-2), test scores drop for single test
scenes reveal the need for further model improvements by means
of data-focused hyperparameters such as input image bands and
augmentations (see Fig. 5).

Regarding the influence of input image bands, our results for
Sentinel-1 confirm the findings of Liu et al. [12] and Helleis
et al. [18] that jointly using VV and VH polarizations can
significantly improve the water segmentation compared to using
single polarized data. We observe an improvement of 0.095
IoU compared to using VV polarization alone and 0.048 IoU
compared to using VH polarization alone (see Table III). In
our experimental setup, VH polarization seems to have a larger
positive impact on the test scores of the water segmentation than
VV polarization. This contradicts with several studies that focus
solely on VV polarization for water segmentation [33], [42].
These studies show that by using solely VV polarization land
and water can be distinguished very well. While this is true in
particular for smaller water bodies, VV polarization is sensitive
to wind-induced roughening effects and hence prone to cause
false-negatives over larger open water bodies. VH polarization
on the contrary is known to be less sensitive to roughening
effects and can aid in reducing false-negatives in such situations.
Therefore, our results also underline the theoretical assumption
that a combination of both polarizations works best in practice.

For Sentinel-2, combining the NIR spectral band with the
R-G-B bands provided an improvement of 0.089 IoU compared
to using R-G-B bands alone (see Table IV). Adding SWIR bands
improved the results only marginally. Theoretically, SWIR
bands should be less impacted by haze and thin cloud cover as
the longer wavelengths show better atmospheric transparency,
which may aid in the distinction between landcover and at-
mospheric effects. The added value of SWIR bands is also
confirmed by previous studies of the authors [2], [11]. A possible
explanation for the different findings in this study could be that
S1S2-Water does not contain images with cloud-cover >5%.
Therefore, the benefits of enhanced atmospheric transparency
of the SWIR spectral bands are likely not visible in the reported
results. Expanding the reference dataset with atmospherically
more challenging scenes could provide further insights into
this topic and help to better align trained models to real-world
applications. Adding additional slope information from an in-
dependent DEM could further improve the test scores of water
segmentations for both Sentinel-1 (improvement of 0.072 IoU)
and Sentinel-2 (improvement of 0.023 IoU) compared to the best
image band combinations (see Tables III and IV).

Various scene and image properties, such as the characteristics
of the sensor being used, atmospheric conditions, landcover of
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the background class, and appearance of the water class, can
affect the target domain. Despite our aim to cover such variations
as part of the reference dataset, we decided to test different DA
methods (see Table V). Since augmentation increases the train-
ing sample size and allows it to cover a larger range of conditions
that may occur during inference, we would expect enhanced
performance on the test dataset. However, compared to using
no DA (DA-0), random left-right flipping (DA-1), scaling, and
cropping (DA-2) as well as brightness and contrast augmentation
(DA-3) lead to slightly worse test scores if performed separately.
Only when the single augmentations are performed together
(DA-4), we can observe an increase in test scores by 0.017 IoU
for Sentinel-2. This observation is in line with the findings of
a previous study by Wieland and Martinis [11] and provides
an indication that augmentation can at least partially help to
tackle variations related to atmospheric effects in L1C data
that is being used in this study and that is not atmospherically
corrected. A comparison with atmospherically corrected L2A
data would be an interesting topic for a follow-up study in this
direction. While test scores for Sentinel-2 improved by applying
DA as of DA-4, the ones for Sentinel-1 remained unchanged. As
stated by Zhu et al. [39] and confirmed by Helleis et al. [18],
geometric modifications of SAR images like those provided by
Sentinel-1 need to be handled carefully since unrealistic image
characteristics are easily introduced. Due to this reason, we did
not apply rotation augmentation in our experiments and applied
scaling only within a very small range. More research into
SAR-specific augmentations (e.g., speckle noise augmentation)
would be needed to account for more complex variations in
the target domain and to investigate their potential for model
improvement.

S1S2-Water contains samples that depict normal water sit-
uations. It does not specifically contain flood water samples.
Nonetheless, we evaluate how well models trained on S1S2-
Water can be transferred to flood water scenes (see Table VI).
Similar to the findings of Bonafilia et al. [14], our experiments
confirm that adding flood water samples to the training data
supports model transfer and increases test scores on the in-
dependent S1S2-Flood dataset. Performance gains compared
to using a model trained exclusively on S1S2-Water are very
small for Sentinel-1 images (improvement of 0.006 IoU) and
more substantial for Sentinel-2 images (improvement of 0.039
IoU). Training a model with a joint training dataset that con-
tains normal and flood water samples (TM-1) outperforms fine-
tuning a pre-trained model on S1S2-Water with additional flood
samples (TM-2) on Sentinel-1. On Sentinel-2 images both ap-
proaches show the same improvement of test scores. James et al.
[9] analyzed a similar model transfer for water segmentation
in Sentinel-2 images. Even though their transfer experiment
targeted geographical differences, their results emphasize the
added value of retraining with limited samples of the target
domain.

In summary, our results illustrate that more efforts should be
spent on preparing high-quality reference data and dedicating
more research towards data preparation and its incremental
improvement. Finally, modifications to the training dataset (see
Tables III–VI) enabled larger test score improvements compared

to changes in the network architecture (see Table II). Known
limitations of the current version of the S1S2-Water dataset
include limited availability of samples with complicated atmo-
spheric conditions (e.g., dense cloud cover, haze or smoke),
focus on normal water bodies (e.g., flood water bodies are
not specifically considered), and underrepresentation of some
predominant landcover classes for the background class (e.g.,
urban and bare areas, snow/ice). Based on these limitations, we
can identify the following directions for future improvements of
S1S2-Water. More samples with clouds and cloud shadows for
Sentinel-2 are required to better distinguish between water and
shadows. Adding task-specific samples could further improve
segmentation accuracy for specific applications like flood map-
ping. A larger variety of landcover classes for the background
class should be considered. Given the provided data format and
structure as well as the fact that all input data sources that we used
to compile S1S2-Water are freely available, it should be possible
to expand the dataset accordingly in a community-effort.

VI. CONCLUSION

In this study, we introduced S1S2-Water—a new reference
dataset for the segmentation of surface water bodies in single-
tempo Sentinel-1 and Sentinel-2 satellite images. The dataset
aims to follow recent guidelines for the construction of remote
sensing benchmark datasets by applying a stratified random
sampling and a fixed division into training, validation, and
test splits to ensure the representativeness of samples as well
as transparency and repeatability of experiments. The dataset
follows Open Source standards regarding data formats and
structure to support interoperability and scalability. It con-
sists of 65 samples with size 100 km × 100 km that are
spread across 29 countries and cover an approximate area of
650 000 km2.

Based on S1S2-Water, we compared the performance of sev-
eral CNN architectures and encoders (U-Net with ResNet-50,
Mobilenet-V3, EfficientNet-B0, and EfficientNet-B4) to seg-
ment surface water in SAR and multispectral satellite images.
Across several experiments, we identified the superior perfor-
mance of U-Net Efficientnet-B0 models, which show good
generalization ability across varying environmental conditions
and produce high accuracies at high throughput in both SAR
and multispectral images. In this context, not only the choice
of model architecture and encoder is relevant, but also the
sensor-specific input feature space and the way training data
are augmented.

By successfully applying the model to six flood events (S1S2-
Flood) and independent test splits of other benchmark datasets
(Sen1Floods11 and WorldFloods), we could highlight the use-
fulness of this work for rapid mapping activities to support
situational awareness in emergency response. This underlines
the findings of previous work of the authors that it is possible
to train a model that is able to cope with highly diverse data
availability scenarios in disaster situations [43]. However, more
work is required to further adapt the dataset and model training
to specific scene properties that have caused misclassifications
in the test images. These include for example adding additional
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samples for underrepresented landcover (background) classes
like “bare areas” or “snow / ice”. To this regard, the S1S2-Water
dataset should not be considered a static product. It has been
designed to support incremental updates as part of a community
effort.

The trained models are deployed in systematic water and flood
monitoring services based on Sentinel-1 [18] and Sentinel-2
[11]. Ongoing and future works that are based on the S1S2-
Water dataset include large-scale water monitoring studies [44]
and probabilistic SAR-based flood segmentation with adapted
Bayesian CNNs [45]. We hope that the S1S2-Water dataset will
stimulate further research and development activities across
various application domains and will support transparent and
reproducible research.
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