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Two-Stage Evolutionary Algorithm
Based on Subspace Specified Searching

for Hyperspectral Endmember Extraction
Cong Lei , Rong Liu , and Ye Tian

Abstract—In recent years, the introduction of multiobjective
evolutionary algorithms (MOEAs) into the field of endmember
extraction (EE) in hyperspectral unmixing has demonstrated a
breadth of results that surpass those derived from single-objective-
based methodologies. Despite these advancements, the adaptation
of MOEAs to EE and the attainment of globally optimal solutions
represent unresolved challenges meriting continued exploration.
This study addresses two principal obstacles in MOEA-based
EE: the notorious “curse of dimensionality” in high-dimensional
optimization, and the difficulty in striking a balance between
convergence and population diversity. We propose a two-stage,
evolutionary-based EE algorithm, referred to as TSEA, designed
to confront these issues. A novel solution space splitting strategy
is incorporated into TSEA that efficiently mitigates the curse of
dimensionality by strategically contracting the search space. This
advantage is largely attributed to the significant reduction of invalid
solutions achieved through the simple application of a clustering
procedure. Furthermore, a two-stage optimization approach is
employed to meticulously uphold the convergence and diversity
of the population, aiming to attain the optimal solution within the
realm of high-dimensional optimization. Empirical evidence from
four real hyperspectral images demonstrates that the proposed
TSEA outperforms other comparison multiobjective optimization
algorithms. Thus, this study contributes to the ongoing discourse
on the optimization and applicability of MOEAs in the context
of EE.

Index Terms—Endmember extraction (EE), hyperspectral
remote sensing, multiobjective optimization.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) usually contains hun-
dreds of observation channels, which makes it possible

to address various application problems requiring very high
discrimination capabilities in the spectral domain [1], [2], [3],
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[4]. One big challenge that contradicts the application of HSI
is the inevitably prevalent mixed pixels due to the limitation of
spatial resolution and heterogeneity of ground features [5].

Hyperspectral unmixing (HU) is an important technique for
solving the mixed pixel problem [6], which takes aim at de-
composing each mixed pixel into the constituent components
(endmembers) and the corresponding coefficients (abundances).
For this purpose, HU typically contains two tasks: endmember
extraction (EE) and abundance estimation. The two tasks can be
accomplished either conjointly or separately [7]. Representative
approaches with the first manner involve the nonnegative matrix
factorization-based algorithms [8], [9], deep learning-based al-
gorithms [10], [11], [12], and unmixing algorithms considering
spectral variability [13], [14], [15]. The second way estimates the
abundance based on existent endmembers, frequently used are
the sparse regression-based algorithms [16], [17], [18], and the
multiple endmember spectral mixture analysis-based algorithms
[19], [20]; endmembers can be either acquired from an existing
library or automatically collected from the image [21], [22].
Image-based endmembers are more accessible and affordable
than library-endmembers. EE algorithms mainly contain four
categories: traditional pure pixel assumption-based algorithms
[23], [24], [25], minimum volume-based algorithms [26], [25],
[28], spatial preprocessing-based algorithms [29], [30], [31], and
evolutionary computation-based algorithms [32], [33], where
evolutionary computation-based algorithms belong to a newly
developed branch for EE.

The main advantage of evolutionary computation-based EE
algorithms lies in the powerful capability of evolutionary com-
putation for solving nonconvex optimization problems, which
enable the optimization of complex but robust model, thus
handling the drawbacks within existing algorithms such as
sensitivity to noises or outliers [34], and breaking limits of the
application on real hyperspectral scenes.

Scholars have made attempts to apply evolutionary compu-
tation to solve various issues in the HU field, such as EE [35],
[36], and sparse unmixing [37], [38], [39]. Works that appertain
to EE can be divided into the following three categories.

1) Single-objective EE: At the outset, Zhang et al. [32]
employed single-objective evolutionary algorithms, the
discrete particle swarm optimization (DPSO) algorithm
and the ant colony optimization (ACO) algorithm [33],
to minimize the root-mean-square error (RMSE) be-
tween the original image and its reconstructed image, and
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achieved evidently improvement compared to traditional
algorithms. This was the first time that the RMSE objective
function was successfully used in EE, and it was demon-
strated in the later work proposed by Liu et al. [34] that the
RMSE objective function is robust to noise and outliers.
Besides, the conventional objective function, the volume
of the simplex composed of extracted endmembers, was
also used in the single-objective evolutionary algorithms
[40]. In the past decade, miscellaneous algorithms have
been designed either to improve the efficiency or enhance
the optimization results of single-objective EE [41], [42],
[43], [44], [45], [46], [47], [48], [49], [50], [51], includ-
ing a variety of evolutionary algorithms, such as PSO
algorithms [32], [34], [40], [41], [42], ACO algorithms
[33], [43], [44], [45], genetic algorithms [46], [47], and
differential evolution (DE) algorithm [48].

2) Multiobjective EE: Due to complicated imaging condi-
tions, real hyperspectral scenes may be corrupted with
interferences. Researchers found that the reconstructed
error and volume objective functions come to a dis-
agreement, posing a tough dilemma to us about which
objective function to choose. To better suit real-world
applications, multiobjective EE was put forward to simul-
taneously optimize the two conflict objective functions,
thus providing adjustable options to users. The multiob-
jective DPSO (MODPSO) algorithm [52] was originally
proposed to produce tradeoff solutions between the recon-
structed error and volume objective functions. Later on,
several improved algorithms [53], [54], [55], [56] were
developed with the purpose of reaching a better Pareto
front (PF). For example, Cheng et al. [53] proposed a
global-to-local evolutionary algorithm (GL-EA) where the
global and local search is performed sequentially to ex-
tract the endmembers effectively; the improved MODPSO
(IMODPSO) algorithm [54] was presented to enhance the
results by utilizing the archive strategy. Tong et al. [56]
proposed the (μ+λ) multiobjective DE algorithm based
on ranking multiple mutations, which further improved
the performance of IMODPSO.

3) Endmember bundle extraction (EBE): EBE is a category
of algorithms that consider spectral variability of end-
members caused by intra-class variability of materials or
various imaging conditions [57], [58]. EBE uses multiple
instances of spectra to represent an endmember class,
which can result in better unmixing results than EE in
scenes with spectral variability, although more compli-
cated and time-consuming. Recently, multiobjective evo-
lutionary algorithms (MOEAs) have been exploited in
EBE [59], [60], and captured more endmember variabil-
ities than existing representative algorithms, exhibiting
considerable potential for application in EBE.

Sketching from the above researches, although evolutionary
algorithms-based EE were ushered burgeoning in the past few
years, the newly emerging multiobjective EE and EBE are still
in the early stage. In this article, we focus on the study of multi-
objective EE, revolving around two significant challenges. One
challenge is the “curse of dimensionality” problem encountered
in high-dimensional optimization [61], that is, the performance

of the optimization algorithm deteriorates as the dimensionality
of the search space increases. The other challenge is how to well
maintain the convergence and the diversity of the population,
so as to obtain the optimal solution using as few times of
iterations as possible. Most existing MOEA-based EE methods
use the same update rule to produce offspring and adopt the
same environmental selection strategy during the whole opti-
mization process. These algorithms are devoted to improving
the convergence degree while ignoring the diversity, which may
lead the population into local optima and result in premature
convergence.

Dig deeply into the endmember combinations, in fact large
number of combinations are invalid solutions to the EE problem.
For example, if one component of the individual corresponds to
an endmember of material #1, and another component of the
individual also corresponds to an endmember of material #1,
this will be a bad or invalid solution since we need to extract one
endmember for one kind of material. Unfortunately, this kind
of problem frequently happens during optimization because all
components of the individual are possible to be assigned any
values in the whole search space without limitation. Hence, it
is inexpedient to find each optimal endmember in the whole
search space, and strategy should be taken to narrow down the
search space.

To solve the above problems, in this article, we proposed a
two-stage EA (TSEA) based on subspace-specified searching for
hyperspectral EE. Considering that bad endmember combina-
tions contain the repetition of one or more endmember classes,
TSEA restructures the original image based on clustering to
allow each component of the individual search in the subspace
constructed by valid solutions. First, the subspace limitation can
avoid producing lots of invalid solutions; second, the new-built
search space is considerably reduced than the original space,
which can greatly benefit the search of optimal solutions. In ad-
dition, a two-stage optimization strategy is employed in TSEA to
well maintain the exploration and exploitation of the population.
In the first stage, TSEA aims at accelerating the convergence
of the population by selecting two well-converged solutions
as parents to generate an offspring and removing the solution
with the worst convergence degree. In the second stage, TESA
pays more attention to the population’s diversity. One solution
with a good convergence degree and another solution with good
diversity are selected as parents, and a fine-tuned environmental
selection strategy is adopted to enhance diversity.

The rest of this article is structured as follows. Section II
introduces the linear spectral mixture model (LSMM) and the
conception of multiobjective optimization briefly. In Section III,
we present the framework and details of TSEA. The experimen-
tal results on four HSIs are displayed in Section IV and the
discussion is given in Section V. Finally, Section VI concludes
this article.

II. RELATED WORKS

A. Linear Spectral Mixture Model (LSMM)

The LSMM [6] considers each pixel in the image as a linear
combination of the endmember spectra, and each endmember
spectrum is weighted by its corresponding abundance. For a
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pixel y = (y1, y2, …, yL)T in the HSI with L bands, it can be
expressed as follows:

y =
P∑
i=1

aisi + e = As+ e (1)

where P is the number of endmembers, ai and si represent the
endmember vector, and the abundance of the ith endmember,
respectively. A = (a1, a2, …, aP) is the endmember matrix with
the size of L×P. s = (s1, s2, …, sP)T is a P×1 abundance vector
and e is an L×1 error vector which represents the observation
noise and modeling error. Supposing that there are N pixels in
the image, the L×N image matrix Y = (y1, y2, …, yN) can be
written as follows:

Y = AS+E (2)

where S = (s1, s2, …, sN) denotes the P×N abundance matrix,
and E = (e1, e2, …, eN) denotes the L×N error matrix.

B. Multiobjective Optimization

In multiobjective problems (MOPs), at least two objectives
need to be optimized simultaneously [62]. Without loss of gen-
erality, an MOP can be written as follows for the minimization
optimization:

min F (x) = [f1(x), f2(x), . . . , fm(x)]

s.t. x ∈ Ω (3)

where m denotes the number of objectives, fi(x) denotes the
value of the ith objective function, x is the decision variable
that represents a solution to the problem, and Ω represents
the decision space. There is no solution that can minimize the
m objective functions simultaneously because conflicts exist
among the objectives. If one objective function reaches a smaller
value, the value of another objective function may be larger. To
solve the above problem, the domination relationship is used
to establish an evaluation criterion for different solutions. A
solution x is said to dominate y if and only if{

∀i ∈ [1, 2, . . . ,m], fi(x) ≤ fi(y)

∃j ∈ [1, 2, . . . ,m], fj(x) < fj(y)
. (4)

If a solution is not dominated by any other solutions in Ω, it is
called a Pareto optimal solution or nondominated solution. The
set of the Pareto solutions is called the Pareto set (PS) and the
objective function values of the PS are called the PF. The main
aim of the MOEAs is to find a set of nondominated solutions
which can tradeoff different objectives best and make the result
approach the real PF as close as possible.

III. TSEA

A. Objective Functions of TSEA

Following the existing MOEA-based EE algorithms, two
LSMM-based objective functions are used in TSEA, namely,
the maximization of volume and the minimization of RMSE
between the original image and its reconstructed image. On
ideal condition, the pixels that obtain the maximum volume

are endmembers, and unmixing using optimal endmembers will
result in minimum reconstructed error. However, real images are
usually corrupted by noise and other perturbations. Maximum
volume function can be easily affected by abnormal spectra
and noise. The RMSE objective function is robust to abnormal
spectra and noise, nevertheless mixed pixels can probably be
mistakenly extracted as endmembers when the defined number
of endmembers is smaller than the real number or spectral
variability exists in the image. TSEA aims to optimize the two
objective functions simultaneously. For convenience, the max-
imization of volume is translated into a minimization problem.
The two functions are listed as follows:

min : F (x) = (f1(x), f2(x))

f1(x) =
1

volume(A(x))
=

(P − 1)!∣∣∣∣det
[
1 1 · · · 1
a1 a2 · · · aP

]∣∣∣∣
f2(x) = RMSE(Y, Ŷ) =

1

N

N∑
i=1

√
1

L
‖yi − ŷi‖2 (5)

where x is the decision variable, and each component represents
the index of the extracted endmember in the image. A(x) is the
endmember matrix, P denotes the number of endmembers, N
denotes the total number of pixels, L denotes the number of
bands, and ai(i = 1, 2, …, P) is a (P−1)-dimensional vector
which is transformed from the original endmember spectral
vector by minimum noise fraction [63]. Y and Ŷ represent
the original image and the reconstructed image, respectively.
The abundance for reconstructing the image is calculated by the
unconstrained least squares [52] using the following formulas:

Ŝij = max

(
0,
((

ATA
)−1

ATY
)
ij

)
, 1 ≤ i ≤ P, 1 ≤ j ≤ N

Ŷ = AŜ (6)

where A is the endmember matrix, and Ŝ is the estimated
abundance matrix.

B. Framework of TSEA

The flowchart of TSEA is presented in Fig. 1. To effectively al-
leviate the “curse of dimensionality problem” and avoid produc-
ing large amounts of invalid solutions, TSEA elaborately con-
structs subspaces for each component of the decision variable.
Instead of searching all endmembers from the indistinguishably
intermixed original space, each component of the decision vari-
able is limited to search in the corresponding subspace. In this
way, each component of the decision variable is attached by a
specific task of searching one kind of endmember, and large
amounts of invalid endmember combinations are eliminated,
which greatly benefits the optimization process. To well main-
tain the exploration and exploitation of the population, TSEA
divides the evolution process into two stages and adopts different
mating and environmental selection strategies at different stages.
The first stage aims at improving the convergence and the
second stage focus on improving the diversity of population. By
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Fig. 1. Flowchart of TSEA.

Algorithm 1: Pseudocode of TSEA.

Input: Y�RL×N (hyperspectral image), NP (population
size), P (number of endmembers), maxiter
(maximum number of iterations)

Output: X (offspring)
1 Restructure the image by method described in

Section III-C;
2 Randomly initialize the population pop;
3 Calculate the nondominated front number of each

solution in X, and the result is denoted by Front;
4 Calculate the convergence degree of each solution in X

by (8), and the result is denoted by Con;
5 Calculate the diversity degree of each solution in X by

(9), and the result is denoted by Div;
6 Set t = 1, X = ∅;
7 while t < maxiter
8 stage = DetermingStage(X, Front);
9 [parent1, parent2] = MatingSelection(X, stage, Front,

Con, Div);
10 Generate offspring o by (10) and (12);
11 X = X�o;
12 Calculate Front, Con, and Div for o;
13 X = EnvironmentalSelection(X, o, stage, Front, Con,

Div);
14 t = t + 1;
15 end while

using the two-stage evolution strategy, TSEA is able to obtain a
well-converged population with good diversity.

The pseudocode of TSEA is displayed in Algorithm 1. First,
pixels in the original image are clustered. The image is restruc-
tured according to the result of clustering and the vectors lower
and upper represent the lower and upper bounds of the clusters.
Then, the population X is randomly initialized under the con-
straints of lower and upper. TSEA adopts the integer encoding
method. Each solution is a 1×P vector and each element in the
vector represents a candidate endmember. Assuming that there
exist three kinds of endmembers in the HSI, the endmembers
represented by the solution x = (17,55,96) are the 17th, 55th
and 96th pixels of the image. The position of the ith solution xi
= (xi,1,xi,2, …,xi,P) is initialized as follows:

xi,j = floor (rand× (upperj − lowerj + 1)) + lowerj (7)

where xi,j defines the jth element of xi, rand is a random
number in the range of [0,1], and lowerj and upperj represent

the jth elements of lower and upper respectively. The subspace
restructuring strategy makes each component of xi search in the
corresponding subspace. Under the constraints of the specified
subspaces, the ith solution xi in the population can be written as

xi = (xi,1, xi,2, . . . xi,P )

s.t. lowerj ≤ xi,j ≤ upperj , xi,j ∈ Z, j = 1, 2, . . . , P. (8)

The front number Front, the convergence degree Con, and
the diversity degree Div are then calculated. The front number
Front is obtained by the nondominated sorting approach [64]. To
measure the convergence degree of each solution, the criterion
used in MOEAs is adopted and can be written as [65]

Con(x) = f1(x) + f2(x) (9)

where f1(x) and f2(x) denote the volume inverse and the RMSE
value of solution x, respectively. The convergence degree of x is
the sum of its objective function values. As for the calculation of
diversity degree, TSEA adopts the method in SPEA2 [66] and
it is defined as

Div(x) = ‖f(x)− f(x1)‖+ ε ‖f(x)− f(x2)‖ (10)

where f(x) denotes the vector composed of objective function
values of x, ||f(x)−f(x1)|| denotes the Euclidean distance be-
tween x and its closest neighbor x1 in the objective space, and
||f(x)−f(x2)|| denotes the Euclidean distance between x and its
second closest neighbor x2 in the objective space. ε is a tiny
value, for example, 10-6. ε||f(x)−f(x2)|| is used to distinguish
the diversity degree of two very close solutions. If the distance
between solution x and y is small enough, ||f(x)−f(x1)|| and
||f(y)−f(y1)|| will be the same value because each of them is the
closest neighbor for the other. By introducing ε||f(x)−f(x2)|| and
ε||f(y)−f(y2)||, there will be a slight difference between Div(x)
and Div(y), which contributes to the selection of solutions with
better diversity in the subsequent steps of TSEA. The basic idea
of the diversity degree is that the farther the distance between
solutions, the more diverse the distribution of population in
the objective function space. If each solution is far away from
its closest neighbor, the population will spread evenly in the
objective space instead of gathering together, thus avoiding the
deterioration of diversity.

In the main loop of TSEA, the stage of the evolution process
is determined first. As displayed in Algorithm 2, if there exists
any solution with front number larger than 1, the current stage
is set to the first stage. Otherwise, the current stage is set to
the second stage. In other words, when all the solutions are
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Algorithm 2: Determining Stage.
Input: X (current population), Front (front number of each

solution)
Output: stage
1 if maxx�XFront(x) > 1
2 stage = 1;
3 else
4 stage = 2;
5 end if

nondominated, which means the population is well-converged,
the second stage will be used. Then, two solutions are selected
from the population to produce an offspring o by the simulated
binary crossover (SBX) [67] and polynomial mutation [68].
In SBX, two parents x1 and x2 generate two offsprings o1
and o2 by{

o1,i = 0.5× [(1 + β)x1,i + (1− β)x2,i]

o2,i = 0.5× [(1− β)x1,i + (1 + β)x2,i]
(11)

where i represents the ith element of x, and β is a random
variable. For each element, β is determined by the user-defined
distribution index γ dynamically in the following way:

β =

{
(2× rand)

1
γ+1 , rand ≤ 0.5

(2− 2× rand)
−1

γ+1 , otherwise
(12)

where rand is a random number in the range of [0,1] and γ is set
to 20 based on existing research experiences [65]. After SBX,
one solution is randomly selected from o1 and o2 to generate the
offspring by performing polynomial mutation. The polynomial
mutation can be expressed as follows:

x′
i = xi + δ (upperi − loweri) (13)

where upperi and loweri represent the upper and lower bounds
of the ith element, and δ is defined as (14) shown at the bottom
of this page, where δ1 = (xi−loweri)/(upperi−loweri), δ2 =
(upperi−xi)/(upperi−loweri), and η is a user-defined distribu-
tion index which is set to 20 according to experiences [65].

Afterward, the offspring o is added to the population, and the
front number, the convergence degree, and the diversity degree
of o are calculated. Last, TSEA selects NP solutions from the
current NP+1 solutions in X by the environmental selection.
The details of image restructuring, mating selection, and envi-
ronmental selection will be presented in the following parts.

C. Image Restructuring

The restructuring process is illustrated in Fig. 2. Assuming
that there exist three kinds of endmembers in the HSI. The input
HSI is first clustered into three classes by the K-Means algorithm

Fig. 2. Image restructuring process.

[69]. Notice that the number of clusters is determined by the
number of endmembers, which is priori knowledge. All pixels
are reordered according to their clustered labels in a way that
pixels of the same cluster are arranged in adjacent columns in
the image matrix. For each cluster, the minimum and maximum
indices of columns are recorded in the boundary vector lower and
upper. For example, if the HSI contains 100 pixels, where 20,
30, and 50 pixels are clustered into three clusters, respectively.
After the image restructuring, the first 20 pixels belong to the first
cluster, the next 30 pixels belong to the second cluster and the last
50 pixels belong to the third cluster. The lower vector is (1,21,51)
and the upper vector is (20,50,100). The image restructuring
process only changes the order of pixels. No change has been
made to the image data.

D. Mating Selection in TSEA

In mating selection, two solutions with high convergence or
diversity are picked up each time to generate offspring. Different
selection criteria are used at different stages to cooperatively
reach the optimal optimization goal. TSEA tends to select the
well-converged solutions in the first stage, and the convergence
degree and the population diversity are both considered in the
second stage. As shown in Algorithm 3, mating selection starts

δ =

⎧⎨
⎩
[2× rand+ (1− 2× rand) (1− δ1)]

1
η+1 , rand ≤ 0.5

1−
[
2 (1− rand) + 2 (rand− 0.5) (1− δ2)

η+1
] 1

η+1

, otherwise
(14)
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Algorithm 3: Mating Selection.
Input: X (current population), stage (current stage), Front

(front number of each solution), Con (convergence
degree of each solution), Div (diversity degree of
each solution)

Output: parent1, parent2 (two parents)
1 Randomly select four different solutions x1, x2, x3, x4

from X;
2 if stage = = 1
3 if Front(x1) < Front(x2) then parent1 = x1;
4 else if Front(x1) > Front(x2) then parent1 = x2;
5 else if Con(x1) < Con(x2) then parent1 = x1;
6 else parent1 = x2;
7 end if
8 if Front(x3) < Front(x4) then parent2 = x3;
9 else if Front(x3) > Front(x4) then parent2 = x4;

10 else if Con(x3) < Con(x4) then parent2 = x3;
11 else parent2 = x4;
12 end if
13 else / / stage = = 2
14 if Con(x1) < Con(x2) then parent1 = x1;
15 else parent1 = x2;
16 end if
17 if Div(x3) > Div(x4) then parent2 = x3;
18 else parent2 = x4;
19 end if
20 end if

with the selection of four solutions x1, x2, x3, and x4 from X
without replacement. If stage = 1, the solution with a smaller
front number in x1 and x2 is selected as parent1. If x1 and x2 have
the same front number, the one with better convergence degree
will be selected. The same criterion is adopted for the selection
of parent2 from x3 and x4. If stage = 2, the one with a better
convergence degree is picked up from x1 and x2. Similarly, as
for x3 and x4, the one with a better diversity degree is selected.

E. Environmental Selection in TSEA

After generating offspring o, the new offspring is added to
the population, and one solution should be eliminated from
the population through environmental selection. Algorithm 4
displays the environmental selection strategy. In the first stage,
the population is not well converged and contains dominated
solutions. In this situation, the solution with the worst conver-
gence degree is eliminated. Specifically, we find the solutions
with the largest front number in the population, then remove
the one with the smallest convergence degree. In the second
stage, all the solutions are nondominated and the population is
well-converged. In this situation, the population only needs to
be fine-tuned to improve diversity. As shown in line 6 to line
11 in Algorithm 4, the nearest neighbor of o named w in the
objective space is selected. If o is better than w in terms of both
convergence and diversity, then w is replaced by o. Otherwise,
the new offspring o will not be reserved.

Algorithm 4: Environmental Selection.
Input: X (current population), o (new offspring), stage

(current stage), Front (front number of each
solution), Con (convergence degree of each
solution), Div (diversity degree of each solution)

Output: X (updated population)
1 if stage = = 1
2 X = {x�X | Front(x) = maxy�X Front(y)}
3 w = argmaxx�X Con(x);
4 X = X\{w};
5 else / / stage = = 2
6 w = argminx�X || f′(o) − f′(x) ||;
7 if Con(o)≤Con(w) and Div(o)≥Div(w);
8 X = X\{w};
9 else

10 X = X\{o};
11 end if
12 end if

TABLE I
COMPUTATIONAL COMPLEXITY OF TSEA AND THE COMPARISON ALGORITHMS

F. Computational Complexity

Assume that there are N pixels, L bands, and P kinds
of endmembers in the image, and the population size is
num_pop. In one generation (i.e., generating num_pop off-
springs), the computational complexity of generating off-
springs is O(num_pop3), and the computational complexity of
computing the objective functions is O(num_pop(P!+LPN)).
Therefore, the total computational complexity of TSEA is
O(num_pop3+num_pop(P!+LPN)). The computational com-
plexity of DPSO, IMODPSO, (μ+λ)-MODE, and GL-EA are
shown in Table I.

IV. EXPERIMENTS AND ANALYSIS

A. Parameter Settings

Four state-of-the-art EA-based EE algorithms, DPSO [32],
IMODPSO [54], (μ+λ)-MODE [56], and GL-EA [53] were
chosen as comparison algorithms in the experiments. Except for
DPSO which only optimizes the RMSE, other algorithms are
MOEA-based EE algorithms in which the volume inverse and
the RMSE are minimized simultaneously. For all algorithms,
the population size is set to 20, and the number of function
evaluations is set to 6000 for all datasets. For (μ+λ)-MODE,
the scaling factor pool Fpool is set to [0.6, 0.8, 1.0] and the
crossover control parameter pool CRpool is set to [0.1, 0.2, 1.0].
For GL-EA, the range of perturbation is set to 6 and the parameter
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Fig. 3. Berlin dataset.

for dividing the global search and the local search is set to 0.8.
For TSEA, the crossover rate and the distribution index of SBX
are set to 1 and 20. The mutation rate and the distribution index
of the polynomial mutation are set to 0.05 and 20. The scaling
factor ε in the calculation of Div is set to 10-6. Each algorithm is
executed for ten independent runs and the best result is selected
for comparison.

B. Experiments on the Berlin Dataset

The Berlin dataset is a subset of HyMap01 image product
from the Berlin-Urban-Gradient dataset 2009 [70]. The image
has 526× 336 pixels covering 111 bands ranging from 0.4544 to
2.4465 μm after removing noisy bands. The spatial resolution of
the image is 3.6 m. According to the reference spectral library
provided by the hyperspectral product, there exist six types of
endmembers including roof, pavement, low vegetation, tree, soil
and other in the image. The class “other” consists of red sand,
rail track, artificial turf and some other rare ground objects. The
true color image composed of R-band 14, G-band 7, and B-band
1 is shown in Fig. 3.

Fig. 4 displays the convergence curves of the five EE algo-
rithms, where the x-axis represents the evaluation times and the
y-axis stands for the minimum logarithm of objective function
values in the population. DPSO is not displayed in Fig. 4(a)
because it is a single objective algorithm which only minimizes
the RMSE. As shown in Fig. 4, TSEA reached the minimum
objective function values for both the volume inverse and RMSE.
During the optimization process, TSEA can escape from the
local optimal solution and achieve a better solution using less

Fig. 4. Minimum objective function values during generations for the Berlin
image. (a) Logarithm of volume inverse. (b) Logarithm of RMSE.

evaluations than other methods, indicating the effectiveness and
efficiency of the proposed subspace searching and two-stage
optimization strategies.

The two objective function values of the output solutions
obtained by the five algorithms are presented in Fig. 5. The
number of displayed solutions is less than the population size
because only the nondominated solutions in the population are
displayed for the MOEA-based algorithms. We can see that the
minimum values of f1 and f2 are both produced by TSEA. The
solutions obtained by TSEA dominate the solutions of DPSO,
IMODPSO, (μ+λ)-MODE, and GL-EA, which means TSEA is
able to produce high-quality solutions with smaller volume in-
verse and RMSE values. Table II shows the computational time.
The 64-bit 2022b version of MATLAB was implemented on
Intel Core i9-11900K. TSEA has a relatively high computation
efficiency than other MOEA-based methods.

The extracted endmember spectra by the five algorithms are
shown in Fig. 6. The endmember spectra obtained by some
algorithms are absent in some classes because these algorithms
did not extract all kinds of endmembers in a certain run. Results
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Fig. 5. PF results of the Berlin image.

TABLE II
COMPUTATIONAL TIME OF TSEA AND THE COMPARISON ALGORITHMS ON THE

BERLIN DATASET

Fig. 6. Endmember spectra obtained by all algorithms on the Berlin image.
(a) Roof. (b) Pavement. (c) Low vegetation. (d) Tree. (e) Soil. (f) Other.

TABLE III
SAD COMPARISON BETWEEN THE EXTRACTED ENDMEMBERS AND THE

REFERENCE ENDMEMBERS ON THE BERLIN DATASET

Fig. 7. Urban dataset.

showed that only TSEA extracted six kinds of endmembers
completely while other algorithms only obtained partial kinds
of endmembers. It is worth noting that the four MOEA-based
algorithms, i.e., IMODPSO, (μ+λ)-MODE, GL-EA, and TSEA,
were able to extract multiple spectra for one kind of endmember,
whereas the single optimization algorithm DPSO only extracted
one spectrum for each endmember. This is because the MOEA-
based algorithms can obtain a series of nondominated solu-
tions. These nondominated solutions have either small volume
inverse or small RMSE which can provide users with more
complete endmembers.

Table III displays the SAD values between the extracted
endmembers and the reference endmembers obtained by the five
algorithms. DPSO had the minimum SAD on roof, pavement,
and tree. The smallest SAD values on low vegetation, soil, and
other were produced by IMODPSO, (μ+λ)-MODE, and TSEA,
respectively. The mean SAD of TSEA was the smallest.

C. Experiments on the Urban Dataset

The Urban dataset, which is widely used in HU, contains 303
× 303 pixels with 162 bands ranging from 0.4–2.5 nm. Six kinds
of endmembers exist in the image. They are asphalt road, grass,
tree, roof, metal, and dirt. The RGB image of Urban is displayed
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Fig. 8. Minimum objective function value at evaluations for the Urban image.
(a) Logarithm of volume inverse. (b) Logarithm of RMSE.

in Fig. 7 and the red, green, and blue bands are set to bands 53,
35, and 10, respectively.

The convergence curves of the algorithms are displayed in
Fig. 8. In terms of volume inverse, GL-EA achieved the fastest
convergence speed among all the algorithms. However, the
performance of GL-EA was the worst in terms of RMSE. The
minimum RMSE value obtained by TSEA when evaluation
times reached 1000 was smaller than those obtained by other
algorithms when evaluation times reached 6000.

Fig. 9 displays the output results of objective function values
for all the algorithms. It can be seen that GL-EA produced
the solution with the minimum volume inverse and TSEA pro-
duced the solution with the minimum RMSE. The minimum
value of volume inverse obtained by TSEA was very close to
the minimum value obtained by other algorithms, whereas the
minimum value of RMSE obtained by TSEA was much smaller
than the minimum value obtained by other algorithms, which
indicated that TSEA has better optimization ability considering
the optimization of both objective functions. Solutions obtained
by TSEA dominated most solutions of the other algorithms.

Fig. 9. PF results of the urban image.

TABLE IV
COMPUTATIONAL TIME OF TSEA AND THE COMPARISON ALGORITHMS ON THE

URBAN DATASET

TABLE V
SAD COMPARISON BETWEEN THE EXTRACTED ENDMEMBERS AND THE

REFERENCE ENDMEMBERS ON THE URBAN DATASET

GL-EA obtained one nondominated solution with the minimum
volume inverse. From the computational time shown in Table IV,
TSEA was more efficient than (μ+λ)-MODE and GL-EA.

The extracted endmember spectra of the five algorithms are
presented in Fig. 10. IMODPSO, (μ+λ)-MODE and TSEA
extracted the six types of endmember spectra completely. DPSO
and GL-EA only extracted five kinds of endmember spectra and
the spectrum of metal was not successfully extracted.

The SAD values between the extracted endmembers and the
reference endmembers obtained by the five algorithms from the
Urban image are presented in Table V. It can be seen that DPSO
had the minimum SAD on roof and dirt. IMODPSO had the
smallest SAD on grass. TSEA performed best on asphalt road,
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Fig. 10. Endmember spectra obtained by all algorithms on the Urban image.
(a) Asphalt road. (b) Grass. (c) Tree. (d) Roof (e) Metal. (f) Dirt.

Fig. 11. Augsburg dataset.

tree, and metal. The SAD value of TSEA on metal was much
smaller than that of other algorithms. The mean SAD of TSEA
was the lowest.

D. Experiments on the Augsburg Dataset

The Augsburg dataset was acquired by using the airborne
imaging spectrometer system HySpex, which was operated by
the Remote Sensing Technology Institute (IMF) of the German

Fig. 12. Minimum objective function value at evaluations for the Augsburg
image. (a) Logarithm of volume inverse. (b) Logarithm of RMSE.

Aerospace Center (DLR) [71]. The image used in this research
is a 200 × 200 subset of the original data. There are 368 bands
distributing from 0.416 to 2.498 μm. Six kinds of endmembers
exist in the image. They are pavement, low vegetation, soil, tree,
roof, and water. Fig. 11 shows the true color image of Augsburg
consisting of R-band 77, G-band 43, and B-band 9.

The convergence curves displayed in Fig. 12 indicate that
TSEA converges faster than other algorithms. In terms of vol-
ume inverse, the objective function value obtained by TSEA at
evaluations 1500 was smaller than the objective function values
obtained by other algorithms at evaluations of 6000. In terms of
RMSE, DPSO, and TSEA achieved the same RMSE value in the
end, and the RMSE value obtained by TSEA at evaluations of
1000 was smaller than the RMSE values obtained by the other
three MOEA-based algorithms at evaluations of 6000.

The PF comparison results in Fig. 13 show that solutions
produced by the four MOEA-based methods have a smaller
volume inverse than DPSO. Solutions of TSEA dominated the
other four algorithms. The solution with the smallest volume in-
verse was obtained by TSEA. Considering the RMSE, solutions



742 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 13. PF results of the Augsburg image.

TABLE VI
COMPUTATIONAL TIME OF TSEA AND THE COMPARISON ALGORITHMS ON THE

AUGSBURG DATASET

TABLE VII
SAD COMPARISON BETWEEN THE EXTRACTED ENDMEMBERS AND THE

REFERENCE ENDMEMBERS ON THE AUGSBURG DATASET

produced by DPSO and TSEA had the smallest value. As shown
in Table VI, in terms of efficiency, TSEA spent the least time
compared with other algorithms.

Fig. 14 shows the endmember spectra obtained by all algo-
rithms for the Augsburg image. GL-EA and TSEA extracted
six kinds of endmembers completely. Other algorithms only
extracted five kinds of endmembers.

As displayed in Table VII, the SAD of TSEA on pavement
and soil were smaller than the other algorithms significantly.
The minimum SAD on low vegetation and roof were obtained
by DPSO and IMODPSO. In terms of mean SAD, TSEA had
the best performance.

Fig. 14. Endmember spectra obtained by all algorithms on the Augsburg
image. (a) Pavement. (b) Low vegetation. (c) Soil. (d) Tree (e) Roof. (f) Water.

Fig. 15. Cuprite dataset.

E. Experiments on the Cuprite Dataset

The Cuprite dataset contains 224 channels ranging from 370
to 2480 μm with a spatial resolution of 20 m. After removing
the noisy and water absorption bands, there are 188 bands
remained. The image is displayed in Fig. 15. The spectra of
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Fig. 16. Minimum objective function value at evaluations for the cuprite
image. (a) Logarithm of volume inverse. (b) Logarithm of RMSE.

six representative minerals are selected from the USGS spectral
library as reference spectra to validate the results of EE includ-
ing alunite, andradite, dumortierite, kaolinite, montmorillonite,
and nontronite.

The convergence curves of the five algorithms are presented
in Fig. 16. Considering the volume inverse, the objective func-
tion value of TSEA was smaller than other algorithms almost
throughout the optimization process. In terms of RMSE, DPSO
had the fastest convergence speed and obtained the minimum
value after 6000 evaluations. The final RMSE value of TSEA
was close to DPSO and was much smaller than that of IMODPSO
and GL-EA.

Fig. 17 displays the solutions obtained by all algorithms.
We can see that TSEA obtained the minimum volume inverse,
whereas DPSO obtained the minimum RMSE. The minimum
volume inverse of TSEA is much smaller than other algorithms.
The solutions generated by TSEA dominated most of the remain-
ing solutions from other algorithms. As shown in Table VIII,
in terms of efficiency, TSEA spent the least time among the
five algorithms.

Fig. 17. PF results of the cuprite image.

TABLE VIII
COMPUTATIONAL TIME OF TSEA AND THE COMPARISON ALGORITHMS ON THE

CUPRITE DATASET

TABLE IX
SAD COMPARISON BETWEEN THE EXTRACTED ENDMEMBERS AND THE

REFERENCE ENDMEMBERS ON THE CUPRITE DATASET

The endmember spectra extracted by the five algorithms are
presented in Fig. 18. All of the algorithms only extracted five
kinds of endmember spectra. The spectrum of dumortierite
was missed by DPSO, and the remaining four MOEA-based
algorithms failed to extract the spectrum of alunite.

The SAD values between the extracted endmembers and the
reference endmembers obtained by the five algorithms from
the Cuprite dataset are displayed in Table IX. DPSO had the
minimum SAD on alunite, dumortierite, and montmorillonite.
TSEA obtained the smallest SAD on andradite, kaolinite, and
nontronite. In terms of mean SAD, the performance of TSEA
was better than IMODPSO, (μ+λ)-MODE, and GL-EA.
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Fig. 18. Endmember spectra obtained by all algorithms on the cuprite image.
(a) Alunite. (b) Andradite. (c) Dumortierite. (d) Kaolinite. (e) Montmorillonite.
(f) Nontronite.

F. Ablation Experiments

Several ablation experiments were conducted to verify the
effectiveness of each component of TSEA. The four different
combinations of components applied in the experiments are
described as follows.

1) TSEA/Cluster: The image restructuring step is removed
from the proposed TSEA algorithm.

2) TSEA/Stage1: The image restructuring step is used. The
first stage is removed from the two-stage evolutionary
algorithm, and the mating and environmental selection
strategies in the second stage are adopted throughout the
whole optimization process.

3) TSEA/Stage2: The image restructuring step is used. The
second stage is removed from the two-stage evolutionary
algorithm, and the mating and environmental selection
strategies in the first stage are adopted throughout the
whole optimization process.

4) TSEA: The proposed TSEA algorithm, where the image
restructuring strategy and the two-stage optimization strat-
egy are utilized.

The PF results obtained by the above four algorithms from the
four HSIs are displayed in Fig. 19. It can be seen from Fig. 19
that the performances of TSEA deteriorated when removing
one of the three components. Solutions obtained by TSEA

Fig. 19. PF results obtained by the four algorithms from the four HSIs.
(a) Berlin. (b) Urban. (c) Augsburg. (d) Cuprite.
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dominated most solutions of TSEA/Cluster, TSEA/Stage1, and
TSEA/Stage2, indicating the indispensability of each compo-
nent in TSEA. TSEA/Stage1 performed worst on the four
datasets. Solutions generated by TSEA/Stage1 are distributed in
the top right region of the figures with poor convergence degree,
because the first stage aiming at improving the convergence of
the population was absent. However, the distances among the so-
lutions of TSEA/Stage1 were significantly farther than those of
other algorithms, suggesting that the second stage can maintain
good diversity for the population. From Fig. 19(a), (c), and (d),
we can see that TSEA was able to produce solutions with better
diversity than TSEA/Stage2. Most solutions of TSEA/Cluster
were dominated by solutions produced by TSEA, which proved
the effectiveness of the image restructuring strategy.

V. DISCUSSION

Experiments on four real HSIs demonstrated the effectiveness
of the proposed TSEA algorithm, and the indispensability of
the strategies designed in TSEA was proven in the ablation
study. Nevertheless, some issues about TSEA or MOEA-based
EE should receive attention. One issue is the influence of clus-
tering on the proposed TSEA algorithm. Clustering errors are
inevitably produced when clustering is applied to real HSIs.
The proposed algorithm assumes that pure pixels exist in the
image. Images that satisfy this assumption are usually with
relatively high spatial resolution. Considering that these images
are not highly mixed, the majority of the pixels belonging to
one certain class have similar spectra with their corresponding
endmembers. Therefore, endmembers can be properly clustered
into the corresponding subspaces. Although a small number of
mixed pixels may be mistakenly clustered, they will not have
a significant impact on the final EE result. From the ablation
experiments, we can see that the optimization performance
of TSEA deteriorates significantly when the clustering-based
image restructuring strategy is removed, suggesting the effec-
tiveness of the clustering process. However, if TSEA is applied to
images with coarse spatial resolution, such as the Cuprite image
with a resolution of 20 m, accurate results cannot be ensured.
For example, TSEA did not extract all classes of endmembers
from the results of Fig. 18. Another issue is how to adequately
make use of the powerful optimization ability of MOEA to
address the EE problem. In fact, none of the tested algorithms
successfully achieved a complete PF, which means that perhaps
some important results were missing. New models could be
established to address this problem.

VI. CONCLUSION

In this article, we proposed a TSEA-based on subspace spec-
ified searching for hyperspectral EE. In TSEA, subspaces are
built by dividing the original image into several groups to allow
each component of the decision variable search in reduced space,
so as to accelerate the optimization process. Besides, the solu-
tions are updated by the two-stage optimization strategy to well
maintain the convergence speed and the population diversity.
Experiments on four HSIs demonstrated the efficiency and the
effectiveness of TSEA.

Our future work will mainly focus on two directions: 1)
Normalization of the objective functions in EE: The scale of
the two commonly used objective functions for EE, namely, the
volume inverse and the reconstruction error, differ significantly.
In the optimization process, the volume inverse of one solution is
often much smaller than the reconstruction error, which makes it
hard to quantitatively evaluate the population’s convergence and
diversity degree. Conventional normalization methods cannot be
applied to the two objective functions since the upper bounds of
them are difficult to calculate. A novel normalization method is
necessary to adjust the two objective functions to the same scale.
2) Automatic estimation of the number of endmembers: TSEA
requires a user-defined number of endmembers. An improper
number often had bad effect on the optimization results. In
the future, multitask evolutionary methods can be considered
to enable solutions contain different number of endmembers,
and corresponding evaluation metrics are needed to adaptively
choose the best results.
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