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CombineDeepNet: A Deep Network for Multistep
Prediction of Near-Surface PM2.5 Concentration

Prasanjit Dey , Soumyabrata Dev , Member, IEEE, and Bianca Schoen Phelan , Member, IEEE

Abstract—PM2.5 is a type of air pollutant that can cause res-
piratory and cardiovascular problems. Precise PM2.5 (µg/m3)
concentration prediction may help reduce health concerns and
provide early warnings. To better understand air pollution, a
number of approaches have been presented for predicting PM2.5

concentrations. Previous research used deep learning models for
hourly predictions of air pollutants due to their success in pattern
recognition, however, these models were unsuitable for multisite,
long-term predictions, particularly in regard to the correlation
between pollutants and meteorological data. This article proposes
the combine deep network (CombineDeepNet), which combines
multiple deep networks, including a bidirectional long short-term
memory, bidirectional gated recurrent units, and a shallow model
represented by fully connected layers, to create a hybrid forecast-
ing system. It can effectively capture the complex relationships
between air pollutants and various influencing factors to predict
hourly PM2.5 concentrations in multiple monitoring sites based in
China. The best root mean square error achieved was 22.0 µg/m3

(long-term) and 6.2 µg/m3 (short-term), with mean absolute error
values of 3.4 µg/m3 (long-term) and 2.2 µg/m3 (short-term). In
addition, the correlation coefficient (R2) reached 0.96 (long-term)
and 0.83 (short-term) across six monitoring sites. These results
demonstrate that CombineDeepNet enhances prediction accuracy
compared with popular deep learning methods. Therefore, Com-
bineDeepNet proves to be a important framework for predicting
PM2.5 concentration.

Index Terms—Air pollution, bidirectional gated recurrent
units (BiGRU), bidirectional long short-term memory (BiLSTM),
prediction.

I. INTRODUCTION

N EAR− surface air pollutants have created various adverse
health effects globally [1]. Their impact continues to grow
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across the globe. Economic expansion is one of the key reasons
for the increasing concentration of pollutants. According to the
research in [2], the number of fatalities in China caused by
PM2.5 increased by 0.39 million (23%) between 2002 and 2007,
emphasizing the need for precisely predicting PM2.5 concentra-
tion. PM2.5 is considered the principal air pollutant that may
have an impact on our quality of life, our health, and reduce
air visibility [3]. The researchers have shown the relationship
between PM2.5 and respiratory system disorders [4], [5].

The first step in resolving the PM2.5 problem is to increase
forecast accuracy, which has been a crucial issue. It is important
to note that accurately predicting PM2.5 levels can be challeng-
ing, as there are many factors that can influence air quality [6]. To
enhance the accuracy of PM2.5 predictions, it is often necessary
to incorporate a diverse range of data [7] and utilize techniques
such as cross validation and regularization. These techniques
play a crucial role in optimizing the model’s performance by
preventing overfitting, improving generalization, and ensuring
robustness and accuracy. There are two types of prediction
techniques available today: deterministic methods and statistical
approaches. To predict the PM2.5 concentration, deterministic
approaches need complex prior knowledge [8]. Statistical meth-
ods involve analyzing PM2.5 concentrations over a period of
time in order to identify trends and patterns. Based on historical
data, a time-series method like the autoregressive integrated
moving average (ARIMA) model may be used to forecast future
PM2.5 concentrations [9]. However, the effectiveness of these
statistical techniques may be limited due to the requirement of
adherence to certain statistical assumptions. These assumptions
play an important part in ensuring the validity and effectiveness
of the techniques. Some common statistical assumptions in-
clude normality, independence, homoscedasticity, linearity, and
no multicollinearity [10]. It is essential to carefully consider
these assumptions when applying statistical techniques since
violations can result in misleading results and adversely impact
the reliability of the analysis.

When dealing with multidimensional time series data, ma-
chine learning (ML) methods often perform better. Particularly
for the PM2.5 concentration tasks, several models have been
used, including decision tree [11], random forest [12], [13], sup-
port vector regression [14], support vector machine (SVM) [15],
multilayer perceptron [16], artificial neural network (ANN) with
density-based spatial clustering of applications with noise [17],
extreme learning machines [18], echo state networks [18], hid-
den Markov model [19], XGBoost [20], and Light GBM [21],
[22].
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TABLE I
SUMMARY COMPARISON OF RECENTLY DEVELOPED DL MODELS IN TERMS OF THE YEAR OF DEVELOPMENT, THREE COMPARISON METRICS, PREDICTION OF

PM2.5 IN MULTIPLE SITES, CORRELATION OF PM2.5 WITH DIFFERENT PARAMETERS, AND THEIR SHORT-TERM AND LONG-TERM PREDICTION CAPABILITIES

Recently, deep learning (DL) models have gained popularity
and have demonstrated impressive results in various applica-
tions, such as pattern recognition [23], [24], remote sensing im-
ages [25], and built-up land expansion [26]. Advanced versions
of recurrent neural networks (RNNs) or combinations of convo-
lutional neural networks (CNNs) are frequently used for PM2.5

prediction. These include long short-term memory (LSTM) [27],
[28], gated recurrent units (GRU) [29], bidirectional LSTM
(BiLSTM) [30], CNN-LSTM [31], and CNN-BiLSTM [32]. In
this study, we propose the CombineDeepNet model using three
DL models: BiLSTM, BiGRU, and fully connected (FC) for
predicting near-surface PM2.5 concentration.

A. Related Works

In recent decades, researchers have predominantly utilized
ML models for PM2.5 concentration prediction. Bhatti et al. [38]
suggested a semisupervised learning strategy based on factor
analysis and the seasonal autoregressive integrated moving av-
erage model. In this study, the authors correlate PM2.5 with other
pollutants to analyze the overall air quality of Lahore, Pakistan.
Zhou et al. [39] created a hybrid framework that combines
multi-output SVM with multitask learning to enhance long-term
forecasting of PM2.5 concentration in Taipei City, Taiwan. In
this work, the authors also developed a single-output SVM
benchmark technique for comparing the implemented model.
Masood and Ahmad [40] used ANN and SVM models to forecast
PM2.5 level in Delhi. They trained their models using various
meteorological and pollutant parameters over a two-year period
(2016–2018).

Recently, numerous DL models have become more popular in
time-series prediction applications. Zhang et al. [33] presented a
DL system for forecasting PM2.5 concentrations using an auto-
encoder and a BiLSTM. In this work, the association between
PM2.5 concentration and other climatic factors was employed
to produce a more accurate result. Similarly, Zhang et al. [34]
developed a BiLSTM model for forecasting daily PM2.5 concen-
trations in Beijing. Faraji et al. [35] proposed a combined 3-D
CNN-GRU model for the spatial-temporal forecasting of PM2.5

concentrations in urban areas. In order to train the prediction
model, this study gathered PM2.5 concentrations from several
air quality monitoring sites around Tehran, Iran, from 2016

to 2019. In their proposal, Zhang et al. [36] combined CNN
with spatial-temporal attention and residual learning to create
a hybrid DL network for short-term PM2.5 concentration pre-
diction. Natsagdorj et al. [37] implemented two DL frameworks
using Bayesian optimized LSTM and CNN-LSTM to forecast
daily PM2.5 levels in Ulaanbaatar, Mongolia. They collected
hourly Himawari8 aerosol optical depth, PM2.5 concentration,
and meteorological data to train their prediction models.

Chen et al. [41] proposed a physical model for estimating
PM2.5 levels in the mideastern China. In their work, the authors
utilized data from the AERONET official website. Wu et al. [42]
developed a framework that utilizes satellite and station obser-
vations to estimate hourly PM2.5 levels.

A summary comparison of recently developed DL models is
presented in Table I. The table provides an overview of these
models in terms of the year of development, three compari-
son metrics, prediction of PM2.5 in multiple sites, correlation
of PM2.5 with different parameters, and their short-term and
long-term prediction capabilities. Furthermore, certain studies
have employed a combination of adjacent station parameters and
target station parameters to effectively forecast PM2.5 levels at
the desired location. Zhao et al. [43] proposed an LSTM-FC
framework to forecast PM2.5 concentration for a given air
quality monitoring station using 48 h of past air pollutant,
meteorological, and weather forecasting data. However, this
approach combines spatial information from surrounding mon-
itoring stations located in different geographical regions, which
may lead to overfitting issues and an increase in computational
complexity. While combining information from surrounding
monitoring stations can enhance prediction accuracy, there is a
risk of overfitting. Overfitting can occur when the model captures
noise or idiosyncratic patterns specific to the training dataset,
resulting in reduced generalization ability. When neighboring
station data is excessively relied upon, the model may become
overly sensitive to local variations, compromising its ability to
generalize to new locations or conditions. It is crucial to strike a
balance between incorporating relevant information and avoid-
ing overfitting to ensure robust and reliable predictions. Chang
et al. [44] presented an aggregated LSTM to predict PM2.5 level
for 1–8 h using local air quality data from nearby industrial
stations. Finally, Yeo et al. [45] combined CNN and GRU with
a group of nearby stations to forecast PM2.5 levels efficiently.
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B. Contributions of the Article

The previously described models are unable to extract deep
features from PM2.5 datasets. Therefore, in this research, we
propose the CombineDeepNet model for predicting PM2.5 lev-
els at multiple sites. The CombineDeepNet is a combination
architecture of three different networks, namely, BiLSTM, Bi-
GRU, and an FC layer. The BiLSTM layer extracts preliminary
features, while the BiGRU layer extracts deeper features from
the air quality data. The FC layer predicts the PM2.5 level using
these deep features. Deep features refer to the high-level abstract
representations of PM2.5 data extracted from the BiGRU module
using the lower level representation of the raw PM2.5 data from
the BiLSTM module. These deep features capture important pat-
terns and relationships in the data that are not easily discernible
from a simple analysis of the raw data. The absence of these deep
features can diminish the precision of PM2.5 level prediction. We
evaluate the performance of this model using three key metrics:
root mean square error (RMSE), mean absolute error (MAE),
and correlation coefficient (R2). Furthermore, we explore the
relationships between PM2.5 and meteorological factors, as well
as the associations between PM2.5, other pollutants, and meteo-
rological data for both short-term and long-term forecasts. Our
observations reveal that the CombineDeepNet model possesses
all the necessary attributes for accurately predicting PM2.5 con-
centrations. The main contributions of this article can be outlined
as follows.

1) The BiLSTM module is used to solve vanishing gradi-
ent problems and to integrate the relationship between
pollutant and meteorological data in the initial feature
investigation. The vanishing gradient problem refers to the
difficulty of RNNs propagating information over long se-
quences due to the diminishing gradients during backprop-
agation. This issue can hamper the network’s capability to
capture long-term dependencies within the data. BiLSTM
addresses this issue by employing gates. A standard LSTM
consists of three types of gates: the forget gate, the input
gate, and the output gate. The forget gate decides whether
to keep or discard information from the previous time step.
The input gate decides which new information should be
added to the cell state, and the output gate decides which
information gets transferred to the next step. In a BiLSTM,
there are separate sets of gates for the forward LSTM and
the backward LSTM. When we compute gradients during
backpropagation in a BiLSTM, it involves gradients from
both directions. If one direction experiences vanishing
gradients for a particular gate, the other direction might
have nonvanishing gradients, which can help prevent com-
plete information loss. Therefore, the bidirectional nature
of a BiLSTM makes it less likely for both directions to
simultaneously suffer from severe vanishing gradients.
Similar to the forget gate, the input and output gates
in a BiLSTM also have bidirectional counterparts. This
bidirectional gating allows information to flow from both
directions, potentially reducing the impact of vanishing
gradients.

BiLSTM can also effectively integrate the relationship
between pollutant and meteorological data by considering
temporal dependencies and contextual information. By
inputting both the pollutant and meteorological data into
the BiLSTM model, the network can learn the complex
relationships and patterns between them. The sequential
nature of BiLSTM allows it to capture dependencies over
time, enabling the model to understand how meteorolog-
ical factors affect pollutant levels at different time points.

2) The bidirectional gated recurrent units (BiGRU) module
not only mitigates the vanishing gradient problem but also
extracts deeper features from the preliminary features. In
a standard gated recurrent unit (GRU), there are reset and
update gates that regulate the information flow within the
network. In a BiGRU, there are two sets of these gates:
one for the forward GRU and one for the backward GRU.
When computing gradients during backpropagation in a
GRU, the gradients are influenced by both directions.
If one direction suffers from vanishing gradients for a
particular gate, the other direction may exhibit a nonvan-
ishing gradient for that gate, helping to prevent complete
information loss. This bidirectional aspect can make it
less likely for both directions to simultaneously encounter
severe vanishing gradients.
“Preliminary features” refer to the initial set of features
that act as the initial point of reference for the BiGRU mod-
ule. These preliminary features are derived from the output
of the BiLSTM modules. The selection of preliminary
features is typically based on the hidden patterns found
in the historical pollution data. These features capture rel-
evant information and characteristics from the data that are
deemed important for further analysis. Subsequently, the
BiGRU module processes these preliminary features and
extracts deep features from them. Deep features represent
higher level representations of the data, capturing more
complex patterns and relationships.

3) The FC layer is utilized to create an accurate long-term
forecast of PM2.5 concentrations across six monitoring
locations. We are forecasting the next 180 h of lead time.
We have measured the accuracy in terms of RMSE, MAE,
and R2. The FC layer is a type of ANN layer where each
neuron is linked to all neurons in the preceding layer. It is
commonly used for mapping high-level features extracted
from the preceding layers to the desired output. Here, the
FC layer takes the extracted features from the preceding
layers as input and performs computations to generate
predictions of PM2.5 concentrations.
By utilizing the FC layer, the model can capture complex
relationships and patterns in the input data to create ac-
curate long-term forecasts. The layer learns to combine
the extracted features from earlier layers and map them to
the desired output, which is the prediction of PM2.5 con-
centrations at various monitoring locations. In addition,
the experimental outcomes demonstrate the superior per-
formance of our proposed model compared with several
other well-known DL models.



DEY et al.: COMBINEDEEPNET: A DEEP NETWORK FOR MULTISTEP PREDICTION OF NEAR-SURFACE PM2.5 CONCENTRATION 791

TABLE II
LATITUDE AND LONGITUDE DETAILS OF SIX MONITORING STATIONS

4) In the spirit of transparent research, we make available
the code used to produce the findings of this work on the
https://github.com/Prasanjit-Dey/CombineDeepNet.

In this work, the name “CombineDeepNet” signifies the com-
bining aspect of the model. The model incorporates three mod-
ules: BiLSTM, BiGRU, and FC layers. The BiLSTM module
takes the pollutants and meteorological data as input and extracts
initial features. The BiGRU module then takes these initial
features as input and further extracts deep features. Finally, the
FC layers utilize the deep features to make predictions. The
combining aspect of our framework lies in the integration of
these three architectural components for long-term prediction.
By combining BiLSTM, BiGRU, and FC layers, we leverage the
capabilities of these modules to enhance predictive performance.
Therefore, we named our framework “CombineDeepNet” to
reflect its combining nature.

The rest of this article is organized as follows. Section II in-
cludes the study area and dataset analysis. The proposed method
is described in Section III. It includes the CombineDeepNet
framework. Section IV incorporates the results of the proposed
model and five other popular DL models. Section V analyzes
the discussion of the CombineDeepNet model and the other five
models. Finally, Section VI concludes this article.

II. STUDY AREA AND DATASET ANALYSIS

A. Study Area

The six urban and suburban monitoring stations of China,
namely, Aoti Zhongxin, Dongsi, Shunyicheng, Tiantan, Haidan
Wanliu, and Wanshou Xigong, are selected as study areas.
Table II shows the detailed description of six monitoring stations
along with latitude and longitude details. Similarly, Fig. 1 depicts
the physical location of the research region. These stations are
in highly urbanized and industrialized regions. We have chosen
the monitoring stations in these areas as our main study focus.
We observe that there is still significant room for improvement
in overall air quality in these chosen areas when compared with
international standards. As a consequence, precise prediction of
PM2.5 concentrations in these locations is critical. While our
study primarily focuses on providing accurate predictions of air
quality pollutants, such as PM2.5, the information obtained from
these predictions can be valuable in informing decision-making
processes related to air pollution mitigation and control. In
addition, accurate predictions enable the identification of critical
periods or locations where pollution levels are likely to exceed
the limits, allowing for proactive measures and interventions.

Fig. 1. Distribution of PM2.5 pollution monitoring station in China. Here,
there are six monitoring stations across urban and suburban areas.

B. Dataset Analysis

1) Data Description: In this research, our dataset contains
past pollution levels and meteorological parameters collected
from six monitoring stations (Aoti Zhongxin, Dongsi, Shun-
yicheng, Tiantan, Haidan Wanliu, and Wanshou Xigong) in
China between March 1, 2013 and February 28, 2017. It contains
35 064 h of data for each monitoring site. The dataset contains
12 pollutant and meteorological variables, such as PM2.5, PM10,
SO2, NO2, CO, O3, temperature, air pressure, humidity, rain,
wind direction, and wind speed. The inclusion of other pollutants
and meteorological variables alongside PM2.5 serves a specific
purpose. By incorporating these additional variables, we aim
to leverage the synergistic relationships and interactions among
different factors affecting air quality. This approach allows the
DL model to extract efficient hidden patterns and improve the
overall prediction accuracy. Table III describes the statistical
information of maximal values, minimal values, mean values,
and standard deviation for six monitoring stations. We observe
that high mean and standard deviation values for pollutant con-
centrations like PM2.5, PM10, SO2, NO2, CO, and O3 over six
monitoring stations can indicate significant fluctuations in air
quality over time, and there are multiple sources of pollutants in
the area.

2) Correlation of PM2.5 With Other Parameters: We cal-
culated the correlation coefficient between pollutants and me-
teorological parameters for six monitoring stations: (a) Aoti
Zhongxin, (b) Dongsi, (c) Shunyicheng, (d) Tiantan, (e) Haidan
Wanliu, and (f) Wanshou Xigong, as shown in Fig. 2. It shows
that PM2.5 has the highest correlation with other parameters,
specifically PM2.5 has the strongest correlation with PM10 for all
six monitoring sites. Furthermore, Table IV presents the grading
table for the Spearman correlation coefficient (ρ) [46]. The
Spearman correlation coefficient is employed to assess both the
magnitude and direction of the monotonic relationship between

https://github.com/Prasanjit-Dey/CombineDeepNet
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TABLE III
STATISTICAL INFORMATION OF SIX MONITORING STATIONS

TABLE IV
GRADING TABLE OF SPEARMAN CORRELATION COEFFICIENT (ρ) [46]

variables. According to the table, a strong correlation exists
between PM2.5 and other parameters, especially between PM2.5

and PM10, as the correlation coefficient between them is at least
0.87 for all monitoring sites. This strong correlation implies that
there is a hidden pattern between the parameters, which can be
useful during the model training process to improve prediction
accuracy.

In addition, PM2.5 is a well-established air pollutant that
has been consistently associated with numerous adverse health
effects [1]. Consequently, our objective was to estimate the con-
centration of PM2.5 by leveraging meteorological parameters
and historical pollution levels, as these factors exhibit strong
correlations with PM2.5 levels. It is important to reiterate that
the primary focus of this article is to predict PM2.5 due to its
significant impact. Hence, PM2.5 has been chosen as the target
variable in this study.

3) Distribution Characteristic of Data: We identified six
monitoring sites: Aoti Zhongxin, Dongsi, Shunyicheng, Tiantan,
Haidan Wanliu, and Wanshou Xigong as the study targets. These

monitoring locations were selected to investigate the properties
of air pollution dispersion and meteorological data. Fig. 3 shows
the numerical variations in PM2.5 concentrations over various
time periods across six monitoring sites. The deep blue line
shows the 30-day exponential moving average of PM2.5 concen-
trations. The reason for using a 30-day exponential moving aver-
age is to smooth out short-term fluctuations in the data, while still
capturing long-term trends. This approach can provide a clearer
representation of the overall pattern of PM2.5 levels over time,
particularly in situations where the data may be noisy or subject
to short-term variability. The choice of 30 days may have also
been based on practical considerations, such as the frequency of
data collection and the time scale of relevant environmental and
health effects associated with PM2.5 exposure. In addition, it is
a commonly used time frame for calculating moving averages
in various fields, including finance and economics [47], [48]. It
shows that the changes in PM2.5 concentration have been pretty
consistent over time. This suggests that there may be a hidden
correlation in the historical data.

After statistical analysis, an average of 63.20% of the PM2.5

levels at the six monitoring sites were determined to be greater
than the World Health Organization’s (WHO) first interim
threshold of 35 μg/m3. Exposure to this pollutant can have
adverse health effects on both vulnerable and healthy individ-
uals [1]. The health effects may include respiratory and car-
diovascular problems, among others, and can range in severity
depending on the level and duration of exposure. Moreover,
exposure to high levels of this pollutant can be harmful to the
entire population, not just vulnerable individuals. The average
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Fig. 2. Correlation coefficient between pollutants and meteorological parameters for six monitoring stations: (a) Aoti Zhongxin, (b) Dongsi, (c) Shunyicheng,
(d) Tiantan, (e) Haidan Wanliu, and (f) Wanshou Xigong.

Fig. 3. Distribution of PM2.5 concentrations across six monitoring stations: (a) Aoti Zhongxin, (b) Dongsi, (c) Shunyicheng, (d) Tiantan, (e) Haidan Wanliu,
and (f) Wanshou Xigong. The deep blue line depicts the 30-d exponential moving average of PM2.5 concentrations, indicating a consistent pattern.
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Fig. 4. Frameworks of the CombineDeepNet for PM2.5 concentration prediction. xt−i is the pollutants’ concentration and meteorological data input in the model
for each timestamp.

PM2.5 concentration of 40.02% was found to be greater than
75 μg/m3, which has a direct impact on physical health and
human life. Therefore, to predict PM2.5 concentration accurately
and prevent its impact on human health, we considered the
hidden relationship of the historical data [49], [50]. In our experi-
ment, we used 35 064 h of data from each of the monitoring sites.
However, we removed some inconsistent data, such as missing
data and data with known errors or anomalies. These data points
were excluded from the analysis to ensure the reliability and
accuracy of our models. Among the remaining data, we used
26 300 h to train the models and 8760 h to test the models.

III. METHOD

A. Overview of Proposed Framework

Fig. 4 depicts the proposed CombineDeepNet framework. The
main structure is made up of the three stages listed below.

1) Data Analysis and Preprocessing: First, some of the data
from the six monitoring stations could be lost because of equip-
ment failure, routine maintenance, bad transmission, or other
things that cannot be controlled. However, data loss significantly
affects the performance of the prediction models. Therefore,
replacing the empty or “nan” values is critical to ensuring the
model’s performance [51]. Using “nan” values in data during
DL model training can pose three main challenges as follows:

i) Data incompatibility: Many DL frameworks and libraries
expect numeric data as input. The “nan” is a nonnu-
meric value, which can lead to compatibility issues when

training DL models. It may result in errors or inconsisten-
cies during computations, affecting the training process.

ii) Inconsistent data shape: DL models typically require
consistent data shapes for proper training. If “nan” values
are present in the dataset, they can introduce inconsis-
tencies in the data shape. This can cause difficulties in
batching, vectorization, or applying certain operations,
leading to training errors or unexpected behavior.

iii) Gradient computation issues: DL models rely on gradi-
ent computations during backpropagation for updating
model parameters. The “nan” values can disrupt these
computations because gradients for nonnumeric values
are undefined. This can introduce errors or inaccuracies
during gradient descent optimization, hindering the train-
ing process.

To address these challenges, some common strategies for
handling empty or “nan” values have been employed in previous
research, such as: 1) using the mean value of the previous and
next values for the current “nan” value, 2) k-nearest neighbor,
etc. In this research, we replace a missing value with the existing
data’s next value. Next, the Pearson correlation coefficient is
applied to the six monitoring stations to assess the degree of
correlation between pollutants and meteorological data, which
can be utilized for geographical analysis [52]. Fig. 2 displays
the correlation coefficients between variables for the six moni-
toring stations. In addition, Table IV presents the grading tables
for the Spearman correlation coefficient, which assesses the
strength of the correlation between variables. Both the figures
and tables indicate a strong correlation between PM2.5 and the
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other variables across all six monitoring sites. The presence of
a strong correlation suggests the existence of hidden patterns,
which can be leveraged during the model training process to
enhance prediction accuracy. Furthermore, PM2.5 is a widely
recognized air pollutant that has been associated with numerous
negative health impacts [1]. Therefore, we aimed to determine
the PM2.5 concentration based on meteorological parameters
and past pollution levels, as these factors are closely related
to PM2.5 levels. Therefore, in this study, PM2.5 is chosen as
the target variable. Then, we normalize the dataset using the
min-max technique, which is described as follows:

xt =
xt −min(xt)

max(xt)−min(xt)
. (1)

In this case, xt represents a single dataset from six monitoring
stations, and min(.) and max(.) represent the minimal and
maximal values of the xt.

2) Prediction Model: CombineDeepNet is a powerful DL
framework that combines the BiLSTM, BiGRU, and FC lay-
ers to address the PM2.5 prediction problem. The motivation
behind CombineDeepNet was to leverage the capabilities of
both BiLSTM and BiGRU modules for extracting features from
the input data. The BiLSTM module is employed to capture
temporal dependencies and patterns in pollutants and meteoro-
logical data, generating initial features. These initial features are
subsequently fed into the BiGRU module, which further extracts
deeper features by leveraging its ability to model long-term
dependencies. The FC layers in CombineDeepNet utilize these
deep features to predict PM2.5 concentration.

To enhance accuracy and understand the relationships be-
tween various variables, CombineDeepNet combines multiple
pollutants and meteorological factors to generate more accurate
predictions and identify meaningful relationships between the
different variables. The training method employs a combination
of input data and target results. In this scenario, the input
data comprises air pollutants and meteorological parameters
collected from six monitoring stations over the past r h. Here, r is
equal to 26 300 h, and these data are fed into the hybrid models as
x = xt−i, . . . , xt−r−1, where xt−i ∈ Rm (with m denoting the
number of pollutants and meteorological parameters) for each
station. The objective of this task is to forecast the PM2.5 level for
each monitoring station, specifically for n h into the future. This
forecast is represented as y = yt+1, . . . , yt+j , . . . , yt+n, where
yt+j ∈ R represents the prediction outcome. In this context, n
corresponds to 180 h.

The highest concentration of PM2.5 is an indicator of air
pollution and its potential adverse effects on human health [1]. In
our research, we specifically focused on estimating and predict-
ing the concentration of PM2.5, recognizing its importance in
understanding and addressing air quality concerns. The training
method for this framework is designed using a three-module
architecture. In the first module, there is a 50-unit BiLSTM layer
that is used to look for early features in the training data. The
BiLSTM layer is a variant of the RNN capable of processing
sequential data in both forward and backward directions. This
makes it useful for finding patterns in time series data. The

second module consists of a BiGRU layer with 50 units, which
further extracts deep features.

While BiLSTMs are well-regarded for their ability to capture
long-range dependencies in sequential data, they tend to impose
a higher computational and memory demand compared with
BiGRUs [53]. BiGRUs, being a simpler variant, offer computa-
tional efficiency. In our experiment, we tackled the challenge of
making accurate long-term predictions of PM2.5 concentration
within a complex and dynamic domain. Given this context, it was
imperative to select a computationally efficient DL architecture.
To strike a balance between model complexity and predictive
accuracy, we initially integrated a single layer of BiLSTM into
our model for primary feature extraction. Our analysis revealed
that this single layer of BiLSTM was insufficient to capture
the features necessary for accurate predictions. Adding more
BiLSTM layers would have escalated computational complexity
without commensurate gains in accuracy. Therefore, in our
proposed architecture, we incorporated BiGRU layers to extract
deeper features. This hybrid approach allowed us to harness the
strengths of BiLSTM for primary feature extraction, whereas
benefiting from the computational efficiency of BiGRU for
capturing intricate, long-range dependencies. In our study, we
conducted experiments with various numbers of units to identify
the optimal configuration. After a thorough evaluation, we de-
termined that utilizing 50 units in both the BiLSTM and BiGRU
layers provided the optimal solution in terms of accuracy and
computational efficiency.

To regularize the training process, dropout layers are added
after each of the BiLSTM and BiGRU layers. Dropout is a strat-
egy for preventing overfitting by randomly removing a particular
proportion of neurons during training. It has proven to be a
valuable technique for regularization in DL, helping networks
generalize better and avoid overfitting. Researchers have found
that dropout can lead to improved performance and generaliza-
tion on a wide range of tasks [54], [55]. The third module is a FC
layer that takes the output from the BiGRU layers and completes
the PM2.5 prediction as y = yt+1, . . . , yt+j , . . . , yt+n. The FC
layer is a sort of neural network layer that utilizes the character-
istics retrieved by the preceding layers to produce predictions.

3) Model Evaluation: The last step of the proposed Com-
bineDeepNet framework is model evaluation. The Com-
bineDeepNet model, along with other popular DL models, is
evaluated by comparing their predicted values to actual values
using various metrics. These metrics are then compared to
determine whether the proposed model is better at predicting
PM2.5.

Overall, the combined neural network model considers both
air pollutants and meteorological parameters, employing a three-
module architecture to extract initial and deep features and make
predictions. This approach was developed primarily to forecast
PM2.5 concentrations, which may have a substantial influence
on air quality and human health.

B. CombineDeepNet

Initially, air pollutants and meteorological parameters from
six individual monitoring sites are fed into both the forward and
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backward directions of an LSTM model in chronological or-
der using the time-series notation x = xt, . . . , xt−i, . . . , xt−r+1

for preliminary feature extraction. Each forward and backward
LSTM gate, such as the forget gate (ft), input gate (it), output
gate (Ot), candidate cell state (C̃t), and hidden cell state (Ct),
extracts features from the training data. Here, the forget gate
determines the extent to which information from the cell state
is retained by the current unit, whereas the input gate decides
how much information from the current input is saved in the
cell state. Finally, the output gate controls the output state of the
memory cell. The equations governing each gate are as follows:

it = σ (Wi [ht−1, xt] + bi) (2)

ft = σ (Wf [ht−1, xt] + bf ) (3)

Ot = σ (Wo [ht−1, xt] + bo) (4)

where σ denotes the sigmoid activation function, the weight for
the corresponding gate (x) neurons is represented by Wx, ht−1
denotes the output of the previous LSTM unit (at timestamp
t− 1), xt denotes input at the current period, and bx denotes the
biases for the corresponding gates (x).

The following are the equations for the candidate cell state,
hidden cell state, and final output:

C̃t = tanh (Wc [ht−1, xt] + bc) (5)

Ct = ft ∗ ct−1 + it ∗ C̃t (6)

ht = Ot ∗ tanh(Ct) (7)

where tanh represents the activation function.
Finally, forward and backward LSTM combines the fea-

tures to create preliminary features in time series order O =
{Ot, . . . , Ot−i, . . . , Ot−r+1}. Therefore, BiLSTM employed

two hidden layers, including forward hidden layers (h
f−→
t ) and

backward hidden layers (h
b←−

t ). Finally, the preliminary features

are generated by combining h
f−→
t and h

b←−
t . The key equations of

the BiLSTM network are shown as follows:

h
f−→
t = tanh

(
W

f−→
h xt +W

f−→
h h

f−→
t−1 + b

f−→
h

)
(8)

h
b←−

t = tanh

(
W

b←−
h xt +W

b←−
h h

b←−
t−1 + b

b←−
h

)
(9)

Ot = W
f−→h

f−→
t +W

b←−h
b←−

t + bo (10)

where O denotes the output features, w denotes the weight
matrix, x represents the training data, and b represents the bias.

Subsequently, the output features O =
{Ot, . . . , Ot−i, . . . , Ot−r+1} were utilized as input to the
forward and backward GRU for further feature extraction. The
update and reset gates within each unit of the forward and
backward GRU were then employed to extract features. The
update gate enables the model to evaluate the extent of historical
information (from prior time steps) that should be conveyed to
future steps. The reset gate enables the model to determine the
amount of historical information that should be disregarded.
The key equations of the update gates (zt), reset gates (rt),
candidate cell state (h̃t), and hidden cell states (ht) are shown

as follows:

zt = σ (Wz [ht−1, Ot] + bz) (11)

rt = σ (Wr [ht−1, Ot] + br) (12)

h̃t = tanh (WhOt + (rt � ht−1) ∗Wh + bh) (13)

ht = zt � ht−1 + (1− zt) (14)

where Wz and Wr represent the weight parameters, bz and br
denote the bias parameters, and � represents the Hadamard
(elementwise) product operator.

Next, the forward and backward GRU merge the features
and create the deep features in a temporal sequence y =
yt, . . . , yt−i, . . . , yt−r+1, as expressed in the equation represent-
ing the BiGRU network.

h
f−→
t = tanh

(
W

f−→
h Ot +W

f−→
h h

f−→
t−1 + b

f−→
h

)
(15)

h
b←−

t = tanh

(
W

b←−
h Ot +W

b←−
h h

b←−
t−1 + b

b←−
h

)
(16)

yt = W
f−→h

f−→
t +W

b←−h
b←−

t + by. (17)

Lastly, the FC layers use the extracted features to forecast
the PM2.5 concentration. The approach presented is outlined in
Algorithm 1.

C. Evaluation Metrics

In this study, the CombineDeepNet model was compared
against other prediction models using the same dataset. The fore-
casting accuracy of the CombineDeepNet model was evaluated
using the RMSE, MAE, and R2 metrics. The following equation
represents these metrics:

RMSE =

√
1

n
Σn

i=1(xi − yi)2 (18)

MAE =
1

n

n∑
i=1

|xi − yi| (19)

R2 =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
(20)

where, xi and yi are the test and forecast results of PM2.5 level,
respectively,n signifies the quantity of data points within the test
dataset, i represents a collection of test data, and x and y is the
mean value of n observed sample. For RMSE and MAE metrics,
lower values indicate higher forecasting accuracy. Similarly, for
R2 metric, a higher value indicates higher forecasting accuracy.

IV. RESULTS

A set of tests was carried out to assess the efficacy of the
proposed model. The test dataset from six monitoring stations
was employed in the CombineDeepNet model to observe the
forecasting accuracy. The same dataset was then applied to
five popular DL models (CNN, LSTM, GRU, CNN-LSTM, and
CNN-GRU), and their prediction accuracy was recorded. Lastly,
the CombineDeepNet model’s prediction results were compared
with those of the five popular DL models, confirming the model’s
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Algorithm 1: Pseudo Code for Proposed Method.

efficacy. The Supplementary Material includes the results from
comparisons with other models.

A. Parameter Setting

In this article, we employed 26 300 h (75%) of data for training
the models and 8760 h (25%) of data for model testing. A number
of experiments were used to identify the hyperparameter config-
uration for this research, which resulted in the selection of the

TABLE V
SPECIFIC HYPERPARAMETER SETTINGS ACCORDING TO THE BEST MODEL’S

PERFORMANCE

ideal hyperparameter set. To assess the prediction effectiveness
of the algorithm, a validation set was utilized to calculate the
mean squared error (MSE) after each epoch. Then, we selected
the optimal model based on the validation set’s error. We used
the following methodology for the model training time: we
set the number of epochs to 100 and tested the trained model
against the validation set after each epoch. We changed and
saved the model parameters if the forecasting model’s MSE on
the validation set improved. We ended the training after making
several adjustments to the parameters and conducting various
experiments, when the forecasting model’s performance on the
validation set was at its best. Lastly, in this experiment, we
employed dropout to prevent the issue of model overfitting.

Also, we carefully addressed the selection of the time lag
parameter for prediction tasks. We have addressed the concept
of time lag differently. Instead of specifying a fixed time lag, we
use a window size of 4 during the training phase. This means
that when making predictions, we considered the previous 4
data points (t, t+ 1, t+ 2, t+ 3) as the “context” or “memory”
for the model. In other words, we allowed the network to
capture dependencies within this 4-h window. Furthermore, our
predictions cover a time range of 0 to 180 h, which means that the
model is designed to make forecasts for a relatively long-term
horizon. The information within the 4-h window contributes
to the model’s understanding of temporal patterns and trends,
allowing it to make predictions over this extended time frame.

The general hyperparameters used in this experiment are
included in Table V. The layer-by-layer parameters are incor-
porated into the Supplementary Material. For further reference,
we have included the code in the GitHub repository.1

B. Loss Function of the Proposed Model

Fig. 5 shows the training loss versus validation loss during
training of the CombineDeepNet model over six monitoring sta-
tions, namely, (a) Aoti Zhongxin, (b) Dongsi, (c) Shunyicheng,
(d) Tiantan, (e) Haidan Wanliu, and (f) Wanshou Xigong. The
blue line in Fig. 5 shows the train loss, and the orange line shows
the validation loss. The loss function is an important component

1[Online]. Available: https://github.com/Prasanjit-Dey/CombineDeepNet

https://github.com/Prasanjit-Dey/CombineDeepNet
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Fig. 5. Train loss versus validation loss of the proposed CombineDeepNet model over six monitoring stations: (a) Aoti Zhongxin, (b) Dongsi, (c) Shunyicheng,
(d) Tiantan, (e) Haidan Wanliu, and (f) Wanshou Xigong.

of a DL model since it is used to evaluate the efficacy of a trained
model on a training sample. The loss function’s purpose is to
minimize the disparity between the anticipated and real output.
The performance of the model improves as the loss function
value decreases. However, when a model is trained too closely on
the input dataset, it can lead to an overfitting problem. It occurs
when a model learns the noise in the data instead of the hidden
patterns, which results in poor generalization performance on
new data. To overcome overfitting, a loss strategy is used to
remove the model’s overfitting flaws. This involves adjusting the
model’s parameters to achieve a balance between minimizing
the training loss function and maximizing the validation loss
function. During the model training process, the training loss
function is calculated during each iteration or epoch to monitor
the model’s performance on the training data. The validation
loss function is then measured after each iteration or epoch to
evaluate the model’s generalization performance on new data. If
the validation loss function starts increasing whereas the training
loss function continues to decrease, it is a sign of overfitting,
and the model needs to be adjusted to improve its generalization
ability.

C. Multistep Prediction of PM2.5 Concentration Over Six
Monitoring Stations

This section summarizes the findings and results of the study.
Our main focus in this article is on the long-term, multistep
forecasting of PM2.5 levels over six monitoring stations. In this
context, Figs. 6 and 7 play a crucial role in illustrating how
different models, namely, (a) CNN, (b) LSTM, (c) GRU, (d)
CNN-LSTM, (e) CNN-GRU, and (f) the proposed model, can
be generalized to the same test data over Aoti Zhongxin, and
Wanshou Xigong monitoring stations. The x-axis of Figs. 6 and
7 corresponds to a time span of 180 h, indicating that the initial
180 consecutive lead times were chosen from the test data to

assess the performance of the forecasting models. In contrast,
the y-axis depicts both the observed test data and the predicted
PM2.5 concentration. Specifically, the red curve represents the
observed test data, whereas the green curve denotes the predicted
values.

Figs. 6 and 7 demonstrate an interesting comparison of the
proposed model’s efficiency with five popular DL models: (a)
CNN, (b) LSTM, (c) GRU, (d) CNN-LSTM, and (e) CNN-GRU.
The results show that the CombineDeepNet model excels in
terms of generalization for longer lead times compared with the
other models. Specifically, the green curve, which represents
the forecasting value of the proposed model, closely aligns with
the actual test data represented by the red curve, demonstrating a
high degree of accuracy. The comparison presented in the figures
highlights the significance of the CombineDeepNet model’s
ability to generalize better than other popular DL models. Gen-
eralization plays a pivotal role in evaluating prediction models as
it assesses a model’s ability to effectively handle new, previously
unobserved data. A model that generalizes well can provide more
accurate and reliable predictions, which makes it more suited for
forecasting PM2.5 concentrations.

D. Comparison With Statistical Result for Long-Term PM2.5

Concentration Prediction

To further confirm the validation of the CombineDeepNet
model by incorporating three statistical analysis techniques:
RMSE, MAE, and R2. To analyze the CombineDeepNet model’s
performance, the prediction task was divided into multistep lead
times ranging from 40–180 h. In addition, five other popular
DL models, namely, CNN, LSTM, GRU, CNN-LSTM, and
CNN-GRU, were also considered for comparison.

Fig. 8 presented a comparison of the CombineDeepNet
model’s effectiveness in terms of RMSE with other models
for the prediction of PM2.5 concentration over six monitoring
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Fig. 6. Plot of actual PM2.5 concentration versus predicted PM2.5 concentration in the Aoti Zhongxin monitoring station for the 0 to 180 h lead times over six
models: (a) CNN, (b) LSTM, (c) GRU, (d) CNN-LSTM, (e) CNN-GRU, and (f) the proposed model. It represents how well the model generalizes new data.

Fig. 7. Plot of actual PM2.5 concentration versus predicted PM2.5 concentration in the Wanshou Xigong monitoring station for the 0 to 180 h lead times over
six models: (a) CNN, (b) LSTM, (c) GRU, (d) CNN-LSTM, (e) CNN-GRU, and (f) the proposed model. It represents how well the model generalizes new data.

stations: (a) Aoti Zhongxin, (b) Dongsi, (c) Shunyicheng, (d)
Tiantan, (e) Haidan Wanliu, and (f) Wanshou Xigong. The
findings demonstrated that the CombineDeepNet model out-
performed the other five models in terms of RMSE for all six
monitoring stations during long-term lead time, indicating its
superiority in predicting PM2.5 concentration.

Similarly, Fig. 9 presented the MAE values of the proposed
model and the other five models over the same six monitoring
stations. The findings demonstrated that the CombineDeepNet

model had lower MAE values than the other five models, in-
dicating its better performance in accurately predicting PM2.5

concentrations.
To further assess the effectiveness of CombineDeepNet, Ta-

ble VI provides a numerical analysis comparing the Com-
bineDeepNet model with five popular DL models, emphasizing
RMSE for forecasting PM2.5 concentration across the same
six monitoring stations. The table highlighted that the Com-
bineDeepNet model had significantly lower RMSE values than
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Fig. 8. Comparison of the performance of the proposed model with other models in terms of RMSE for the prediction of PM2.5 concentration over six monitoring
stations: (a) Aoti Zhongxin, (b) Dongsi, (c) Shunyicheng, (d) Tiantan, (e) Haidan Wanliu, and (f) Wanshou Xigong.

the other five models during long-term lead time, thus, reinforc-
ing the findings of the graphical analysis.

Similarly, Tables VII and VIII presented the numerical values
of MAE and R2 for the CombineDeepNet model and the other
five models over the same six monitoring stations. The results
revealed that, in comparison with the other models, the Com-
bineDeepNet model exhibited lower MAE values and higher
R2 values, providing further evidence for the superiority of the
proposed model in accurately forecasting PM2.5 concentration.

Thus, the statistical results demonstrate that the Com-
bineDeepNet model achieves promising performance in accu-
rately forecasting PM2.5 concentration levels when compared
with other popular DL models.

E. Comparison Between the Top Three Models:
CombineDeepNet, LSTM, and GRU

In this section, we further compare the prediction accu-
racy of the top three models: our proposed CombineDeepNet,
LSTM, and GRU, using box plots. Fig. 10(a)–(f) illustrates the
box plots of the RMSE values obtained for CombineDeepNet,
LSTM, and GRU models across six monitoring stations: Aoti
Zhongxin, Dongsi, Shunyicheng, Tiantan, Haidian Wanliu, and
Wanshou Xigong. These plots demonstrate a consistent trend of
RMSE values for CombineDeepNet, whereas for LSTM and
GRU models, RMSE scores are more widely spread across
most of the stations. In addition, the average RMSE values for
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Fig. 9. Comparison of the performance of the proposed model with other models in terms of MAE for the prediction of PM2.5 concentration over six monitoring
stations: (a) Aoti Zhongxin, (b) Dongsi, (c) Shunyicheng, (d) Tiantan, (e) Haidan Wanliu, and (f) Wanshou Xigong.

CombineDeepNet are consistently lower than those for LSTM
and GRU, highlighting the superiority of the CombineDeep-
Net model. Therefore, this model can be effectively applied
in complex environments for long-term PM2.5 concentration
prediction.

F. Comparison With Fitting Curve

Further, the CombineDeepNet model’s effectiveness was
evaluated based on the degree of fit between the actual and pre-
dicted PM2.5 concentrations. Fig. 11 presents the scatter plot that
depicts the degree of fit between the actual and forecasting PM2.5

concentrations on the test set for the six monitoring stations
over 0–180 h. The y-axis indicates the forecasted PM2.5 level,
whereas the x-axis indicates the actual PM2.5 concentration. In
Fig. 11, the red line represents the y = ŷ function, whereas
the green dots represent the degree of variation between the
actual and forecasted PM2.5 concentration. We observed that the
proposed model’s forecasted PM2.5 concentrations are generally
consistent with the actual PM2.5 concentrations.

Furthermore, we conducted a dispersion comparison analysis
for the PM2.5 concentrations between 0 and 400 μg/m3. The
results demonstrate that the CombineDeepNet model’s perfor-
mance was best within this range. Overall, the results indicate
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Fig. 10. Box plot of RMSE values for CombineDeepNet, LSTM, and GRU across six monitoring stations: (a) Aoti Zhongxin, (b) Dongsi, (c) Shunyicheng, (d)
Tiantan, (e) Haidian Wanliu, and (f) Wanshou Xigong.

Fig. 11. Degree of fit between the actual and predicted values of the proposed model on the test set in the [0–180 h] task for the six monitoring stations: (a) Aoti
Zhongxin, (b) Dongsi, (c) Shunyicheng, (d) Tiantan, (e) Haidan Wanliu, and (f) Wanshou Xigong.
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TABLE VI
NUMERICAL EVALUATION OF THE COMBINEDEEPNET MODEL ALONGSIDE POPULAR DL MODELS REGARDING RMSE FOR FORECASTING PM2.5 CONCENTRATION

ACROSS SIX MONITORING STATIONS: (A) AOTI ZHONGXIN, (B) DONGSI, (C) SHUNYICHENG, (D) TIANTAN, (E) HAIDAN WANLIU, AND (F) WANSHOU XIGONG

that the CombineDeepNet model can efficiently forecast PM2.5

concentrations. The model’s performance was consistent across
the six monitoring stations, suggesting that it can be applied in
different geographical locations. Further testing and validation
on other datasets will be required to confirm the generalizability
of the proposed model.

Therefore, our study presents a promising approach for pre-
dicting PM2.5 concentrations, which might be valuable for air
quality monitoring and management.

V. DISCUSSION

Making long-term predictions of PM2.5 is a difficult task, as it
requires highly correlated historical pollutant and meteorologi-
cal data. Moreover, it is difficult to establish the duration of the
input sequence, which makes accurate prediction much more
difficult. However, in this article, we propose CombineDeep-
Net, which can easily achieve long-term prediction for PM2.5

concentration. The CombineDeepNet model achieves accurate
long-term forecasting of PM2.5 concentrations by combining
various types of data, including historical pollutant and me-
teorological data, as well as other environmental data. This
allows the model to capture complex relationships between
different environmental variables and accurately predict PM2.5

concentrations over a long period of time.

Table VI shows that the proposed model’s RMSE values are
closely related to the LSTM and GRU models, and outperform
the CNN, CNN-LSTM, and CNN-GRU models for long-term
lead time for all six monitoring stations. The RMSE values of
the proposed model ranged from 6.70 to 23.50 μg/m3 for Aoti
Zhongxin, 8.7 to 30.4 μg/m3 for Dongsi, 6.70 to 37.3 μg/m3 for
Shunyicheng, 6.20 to 34.6μg/m3 for Tiantan, 8.50 to 43.0μg/m3

for Haidan Wanliu, and 6.90 to 22.0μg/m3 for Wanshou Xigong.
The RMSE values of the other five models ranged from 5.40 to
49.0 μg/m3 for Aoti Zhongxin, 5.60 to 56.6 μg/m3 for Dongsi,
5.80 to 60.8 μg/m3 for Shunyicheng, 5.10 to 64.0 μg/m3 for
Tiantan, 4.40 to 59.9 μg/m3 for Haidan Wanliu, and 7.20 to
40.9 μg/m3 for Wanshou Xigong.

Similarly, Tables VII and VIII demonstrate that the Com-
bineDeepNet models’ MAE and R2 values are closely related
to the LSTM and GRU models, as well as outperform the CNN,
CNN-LSTM, and CNN-GRU models for the long-term lead time
for all six monitoring stations. The MAE values of the proposed
model ranged from 2.40 to 3.40 μg/m3 for Aoti Zhongxin, 2.70
to 3.90 μg/m3 for Dongsi, 2.30 to 4.20 μg/m3 for Shunyicheng,
2.20 to 4.10 μg/m3 for Tiantan, 2.70 to 4.50 μg/m3 for Haidan
Wanliu, and 2.4 to 3.50μg/m3 for Wanshou Xigong. Conversely,
the MAE values of the other five models ranged from 2.10 to
5.80 μg/m3 for Aoti Zhongxin, 2.10 to 5.40 μg/m3 for Dongsi,
2.10 to 5.50 μg/m3 for Shunyicheng, 1.90 to 6.00 μg/m3 for
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TABLE VII
NUMERICAL EVALUATION OF THE COMBINEDEEPNET MODEL ALONGSIDE POPULAR DL MODELS REGARDING MAE FOR FORECASTING PM2.5 CONCENTRATION

ACROSS SIX MONITORING STATIONS: (A) AOTI ZHONGXIN, (B) DONGSI, (C) SHUNYICHENG, (D) TIANTAN, (E) HAIDAN WANLIU, AND (F) WANSHOU XIGONG

Tiantan, 1.90 to 6.00 μg/m3 for Haidan Wanliu, and 2.50 to
4.90 μg/m3 for Wanshou Xigong. The R2 values of the proposed
model ranged from 0.78 to 0.99 for Aoti Zhongxin, 0.68 to
0.98 for Dongsi, 0.66 to 0.96 for Shunyicheng, 0.83 to 0.97
for Tiantan, 0.60 to 0.95 for Haidan Wanliu, and 0.74 to 0.98
for Wanshou Xigong. Whereas the R2 values of the other five
models ranged from 0.23 to 0.99 for Aoti Zhongxin, 0.46 to
0.98 for Dongsi, 0.22 to 0.95 for Shunyicheng, 0.08 to 0.96 for
Tiantan, 0.24 to 0.97 for Haidan Wanliu, and 0.53 to 0.98 for
Wanshou Xigong.

The experimental findings indicate that the CombineDeepNet
is very accurate at forecasting PM2.5 concentrations for long-
term scenarios at numerous target sites. In particular, Fig. 8
depicts the RMSE values of the CombineDeepNet model and
other five models at six monitoring stations, showing that the
CombineDeepNet model had the lowest RMSE values or similar
RMSE values in comparison to the other models. This finding
implies that the CombineDeepNet model performs better than
other models in terms of long-term forecast accuracy for PM2.5

concentrations. In addition, the results presented in Fig. 9 show
that the proposed model had the lowest MAE values for all
six monitoring stations in the long-term scenarios. This finding
suggests that the CombineDeepNet model is highly effective

in accurately predicting PM2.5 concentrations over an extended
period.

The optimal values for the RMSE, MAE, and R2 for the
proposed CombineDeepNet model were also reported. The op-
timal RMSE value was 22.0 μg/m3, the optimal MAE value was
3.4 μg/m3, and the optimal R2 value was 0.96 for the long-term
lead time. These values indicate that the CombineDeepNet
model can efficiently forecast PM2.5 concentrations for an ex-
tended period with minimal errors. The experimental findings
demonstrate that the CombineDeepNet model is quite good at
forecasting PM2.5 concentrations in long-term situations across
various target sites. The suggested model seems to be able to
accurately forecast PM2.5 concentrations with minimum errors
over a long period of time, as shown by the model’s superior
accuracy compared with previous models.

In this research, we describe the findings of our investiga-
tion, in which we selected a consecutive 180-h test dataset and
displayed it in Figs. 6 and 7 for Aoti Zhongxin and Wanshou
Xigong monitoring stations. Our primary goal was to evaluate
the fitting ability of the CombineDeepNet model and verify
our supposition that it performs better on the new dataset. The
figures also demonstrate that, in the long-term scenario, the
CombineDeepNet model fits the new data better than the CNN,
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TABLE VIII
NUMERICAL EVALUATION OF THE COMBINEDEEPNET MODEL ALONGSIDE POPULAR DL MODELS REGARDING R2 FOR FORECASTING PM2.5 CONCENTRATION

ACROSS SIX MONITORING STATIONS: (A) AOTI ZHONGXIN, (B) DONGSI, (C) SHUNYICHENG, (D) TIANTAN, (E) HAIDAN WANLIU, AND (F) WANSHOU XIGONG

LSTM, GRU, CNN-LSTM, and CNN-GRU models. Figs. 6 and
7 depict the variations in prediction accuracy between CNN-
LSTM, CNN-GRU, and models such as CombineDeepNet,
CNN, LSTM, and GRU concerning short-term and long-term
lead times in air quality data. These differences can be attributed
to the architectural characteristics and capabilities of these
models. CNN-LSTM and CNN-GRU are hybrid models that
combine CNN layers for spatial feature extraction with recurrent
layers (LSTM or GRU) for temporal sequence modeling. While
they have the capacity to capture both short-term and long-term
dependencies, the interplay between these layers can sometimes
lead to a bias toward short-term patterns. In certain cases, the
convolutional layers may overemphasize short-term fluctuations
in the data, causing the models to focus excessively on recent
data. This can lead to suboptimal performance for short-term
predictions compared with models that are specifically designed
for short-term tasks.

In addition, Fig. 11 displays the fitting trend of the test dataset.
Furthermore, we conducted a dispersion comparison analysis for
PM2.5 concentrations between 0 and 400 μg/m3. Our results
demonstrate that the CombineDeepNet model’s performance
was best within this range. Overall, the results indicate that the
CombineDeepNet model can efficiently forecast PM2.5 concen-
trations. Furthermore, the model’s performance was consistent
across the six monitoring stations, suggesting its applicability in

different geographical locations. However, further testing and
validation on other datasets will be necessary to confirm the
generalizability of the CombineDeepNet model.

In light of the experimental findings, we believe that the
suggested CombineDeepNet can better forecast long-term
PM2.5 concentrations. The proposed model outperformed CNN,
LSTM, GRU, CNN-LSTM, and CNN-GRU in terms of RMSE,
MAE, and R2 values for all six monitoring stations. The lower
values of RMSE and MAE, as well as the higher values of R2

indicate that the proposed model has a better fit to the observed
data.

VI. CONCLUSION

The CombineDeepNet model, proposed based on a hybrid
architecture and data correlation principles, represents an effec-
tive approach for forecasting PM2.5 concentration across several
monitoring stations. The CombineDeepNet model consists of
three modules that tract the preliminary and deep features of
pollutants and meteorological data from six monitoring stations
and combine the features to predict the PM2.5 level. The advan-
tages of the CombineDeepNet model include better extraction of
deep features and better correlation of pollutants and meteoro-
logical data, which can be applied to multiple sites for multistep
long-term forecasting of PM2.5 concentration.
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The experimental findings show that by completely extracting
the correlated information between pollutants and meteorologi-
cal data, the CombineDeepNet model outperforms conventional
approaches like CNN, LSTM, GRU, CNN-LSTM, and CNN-
GRU. Furthermore, the CombineDeepNet model effectively
addresses the challenge of long-term dependencies, which play
a crucial role in predicting pollutant hazards. Overall, the Com-
bineDeepNet model provides a promising network for forecast-
ing PM2.5 concentration in multiple monitoring stations. The
capability of the proposed model to extract profound features
and establish correlations between pollutant and meteorological
data, coupled with its ability to solve long-term dependency
problems, makes it a valuable tool for predicting PM2.5 concen-
tration and warning against pollutant hazards.

One limitation of this article is that the information from
neighboring locations is not linked to the intended target area.
In future work, the correlation between nearby location data and
the target location will be incorporated into the input features to
improve the long-term prediction of PM2.5 concentration.
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