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Feature Enhancement and Alignment for Oriented
Object Detection

Xu Xie , Zhi-Hui You , Si-Bao Chen , Member, IEEE, Li-Li Huang , Jin Tang , and Bin Luo

Abstract—Over the last few years, developments in fields such
as aviation and remote sensing have drawn increasing attention to
the detection of rotated objects. Unlike general object detection,
rotated object detection requires overcoming certain challenges,
such as detecting objects with different directions and high aspect
ratios. Recently proposed rotated object detectors have achieved
good results, but most of them rely on hand-designed anchors,
which require manual adjustment of the anchors settings in differ-
ent scenarios. On the contrary, this article presents a method called
FEADet, an anchor-free detector that utilizes feature enhancement
and alignment to achieve competitive performance, without the use
of anchors. Specifically, in order to better fuse features across dif-
ferent layers, we design an attention feature fusion (AAF) module to
reduce the aliasing effect produced by the fusion of different layers.
To deal with feature misalignment in detecting objects with orien-
tation, we propose an adaptive alignconv (AAC) module, which
is implemented by the constrained deformable convolution and
align convolution. The ACC module can efficiently extract object
features according to the decoded boxes and predicted constrained
offsets. On the two benchmark datasets, dataset for object detection
in aerial images (DOTA) and high resolution ship collection 2016
(HRSC2016), a comprehensive evaluation of our method has been
conducted to demonstrate the effectiveness of these method in
comparison with state-of-the-art methods.

Index Terms—Deep learning, feature alignment, feature
enhancement, oriented object detection, remote sensing images.

I. INTRODUCTION

OBJECT detection, which is one of the most fundamental
tasks in the field of computer vision, requires identifying

the location and class of the region of interest. Recently, due
to the advancement of remote sensing technology, researchers
have become more focused on the detection of aerial objects,
which is important in both military and civilian applications,
including military reconnaissance, environmental monitoring,
disaster relief, and others.

With the advancement of deep learning, various general de-
tectors [3], [5], [12] have been introduced to achieve competitive
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performance, thereby promoting the development of detection
technology for rotating objects. Based on whether or not an-
chors are used, these detectors can be grouped into two types.
Anchor-based detectors [9], [13], [24] use a lot of anchors placed
on the feature map and need to decode their offsets to get the
final predicted boxes. For different scenarios, we need to artifi-
cially design the size of anchors. On the contrary, anchor-free
detectors [3], [14], [23] can obtain the prediction boxes without
using anchors. While anchor-free methods may not perform as
well as advanced anchor-based methods in aerial detection, they
offer greater flexibility and do not require manual design of
anchor parameters. With this article, our goal is to improve the
anchor-free network’s performance while still maintaining its
simplicity.

In contrast to object detection in natural scenes, detecting
objects in aerial environments requires overcoming certain chal-
lenges. As a result of the top-down perspective, aerial environ-
ments contain numerous objects with differing scales, aspect
ratios, and angles. In order to overcome these challenges, our
primary research focus is on improving the extraction of seman-
tic features from objects. In this article, we suggest the feature
enhancement and alignment detector (FEADet), a one-stage
anchor-free detector.

First, detectors are able to predict objects of different sizes
by using different layers of feature maps. FPN [4] improves
low-level semantic information by performing a straightforward
summing of high and low-level information. We notice that
simple summation may cause confusion about the low-level
feature map information. To make feature fusion more effective,
we propose an attention feature fusion (AFF) module, which
uses attention mechanism to guide high-level feature maps to
learn features needed by low-level feature maps, so as to enhance
the semantic information of low-level feature maps and reduce
the aliasing effect caused by the high-level feature maps.

Second, we observe that the standard convolution does not ef-
fectively align the rotated objects. In an attempt to overcome this
issue, we introduce an adaptive alignment convolution (AAC)
module that can adaptively learn the sampling point positions
using refinement box information, resulting in more accurate
alignment of object features.

We assess our approach on the widely used high resolution
ship collection 2016 (HRSC2016) [25] and dataset for object
detection in aerial images (DOTA) [28] benchmark datasets and
compare it with state-of-the-art methods. The results show that
our approach achieves competitive results.

In summary, our study is characterized by two main contri-
butions, which are summarized in the following two ways.
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1) To improve the feature extraction of objects, we introduce
the AFF module, which directs the high-level feature maps
to learn the features necessary for the low-level feature
maps to increase the semantic information of the latter.

2) For the feature misalignment problem, we design an AAC
module that is able to adaptively learn the sampling points
with the supervision of the refinement boxes, thus extract-
ing the required features for objects.

II. RELATED WORK

A. Object Detection in Aerial Images

With the development of deep learning, numerous advanced
detectors have emerged and achieved remarkable performance
in aerial images. Two major categories can be distinguished
between these detectors: anchor-based and anchor-free. A de-
tector based on anchors starts by placing many anchors on the
feature map, followed by assigning samples to help positive
anchors to learn the ground truth boxes. RRPN [11] builds upon
RPN [12] by introducing anchors with angles and uses rotated
ROI pooling to extract features of objects with orientation. RoI
transformer [13] reduces computational overhead by learning
rotated anchors through a fully connected layer during the RPN
phase. S2ANet [9] employs ARN to produce more accurate
anchors and aligns the features to predict objects with high accu-
racy. Anchor-free detectors, in contrast to anchor-based ones, do
not rely on predefined anchors but rather predict objects directly.
FCOSR [14] adds the angle parameter to predict rotated objects
based on FCOS [3]. BBAVectors [16] extends the CenterNet [26]
with a set of bounding vectors to predict rotated objects. Oriented
RepPoints [43] uses a set of points to predict rotated objects.

B. Feature Fusion and Attention Mechanism

To predict objects of different scales, it is common practice
to use features from different layers. Faster RCNN [12] uses
a single feature map to predict objects. SSD [17] predicts ob-
jects using feature maps of different layers. FPN [4] utilizes a
top-down pathway with lateral connections for feature fusion,
enhancing the information in the lower feature map. PANET [4]
enhances the FPN structure by introducing a bottom-up fusion
path, resulting in faster information transfer. LMO-YOLO [45]
proposes a multiple linear rescaling scheme and introduces
dilated convolutions to maintain a large receptive field in the
network, followed by multiscale feature fusion, enabling the
network to learn richer features. In recent years, attention mech-
anisms have made rapid progress in the field of deep learning.
SENet [20] introduces a channel attention module that captures
the interdependence among feature channels. CBAM [21] pro-
poses a combined spatial and channel attention that learns direct
correlations of features from global dimensions. SOT-Net [46]
proposes a cross-attention module to enhance the representa-
tion of semantic information. In object detection, incorporating
attention mechanisms into convolutional neural networks fre-
quently results in the extraction of more comprehensive features.
UEFPN [22] proposes a channel attention based CAF module for
multiscale feature fusion. IAANet [47] proposes a coarse-to-fine

interior attention-aware network, modeling attention between
pixels in the coarse object region to obtain rich perceptual in-
formation. In this article, we introduce an AFF module that uses
spatial attention on shallow feature maps and channel attention
on deep feature maps to learn the features to be fused, reducing
the confusion effect caused by fusion.

C. Feature Alignment in Oriented Object Detection

Feature alignment pertains to the alignment of convolutional
features with RoIs or anchor boxes, and various approaches have
been suggested to alleviate the issue of feature misalignment.
In the oriented object detection field, two-stage detectors often
use rotated RoIPooling [11] or rotated RoIAlign [11] for fea-
ture alignment. For single-stage detectors, R3Det [24] obtains
information of the refined anchors by feature interpolation,
which achieves feature alignment. OSSDet [15] has proposed
the AFAM module to reassign the positions and weights of
sampling points during the refinement stage for better accuracy.
S2ANet [9] designs a novel feature alignment method called
alignconv. It fixedly extracts features of nine points of refined
anchors for better feature alignment. FSDet [23] employs a
multiheaded attention strategy to extract object-aligned features.
Oriented RepPoints [43] proposes an adaptive sampling method
based on quality evaluation and sample allocation strategies
to select sampling points and positions with high quality. TS-
Conv [44] proposes taskwise sampling convolutions that can
adaptively sample task-aware features from the respective sen-
sitive regions. Different from the methods mentioned above, our
proposed AAC module can dynamically learn the positions of
sampling points with the assistance of a refined box information
to achieve better feature alignment.

III. PROPOSED METHOD

Here, we provide a comprehensive overview of our proposed
FEADet. As described Fig. 1, the architecture of FEADet is
founded on the one-stage anchor-free detector, FCOS [3].

A. Baseline Network

The baseline model we adopt is a one-stage anchor-free
detector, which is an extension of the FCOS [3] detector in the
MMRotate [2] toolbox. The model consists of the FPN [4] as the
backbone for multiscale feature extraction and two task-specific
subnetworks. Both subnetworks consist of many convolutional
layers stacked on each other and are fully convolutional. The
regression subnetwork forecasts the separation between each
location to the bounding box, while the classification subnetwork
predicts the object class.

It is worth noting that FCOS is designed for generic object
detection. To enable the detection of arbitrarily oriented objects
in aerial images, we introduce a new parameter θ, which predicts
the angle. Fig. 2 shows the relationship between the regression
results {(l, t, r, b, θ)} and the rotated object boxes. Our method
adopts the long-edge definition approach, where l, t, r, and b,
respectively, denote the distances from the anchor to the left, top,
right, and bottom edges of the ground truth box, and parameter
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Fig. 1. Structure of the suggested FEADet. It is constructed based on the FPN, and incorporates the AFF module for feature enhancement as well as the AAC
module for obtaining aligned features. The Conv represents a 1 × 1 convolutional layer.

Fig. 2. Two categories of bounding boxes. (a) Horizontal bounding box, given
by {(l, t, r, b)}, specifies the distance from the location to the left, top, right, and
bottom sides of the ground truth box. (b) Oriented bounding box, given by
{(l, t, r, b, θ)}, specifies the distance from the location to the left, top, right, and
bottom sides of the ground truth box, along with the orientation angle θ. The
angle θ is the angle between the X-axis direction and the oriented direction,
where θ is within the range of θ ∈ (−π

2 ,
π
2 ].

θ represents the angle formed between the X-axis and the width
of the bounding box (w).

We denote the location (x, y) on the input image that corre-
sponds to each location (a, b) on the feature map Oi as follows:

x =
⌊s
2

⌋
+ a · s

y =
⌊s
2

⌋
+ b · s (1)

where s represents the stride of feature level i. We leverage five
levels of feature maps, specifically {O3, O4, O5, O6, O7}. Since
we extract multiscale feature maps from both ResNet [6] and
FPN [4], feature levels O3, O4, O5, O6, and O7 have strides of 8,
16, 32, 64, and 128, respectively. In aerial image object detection,
the ground truth is commonly represented as {(x, y, w, h, θ)},
where (x, y) is the center of the object, while w, h, and θ signify
the width, height, and angle of the oriented bounding box (OBB).
Therefore, when computing the loss in the next step, we decode

the predicted regression vector values {(l, t, r, b, θ)} as follows:

x∗ = x+
b− t

2
sin θ +

r − l

2
cos θ

y∗ = y +
b− t

2
cos θ +

r − l

2
sin θ

w∗ = l + r, h∗ = t+ b, θ∗ = θ. (2)

In addition, different from the original FCOS [3], we replace
the classification and quality branches with varifocal loss [7]
and used ATSS [5] sample assignment as our baseline. With
these definitions described above, the multitask loss function
for training the entire baseline network is expressed as

L =
1

Npos

(∑
i

Lc(ĉi, c
∗
i ) +

∑
i

[l∗i ≥ 1]Lr(d̂i, d
∗
i )

)
(3)

where i denotes the index of locations across all feature map
layers. The classification-IOU combination output and target
values for location i are represented by ĉi and c∗i , respectively.Lc

adopts varifocal [7] classification loss. The decoded localization
output for location d̂i is represented by m, which is obtained
using (2), while d∗i denotes the regression label for that same
location. When location i is assigned positive sample, the inver-
sion bracket indicator function [l∗i ≥ 1] outputs 1, otherwise 0.
The value of Lr corresponds to the regression loss of positive
samples, as defined by

Lr(d̂, d
∗)) = Lhbb((x̂, ŷ, ŵ, ĥ), (x

∗, y∗, w∗, h∗))

+ λ1Lθ(θ̂, θ
∗). (4)

Lhbb is the loss function for the horizontal bounding box,
computed by comparing the predicted OBB with the ground-
truth box using the GIoU [8] loss. Due to the periodicity
of angles can lead to sudden changes in loss, we adopt the
classification method CSL [1] to predict angles. We set 180
categories, representing 180 angles. Lθ adopts smooth focal
loss. Besides, in our experiments, we assign a value of 1 to the
hyper-parameter λ1.
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TABLE I
COMPARISON OF OUR FEADET WITH STATE-OF-THE-ART METHODS ON DOTA DATASET

Fig. 3. Detailed attention feature fusion (AFF) module.

B. Attention Feature Fusion Module

In aerial situations, detecting objects with arbitrary orientation
typically requires more discriminative and sensitive features
than natural images, as these features need to contain informa-
tion about angles as well as scales. The amount of information
that can be obtained from a single feature map is limited. Broadly
speaking, shallow feature maps exhibit greater resolution but
lesser semantic information, while deep feature maps have re-
duced resolution but more comprehensive semantic information.
FPN [4] employs summation to fuse shallow and deep feature
maps, resulting in highly semantic features. Since the low-level
feature map detects small objects and the high-level feature map
is sensitive to large objects, directly adding adjacent feature
maps can cause interference in the lower-level feature maps and
introduce unwanted information. To more effectively address
the connection between deep features and shallow features and
transfer deep features to shallow levels, we have developed a
feature fusion module, the AFF module, as illustrated in Fig. 3.

Spatial and channel inconsistencies may arise between adja-
cent feature maps. To mitigate the spatial inconsistency, spatial
attention is employed to guide the deep feature maps using
the shallow ones. For channel inconsistency, we use channel
attention to learn the corresponding weights. The calculation

equation can be described as follows:

Ôi = Mc (Ms(Pi)⊗ Up(Oi+1))⊗ Up(Oi+1) +Oi (5)

where Oi and Oi+1 represent deep and shallow feature map,
respectively. ⊗ denotes tensor product and Up indicates upsam-
pling. First, we extract the spatial attention map Ms from the
deep feature map. The objective of spatial attention is to produce
a weight map of the foreground based on the deep feature map.
Then, we use the channel attention mapMc to extract the channel
relations of the feature map. The formula is given as follows:

Ms(x) = σ
(
c7×7 (xmpac)

)
Mc(x) = σ (K1 (K0 (xgap))) (6)

here, xgap and xmpac are obtained from the input feature x
through global average and max pooling operations along the
channel and spatial dimensions, respectively. K0 is the full
connection layer for reducing dimensions. W0 ∈ RC×C/r and
K1 ∈ RC/r×C are fully connected layers for dimension reduc-
tion and dimension increase, respectively. The hyper-parameter
r defaults to 4. c7×7 indicates convolution of 7 × 7 filters. σ is
the sigmoid function.

According to (5), the AAF module selects information from
high-level feature maps through the attention mechanism to
provide valuable information to shallow feature maps, thereby
enhancing the semantic information of the shallow feature maps.
So it is an efficient and flexible module.

C. Adaptive AlignConv Module

AlignConv [9] cannot dynamically learn the position of fea-
ture alignment. When the object bounding box is determined, the
position of feature alignment is also determined. Thus, in order to
mitigate this phenomenon, we suggest an AAC module that can
learn the feature extraction location under certain constraints,
thereby better extracting the features of the object.

Fig. 4 displays the sampling points of various methods using
a 3 × 3 kernel at a certain place on a feature map. It can
be observed that the stationary sampling position utilized in
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Fig. 4. Visual comparison of 3 × 3 convolution kernel-based methods. (a) represents standard convolution with fixed sampling locations (indicated by green
dots). (b) illustrates deformable convolution with learnable sampling locations (indicated by red dots). (c) is AlignConv with nine fixed sampling points of predicted
box (in blue dots). (d) is ours adaptive AlignConv with nine learnable sampling points of predicted box (in red dots). (a) Standard convolution. (b) Deformable
convolution. (c) AlignConv. (d) Adaptive AlignConv.

Fig. 5. Illustration of the adaptive AlignConv (AAC) module.

standard convolution is not effective in representing the object.
This is because the standard convolution sample point position is
fixed, not according to the shape of the object to change position.
The deformable convolution [10] does not represent the object
well due to the absence of a supervised signal and the learned
position. AlignConv [9] uses rough prediction bounding boxes to
extract the features at fixed locations, thus effectively extracting
the key features of the object. Since the distribution of objects
can differ within an image, it is necessary to dynamically adjust
the extracted positions to adapt to different objects’ distributions.
To dynamically extract the features of the object, we design an
AAC module, as shown in Fig. 5. The computation formula can
be expressed as

Y (p) =
∑
r∈R

W (r) ·X(p+ r + o+ d) (7)

where p is the location on the feature map. Sampling is carried
out using a regular grid O over the input feature map X , with Y
denoting the weighted sum of sampled values by W . The grid
O defines a 3 × 3 kernel with dilation 1, and is composed of
the points {(−1,−1), (−1, 0), . . ., (0, 1), (1, 1)}. o is the offset
between the sampling point of the predicted rotated objects and
the standard convolution at that location, as shown in Fig. 5. d
is the bias value predicted for that position by a 3 × 3 kernel
with dilation 1. To make the predicted offset more accurate, we

use the predicted box to give it a certain supervisory signal. The
offset loss function can be defined as

maskd = sgn

(
abs (dx, dy)− 1

k
(w, h)

)

L(d)o =

(
abs (dx, dy)− 1

k
(w, h)

)
∗maskd (8)

where h and w indicate the height and width of the OBB,
respectively. abs is the absolute value function. sgn is a symbolic
function. The hyper-parameter k defaults to 3.

As shown in Fig. 4, our AAC module is capable of more effi-
cient object feature extraction by utilizing aligned convolution
as a foundation. It retains both the supervised signal of aligned
convolution and the flexibility of deformable convolution, mak-
ing it an efficient and flexible module.

D. Detection Model

After adding the aforementioned two modules to the FCOS [3]
baseline model, the FEADet framework depicted in Fig. 1 is
obtained. Subsequently, the loss function for the FEADet model
is formulated as follows:

L =
1

Npos

∑
i

Lc(ĉi, c
∗
i )

+
1

Npos

∑
i

[l∗i ≥ 1](λ2Lr(d̂i, d
∗
i ) + λ3Lo(k̂i, k

∗
i ))

+
λ4

Npos

∑
i

[l∗i ≥ 1](Lr(di, d
∗
i )) (9)

where Lc, Lr, and Lo are classification, regression, and offset
loss, respectively. The hyper-parameters λ2, λ3, and λ4 are set
to 1. The rest of the settings are the same as in (5).

IV. EXPERIMENTS

A. Datasets

We verify the effectiveness of our method by testing it
on two widely adapted benchmark datasets: DOTA [28] and
HRSC2016 [25].
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Fig. 6. Visual comparison of our method with FPN. (a) Original images to be
detected. (b) Visual results of FPN on O2 level feature map. (c) Visual results
of FPN+AFF on O2 level feature map. (a) Images. (b) FPN. (c) FPN+AFF.

DOTA is a challenging benchmark and one of the most widely
used datasets in the field of horizontal and directional object
detection in aerial images. Our primary goal is to detect objects
by the use of oriented bounding boxes. In the dataset, 15 common
object categories are represented, including swimming pools
(SP), baseball diamonds (BD), basketball courts (BC), soccer
fields (SBF), small vehicles (SV), roundabouts (RA), helicopters
(HC), bridges (BR), tennis courts (TC), storage tanks (ST),
ground field tracks (GTF), large vehicles (LV), planes (PL), ships
(SH), and harbors (HA). The dataset comprises 2806 images
with pixel dimensions ranging from 800 × 800 to 4000 × 4000,
consisting of a training set of 1,411 images, a validation set of
458 images, and a testing set of 937 images. All images are par-
titioned into subimages of 1024 × 1024 pixels, with a 200-pixel
overlap, for the purposes of training, validation, and testing.

HRSC2016 is a challenging remotely sensed data set to detect
ships of any orientation and high aspect ratio ships. The dataset
consists of a total of 1061 images, ranging from 300 by 300 pixels
up to 1500 by 900 pixels. The training images are 436, the
validation images are 181, and the testing images are 444. In
particular, we use the training and validation datasets to train
our models, and the test datasets to evaluate them. To ensure a
fair comparison, we resize all the pictures sent into the network
model to 800 × 800 pixels.

B. Implementation Details

We employee the MMRotate [2] toolbox for the development
of our oriented object detection model (FEADet). The model is
trained on an NVIDIA GeForce RTX 3080 GPU. Our batch size
is set to 2 and initial learning rate is 0.0025, but is decayed by a
factor of 10 at each time of decay of the learning rate. This model
is trained for 12 epochs on DOTA [28] with a learning rate decay
taking place at the 8th and 11th epochs. When incorporating
rotate data augmentation, we train the model for 36 epochs and

TABLE II
DETECTION RESULTS WITH DIFFERENT FUSION METHODS ON DOTA DATASET;

SA AND CA REFER TO SPATIAL ATTENTION AND CHANNEL ATTENTION,
RESPECTIVELY

Fig. 7. Visualization of convolutional positions in our AAC module.
(a) Original images to be detected. (b) ACC module visualization for the
classification head. (c) ACC module visualization for the regression head.
(a) Images. (b) Cls. (c) Reg.

decay the learning rate at the 24th and 33rd epochs. Specifically,
during the ablation experiments, we train the model on the
training set and evaluate it on the validation set. In contrast
to other state-of-the-art methods, we train the model on both
the training and validation sets and test it using the test set.
When training on HRSC2016 [25], we conduct 36 epochs, and
the learning rate decreases at the 24th and 33rd epochs. The
remaining settings are the same as those used for DOTA [28]. If
not specified, our settings are the same as MMRotate [2] settings.

C. Ablation Studies

In this subsection, we carry out ablation experiments on the
DOTA [28] and HRSC2016 [25] datasets to confirm the efficacy
of our proposed method.

1) Effectiveness of Attention Feature Fusion Module: The
outcomes of our experiments are shown in Table II. First, we
use FPN [4] as a feature fusion method, achieving 69.44%
accuracy. With the addition of the channel attention module,
mAP improves to 69.72%; with the addition of the spatial
attention module, mAP further improves to 69.77%. When both
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Fig. 8. Visual comparison of our FEADet with other advanced detectors on the DOTA dataset.

TABLE III
COMPARISON OF OUR ADAPTIVE ALIGNCONV WITH OTHER CONVOLUTION

METHODS ON DOTA DATASET

modules are added, mAP reaches 69.99%. This demonstrates
that the attention feature fusion module significantly enhances
the performance of the model. We visualized the extracted
features, as shown in Fig. 6. Compared with FPN, our AAF
module is able to better eliminate the aliasing effect caused by
high-level feature maps and extract richer semantic information.
This indicates that the AAF module can better capture the key
features of the object, thus improving the accuracy of object
detection.

2) Effectiveness of Adaptive AlignConv Module: To verify
its effectiveness, we compare the adaptive AlignConv with
other feature alignment approaches. The outcomes are shown in
Table III. The AlignConv approach outperforms the deformable
convolution and the standard convolution by achieving an mAP
of 70.28%. This is because AlignConv uses the predicted rough
boundary box as a prior knowledge to better extract the char-
acteristics of the object. Our adaptive alignment convolution
is superior to the alignment convolution, which can adaptively
learn the sampling position of features and achieve 70.59% mAP.
When adding offset loss to the learned offsets, mAP increases

TABLE IV
ABLATION STUDIES WITH DIFFERENT COMPONENTS ON DOTA DATASET

TABLE V
ABLATION STUDIES WITH DIFFERENT COMPONENTS ON HRSC2016 DATASET

to 70.74%, as it imposes constraints on the learned offsets and
constrains points far from the object. The visualization results
shown in Fig. 7 demonstrate that our method can combine
explicit and implicit learning to adaptively learn object features.
This means that our AAC module can better adapt to different
feature representations of objects, thereby improving detection
accuracy and robustness.

3) Effectiveness of Different Components: We perform com-
ponentwise experiments on DOTA [28] and HRSC2016 [25]
datasets to confirm the contribution of the proposed methods.
The results of the experiments are displayed in Tables IV
and V. On the DOTA dataset, the mAP of the baseline model
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Fig. 9. Some visual results of the DOTA dataset using our FEADet.

was 69.44%, increased to 69.99% after adding the feature en-
hancement module, and further increased to 70.74% after adding
the feature alignment module. Using both modules resulted
in an mAP of 71.05%. On the HRSC2016 dataset, the mAP
of the baseline model was 89.20%, increased to 89.70% after
adding the feature enhancement module, and further increased
to 90.10% after adding the feature alignment module. Using
both modules resulted in an mAP of 90.30%. These experimental
results indicate that the suggested AFF module and AAC module
do not conflict with each other, but instead work in synergy to
effectively enhance the performance of the model.

D. Comparisons With State-of-the-Art Detectors

1) Results on DOTA: As depicted in Table I, we evaluate our
model against the state-of-the-art methods on the DOTA [28]

dataset. Compared to the FCOS [3] implemented by the MM-
Rotate [2] toolbox, our reimplementation of FCOS has higher
accuracy, but the FPS decreases from 16.7 to 15.1. The main
reason is that CSL [1] is used for angle prediction, and the
encoding and decoding process is time-consuming compared
to direct prediction. The proposed FEADet achieved 74.37%
mAP in 11.5 FPS with the ResNet50 [6]. When augmented
with rotational data and trained with 36 epochs, the mAP
of 77.05% is achieved. When using ResNet101 as the back-
bone, the accuracy further increased to 77.10% in 9.1 FPS.
As illustrated in Fig. 8, our method has a higher detection
accuracy compared to other advanced detectors. We visualize
the some results of our detection in the DOTA dataset. The
results, depicted in Fig. 9, reveal that our detector can achieve
high-quality bounding boxes and is capable of handling diverse
classes.
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TABLE VI
COMPARISON OF OUR FEADET WITH STATE-OF-THE-ART METHODS ON

HRSC2016 DATASET

2) Results on HRSC2016: Our experiments on the
HRSC2016 [25] dataset, which includes ship objects with
large aspect ratios and arbitrary orientations, are presented in
Table VI, along with comparisons with other methods. By using
ResNet50 [6] as our backbone with an input image size of 800
× 800, we achieve an mAP of 90.30%. When using ResNet101
as the backbone, we achieved an mAP of 90.40%. The results
show that in the detection of rotated objects, the proposed
approach is better than other methods.

V. CONCLUSION

The article proposes FEADet, a single-stage anchor-free de-
tector for detecting oriented objects. Our method incorporates an
AAF module and an AAC module. The AAF module facilitates
the integration of higher level semantic information into lower
level feature maps and mitigates the confounding effect of higher
level features during fusion. The AAC module adapts to the po-
sition of object sampling points and improves feature alignment
for object detection. We perform exhaustive experiments on the
HRSC2016 and DOTA datasets, and the outcomes validate the
effectiveness of our proposed approach.
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