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Context Aware Edge-Enhanced GAN for Remote
Sensing Image Super-Resolution

Zhihan Ren , Lijun He , and Jichuan Lu

Abstract—Remote sensing images are essential in many fields,
such as land cover classification and building extraction. The huge
difference between the directly acquired remote sensing images
and the actual scene, due to the complex degradation process and
hardware limitations, seriously affects the performance achieved
by the same classification or segmentation model. Therefore, using
super-resolution (SR) algorithms to improve image quality and
achieve better results is an effective method. However, current SR
methods only focus on the similarity of pixel values between SR and
high-resolution (HR) images without considering perceptual sim-
ilarities, which usually leads to the problem of oversmoothed and
blurred edge details. Moreover, there is little attention to human
visual habits and machine vision applications for remote sensing
images. In this work, we propose the context aware edge-enhanced
generative adversarial network (CEEGAN) SR framework to re-
construct visually pleasing images that can be practically applied
in actual scenarios. In the generator of CEEGAN, we build an edge
feature enhanced module (EFEM) to enhance the edges by combin-
ing the edge features with context information. Edge restoration
block is designed to fuse multiscale edge features enhanced by
EFEM and reconstruct a refined edge map. Furthermore, we de-
signed an edge loss function to constrain the generated SR and HR
similarity at the edge domain. Experimental results show that our
proposed method can obtain SR images with a better reconstruction
performance. Meanwhile, CEEGAN can achieve the best results
on classification and semantic segmentation datasets for machine
vision applications.

Index Terms—Edge enhancement, generative adversarial
network (GAN), remote sensing images, super-resolution (SR).

I. INTRODUCTION

SUPER-RESOLUTION (SR) is the process of restoring a
high-resolution (HR) image from a given low-resolution
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(LR) image. With the development of remote sensing image
application technology, remote sensing images are extensively
used in hyperspectral application [1], [2], [3], [4], [5], [6], [7],
[8], object detection [9], [10], change detection [11], [12], [13],
and other fields. However, image SR is an ill-posed problem
because one LR image may degenerate from several different
HR images. The SR algorithm is to find an optimal HR image
from all possible solutions. The quality of remote sensing im-
ages is limited by hardware equipment and natural environment
interference, such as clouds and fog, which leads to serious
degradation of the acquired remote sensing images that do not
match the actual scene seriously. However, the natural image
SR algorithms neglect these factors, leading to unsatisfactory
results in remote sensing images. Specifically, incorrect edges
can cause semantic segmentation models to be unable to dis-
tinguish pixels at the edge or image classification models to be
unable to correctly classify images. Therefore, the development
of a remote sensing image SR algorithm that can accommodate
both human visual perception and machine vision applications
is crucial.

Over the past few decades, SR has attracted great atten-
tion from researchers and many SR methods have emerged.
Existing methods can be divided into two main categories:
1) traditional methods and 2) deep learning-based methods.
Traditional methods can be further categorized into interpolation
methods and reconstruction methods. Interpolation methods use
the same kernel without considering the position of the pixel
point. Interpolation methods, such as nearest neighbor inter-
polation, bilinear interpolation, and bicubic interpolation [14],
can improve the image resolution based on the content of the
image itself but cannot provide more information. However,
they may cause edge blurring and fail to achieve the desired
visual quality. The reconstruction-based methods [15], [16]
solve the problem from the perspective of image degradation
models, assuming that the HR images are obtained from the LR
images with appropriate motion transformation, blurring, and
noise. These methods constrain the generation of SR images by
extracting information from LR images and combining it with
prior knowledge. However, reconstruction-based methods suffer
from the problems of complex optimization methods and high
computational costs.

With the development of deep learning, SR algorithms
based on convolutional neural network (CNN) have been pro-
posed [17]. Based on this, an amount of research [18], [19],
[20], [21], [22], [23], [24], [25] has been devoted to optimizing
networks by using L1 or L2 loss functions. These methods
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use CNN to learn the implicit mapping between pairs of LR
and HR images and then predict the HR images corresponding
to the LR images based on the learned mapping relationship.
However, these methods select PSNR as the evaluation metric
and generate images with high PSNR values that may not align
with human visual perception. In addition to the PSNR-oriented
method, there is another type of methods [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36] that introduce generative
adversarial network (GAN) [37] into the field of SR, which
aim to generate more realistic images. Although the images
generated by GAN-based methods are more realistic compared
to PSNR-oriented methods, the high-frequency details learned
by GAN-based methods may not be consistent with the actual
situation due to the lack of constraints and the severe degradation
of remote sensing images. Jiang et al. [29] noticed that existing
methods cannot generate correct edges and proposed a denoising
approach through mask processing. However, this method solely
focused on extracting and utilizing features from the edge do-
main, neglecting the valuable contextual semantic information
present in remote sensing images. Moreover, it does not impose
any constraints on the enhanced edges, resulting in suboptimal
performance. Recently, the transformer and diffusion model
has been widely used in the field of computer vision [38],
[39], [40]. Some works have extended the transformer and
diffusion model to the field of SR. SwinIR [41] proposed an
image reconstruction model based on Swin Transformer [40].
Transformer-based enhancement network (TransENet) [42] pro-
posed a multistage enhancement structure based on transformer.
Inspired by the denoising diffusion probabilistic model, Image
super-resolution via iterative refinement (SR3) [43] performed
SR images through a random iterative denoising process.

In general, there are still some limitations of the existing
algorithms.

1) The generated images by the PSNR-oriented method may
not align with human visual perception since they ignore
the perceptual similarity, which results in oversmoothed
images.

2) The practical applications of GAN-based methods may be
limited due to their susceptibility to noise, and inaccura-
cies in generating essential high-frequency information in
images, especially in the case of remote sensing images
with complex degradation processes.

To address the above problems, we propose an SR framework
for joint context semantic information for edge enhancement
of remote sensing images, named context aware edge-enhanced
generative adversarial network (CEEGAN). The main contribu-
tions of this work are summarized as follows.

1) An SR framework for both human vision and machine
analysis: The existing SR framework is primarily focused
on restoration at the pixel level, and a high PSNR may not
satisfy the requirements for high-level computer vision
tasks in practical scenarios. Remote sensing images usu-
ally contain a multitude of objects with different scales,
shapes, and complex spatial relationships. Therefore, re-
mote sensing images possess highly rich contextual se-
mantic features. However, in the complex degradation
process of remote sensing images, the contextual semantic

features can be severely affected. CEEGAN performs the
information exchange between contextual semantic fea-
tures and edge features, and integrates contextual features
into the image, aiming to restore the texture information as
much as possible in the generated SR images. Both types
of features complement each other, to satisfy the needs of
both human and machine vision.

2) An edge enhancement module based on context-guidance:
To enhance the images with blurred edge details, we
explore and integrate multiscale (MS) edge features and
context semantic features in the edge feature enhanced
module (EFEM). The high-level context semantic features
are beneficial to guide the extraction and enhancement of
edge features. Therefore, we keep the information inter-
action between the context semantic and edge branches to
help the edge branch understand the high-level semantic
information in the image. Moreover, we fuse the MS
features enhanced by EFEMs and reconstruct the edge
map through the edge restoration block (ERB).

3) An edge loss function to generate more realistic image:
Due to the neglect of edges by L1 and L2 loss, which leads
to the oversmooth images, and the sensitivity of GAN-loss
to noise, we expand the attention of SR models from the
pixel domain to the edge domain by designing edge loss
function that constrains the SR and HR image in the edge
domain, making the generated images more realistic and
preserving important edge details.

The rest of this article is organized as follows. Section II
summarizes the related works. Section III introduces the details
of CEEGAN. The experimental results are given in Section IV.
Finally, Section V concludes this article.

II. RELATED WORK

A. PSNR-Oriented SR Models

Since CNN was introduced to SR by Dong et al. [17], a
super-resolution convolutional neural network (SRCNN) with
three convolutional layers was pioneered. SRCNN utilized the
L2 loss function to optimize the PSNR, aiming to improve
its performance beyond traditional methods with the strong
nonlinear fitting capability of CNN. With the introduction of
ResNet [44], SRResNet [26] introduced the residual network in
the SR network to combine the low-level feature and deep-level
feature to improve the network learning ability. To enhance
the performance of the network, Lim et al. [27] proposed the
enhanced deep residual network (EDSR), which removed the
BN layer and increased the model size without increasing com-
putational resources. Furthermore, Zhang et al. [18] proposed
a residual channel attention network (RCAN) with a channel
attention mechanism, which can adaptively rescale channel fea-
tures. With the development of the transformer, Chen et al. [45]
constructed the first transformer model for image SR, and Liang
et al. [41] proposed SwinIR, an image reconstruction model
based on the swin transformer [40].

Remote sensing images are more complex than natural images
in terms of the degradation process and contain objects of
varying sizes and shapes, which makes SR of remote sensing
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Fig. 1. Overall structure of the CEEGAN. Edge extraction denotes the Laplacian operator. The blue line indicates the network flow of CEEGAN. The orange
line indicates the calculation process of the loss function of CEEGAN. SRLoss contains L1 loss, adversarial loss, and perceptual loss.

images more challenging. Therefore, some works proposed SR
algorithms for remote sensing images, considering their unique
characteristics and challenges. Lei et al. [19] designed a local-
global combined network, which combined local and global
information by cascading shallow and deep feature mappings.
To further integrate information from different depths, Zhang
et al. [20] proposed the mixed high-order attention network,
which made full use of hierarchical features through high-order
attention. Some works addressed the problem of remote sensing
image SR from the direction of MS features. The MS attention
network [21] employed convolutional with different kernel sizes
to extract MS features of remote sensing images and uses the
channel attention mechanism to fuse features at different scales.
Dong et al. [22] proposed a second-order MS super-resolution
network to maximize the use of learned MS information by
exploiting small-difference and large-difference features at the
local and global levels, respectively. Hybrid-scale self-similarity
exploitation network (HSENet) [23] used self-similarity to learn
internal recurrence models in single-scale and cross-scale in
remote sensing images, achieving stronger feature representa-
tion. In contrast to the abovementioned methods, TransENet [42]
proposed a transformer-based MS enhancement structure to MS
high and low-dimensional features.

B. GAN-Based SR Models

Ledig et al. [26] first applied GAN to image SR reconstruction
and proposed SRGAN, which increased perceptual loss and
adversarial loss to make the generated images more realistic.
To fully leverage the features across different layers, ultradense
GAN (udGAN) [36] proposed the ultradense residual block,
which reforms the internal layout of the residual block into
a two-dimensional matrix topology. To improve the judgment

of discriminators in GAN, enhanced SRGAN (ESRGAN) [28]
proposed relativistic GAN that allowed the discriminator to
predict relative realness instead of the absolute value and used
the network interpolation method to balance the conflict be-
tween objective and subjective evaluation metrics. Similarly,
coupled-discriminated GANs [46] proposed a discriminator that
makes judgments based on SR images and HR images to better
distinguish the input. To solve the problem of unclear image
generation edges, edge-enhanced GAN (EEGAN) [29] proposed
an edge enhancement strategy by purifying noisy images to
generate precise edges and enhance image contours. Multiat-
tention GAN [30] proposed branch attention to integrating up-
sampled LR images with high-level features. Different from the
PSNR-oriented SR methods, which pursue high PSNR value, the
GAN-based methods prefer to generate more realistic images.
However, the GAN-based methods are sensitive to noise, which
leads the generator to add incorrect high-frequency details to SR
images. This shortcoming limits the performance of SR images
in subsequent high-level computer vision tasks.

III. METHOD

A. Overview of the Proposed CEEGAN

Fig. 1 illustrates the overall framework of CEEGAN. The
generator of CEEGAN can be divided into the following three
parts: Initial feature extraction (IFE), EFEM, and ERB.

The original LR image ILR ∈ R
H×W×3, where H and W

denote the height and width of the image, respectively, is first
processed by presuper-resolution module (PSRM) to generate a
Pre-SR image IP ∈ R

4H×4W×3, which can achieve reconstruc-
tion of most regions in LR images except for the edges. Pre-SR
image is simultaneously fed into the edge and context semantic
feature extraction layer to obtain corresponding features. In the
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EFEM, the bidirectional edge feature fusion block (BiEFFB)
and bidirectional context feature fusion block (BiCFFB) are
used for bidirectional weighted fusion to learn the importance
of features between different scales. Simultaneously, we de-
signed the context edge information exchange block (CEIEB)
to exchange information between the two branches, which is
helpful in guiding edge information using advanced context
semantic information. For the MS enhanced features of EFEM
output, ERB is deployed to aggregate them into an enhanced
edge E∗ ∈ R

4H×4W×3. Finally, we replace the blurred edge in
IP with the enhanced edges E∗ to gain a reconstructed image
ISR ∈ R

4H×4W×3 with refined and accurate edges.
For the discriminator, VGG-Discriminator [26] is chosen to

determine whether the output image ISR of the generator is real
or fake, which is widely used in the SR domain.

B. Initial Feature Extraction

Due to the complex degradation in LR images, a significant
amount of crucial high-frequency information is lost, making it
difficult to achieve satisfactory results by directly enhancing the
edges of LR images. Therefore, to provide exact information for
subsequent modules to extract features, PSRM is built to process
the LR image for generating Pre-SR images. The PSRM is an SR
network that builds upon the strengths of SwinIR [41], which is a
state-of-the-art solution in the SR domain, while also addressing
its limitations. Although SwinIR can generate relatively clear
images, its utilization of the L1 loss function may cause the
generated SR images to appear overly smooth. This is due to the
tendency of the network to generate images with pixel values
closer to the average, resulting in the loss of high-frequency
information and details. To address the limited ability of existing
methods to accurately recover edges using only edge domain
features, we extract features from both pixel and edge domains
via the use of two convolutional layers. Let F 1

c = [f1
c1, f

1
c2, f

1
c3]

and F 1
e = [f1

e1, f
1
e2, f

1
e3] denote the initial MS context features

and edge features extracted by the corresponding convolutional
layers. Taking edge features as an example, an edge image of
size 4H × 4W sequentially passes through three convolutional
blocks, resulting in outputs of size 4H × 4W , 2H × 2W , and
H ×W , respectively. Specifically, each convolutional block
consists of three convolutional operators with kernel sizes of
1 × 1, 3 × 3, and 3 × 3. The only difference among the three
blocks lies in the stride of the last 3 × 3 convolutional operator,
which is 1, 2, and 2, respectively. The computation process for
context features is the same as that for edge features. The con-
volutions in the pixel domain can extract rich context semantic
features, which can guide the enhancement of edge features.
Moreover, objects in remote sensing images usually cover a large
span at the scale dimension, which makes it challenging for a
single-scale feature to capture all the information needed for SR
reconstruction. Therefore, the proposed convolutional layer can
extract MS features, which enables it to adapt to various object
sizes in remote sensing images.

For the edge extraction, there are several methods, such as
Canny [47], HED [48], and EDTER [49]. Although the edge ex-
traction algorithm can get accurate contours of objects, it cannot

Fig. 2. Architecture of the BiEFFB and BiCFFB. ⊕ denotes the weighted sum
operation. The LeakyReLU after each Conv layer is omitted for simplicity.

reflect the high-frequency information in noncontour regions,
which is equally important for edge reconstruction. In contrast,
many objects in remote sensing images do not have clear and
well-defined target edges and we need the trend of object contour
in the image. Therefore, the edge extraction method cannot meet
the requirements of our proposed framework. The Laplacian
is a second-order derivative-based edge-aware operator, which
can extract the edges in an image while suppressing the smooth
regions. Due to its nonlinear nature, it can enhance image edges
and fine details without introducing artifacts or ringing effects.
Therefore, the eight-directional Laplacian operator is chosen as
the edge extraction that can represent the intensity of the change
of each position in the image. The Laplacian operator L(·) of
given image h can be expressed as

L(h) =

⎡
⎣
−1 −1 −1
−1 8 −1
−1 −1 −1

⎤
⎦⊗ h (1)

where ⊗ is the convolution operator.

C. Edge Feature Enhanced Module

Due to the particular characteristics of remote sensing images,
natural factors, such as clouds and fog often interfere with the
objects and blur the edge features of the objects. In addition,
since the complex background characteristics of remote sensing
images, a large amount of noise is introduced in the feature
extraction process. These issues lead to insufficient initial edge
feature characterization ability. To address this problem, we
design a bidirectional connection and weighted feature fusion
block, named BiEFFB and BiCFFB. To preserve the spatial con-
sistency of the two categories of features, we maintain the same
architectural settings of convolution parameters. As shown in
Fig. 2, BiEFFB or BiCFFB consists of four 3 × 3 convolutional
layers with stride 1. Let f̂ i+1

e1 denote the smallest size feature in
the output of the ith EFEM, and it can be calculated as follows:

f̂ i+1
e1

= LReLU

⎛
⎝Conv

⎛
⎝wi+1

1 · f̂ i
e1 + wi+1

2 · Resize
(
f̂ i+1
e2

)

wi+1
1 + wi+1

2 + ε

⎞
⎠
⎞
⎠

(2)

where LReLU(·) indicates the LeakyReLU activation function.
Resize(·) represents the use of interpolation operations to make
the dimensions consistent. wi+1

1 and wi+1
2 are two learnable

weights that refer to the importance of each feature. The super-
script i+ 1 indicates that the variable represents the weight for
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Fig. 3. Architecture of the CEIEB. Variables with the hat symbol indicate raw
features without information exchange, and variables without the hat symbol
indicate refined features after information exchange. ⊗ and ⊕ denote the
element-wise multiplication and sum operation, respectively. The LeakyReLU
after each Conv layer is omitted for simplicity.

the i+ 1th EFEM. ε is a small value to increase stability and
is set to 10−6. According to the same calculation method, we
can obtain the enhanced features F̂ i+1

e = [f̂ i+1
e1 , f̂ i+1

e2 , f̂ i+1
e3 ] and

F̂ i+1
c = [f̂ i+1

c1 , f̂ i+1
c2 , f̂ i+1

c3 ] from F̂ i
e and F̂ i

c . The quality of the
edge features is essential to determining the quality of the final
edge enhancement images obtained by subsequent modules.
To gradually convert the edge features containing noise into
accurate features, N EFEMs are deployed as a cascaded module
to fuse and exchange information for each context and edge
feature. The analysis and discussion of the number of EFEM
cascades are presented in Section IV-D4.

To overcome the limitations of current edge enhancement
methods that only use edge features, we design a method that
exploits the interplay between context semantic features present
in the pixel domain and edge features to improve the accuracy
of edge reconstruction. As shown in Fig. 3, the context semantic
features from the context branch facilitate the edge branch’s
understanding of high-level context semantic information and
contribute to the network’s ability to learn edges better, resulting
in more accurate edge reconstruction results. The information
exchange process can be expressed as follows:

F i
e = F̂ i

e + LReLU
(

Conv
(
F̂ i
c

))
� F̂ i

e

F i
c = F̂ i

c + LReLU
(

Conv
(
F̂ i
e

))
� F̂ i

c (3)

where � denotes the element-wise multiplication operation. In
practical applications, we calculate each element contained in
F̂ i
e and F̂ i

c according to (3). The results F i
e and F i

c can be
used as input for the next EFEM. The use of multiple EFEMs
allows for the progressive refinement of image features and the
improvement of image quality over successive iterations. After
N EFEMs enhancement, we can obtain the final results FN+1

e

and FN+1
c , representing the enhanced edge and context feature,

respectively.

D. Edge Restoration Block

Most SR methods only extract and utilize features at a single
scale, which results in limited utilization of the image’s informa-
tion and consequently restricts the effectiveness of the model. To
take advantage of MS features, we design the ERB, which can
aggregate the enhanced MS edge features obtained from EFEMs

to obtain an enhanced edge image that can reflect the reality
edges of objects of different scales and classes. The structure
of ERB is depicted in Fig. 4. Let FR = [fr1, fr2, fr3] denote
the output features of the residual connection with different
scales in FR. These features are resized to the same shape as the
SR image and concatenated together to form a unified feature
representation FM . The process can be expressed as

FR = FN+1
e + F 1

e = [fr1, fr2, fr3] (4)

FM = Concat(fr1, R2(fr2), R4(fr3)) (5)

where Concat(·) represents the concatenate operation in the
channel dimension. R2 and R4 denote the 2× upscale and 4×
upscale interpolation operation, respectively. After the scaling
operation, all three features remain in the same feature dimen-
sion, where fr1, R2(fr2), R4(fr3) ∈ R

4H×4W×C . C denotes
the number of output channels. The output FM ∈ R

4H×4W×3C

will be used for further feature fusion.
Distinct from features present in the pixel domain, features

extracted from the edge map contain limited information. Addi-
tionally, in the edge map, distinct objects may be represented by
the same value, making it challenging to accurately distinguish
between different objects during edge map reconstruction. To
reduce the impact of noise and improve the accuracy of the
reconstructed image, it is necessary to deeply explore the re-
lationship between different regions of the input image. Coor-
dinate attention (CA) [50] is employed to enhance the model’s
understanding of edge features, which integrates location in-
formation into the channel, enabling more precise localization
and identification of the target of interest. By leveraging CA,
our model gains a deeper understanding of the spatial context
and improves its ability to accurately capture and utilize edge
features for enhanced performance.

As shown in Fig. 4, the output of the CA is then passed through
a convolution network consisting of three layers with kernel
sizes of 1 × 1, 3 × 3, and 1 × 1, respectively. Each layer is
followed by a LeakyReLU activation function. MS features are
fused to produce the enhanced edge maps E∗. The process can
be expressed as follows:

E∗ = FS(CA(FM )) (6)

where CA(·) denotes the CA module and FS(·) represents the
feature fusion module.

As shown in Fig. 1, to obtain the SR image ISR, we add the
desired amount of edge enhancement, denoted as E∗ − L(IP),
to the Pre-SR image IP . The plus and minus in Fig. 1 represent
addition and subtraction operations, respectively, performed
pixel by pixel when computing the SR image. This calculation
process can be expressed as

ISR = IP + E∗ − L(IP). (7)

E. Loss Functions in CEEGAN

In the SR field, L1 loss is a widely used loss function. It can
reflect the difference between HR and SR images in the pixel
domain. The L1 loss is calculated as follows:

L1 = ‖IHR − ISR‖1 (8)
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Fig. 4. Architecture of the ERB.R2 andR4 denote the 2× upscale and 4× upscale interpolation operation, respectively.⊗ denotes the element-wise multiplication
operation.

Fig. 5. Visualization comparison of different methods on UCMerced dataset. (a) Baseballdiamond38. (b) Building12. The GT images are zoomed in and displayed
in the top-left corner.

where IHR refer to the ground-truth image. The L1 loss is bene-
ficial for optimizing PSNR, but the network will tend to output
smooth results without sufficient high-frequency detail because
the L1 loss and PSNR metrics are fundamentally inconsistent
with the subjective evaluation of human observers. GAN-based
methods typically use the sum of pixel loss and adversarial loss.
In addition, to ensure the generation of high-frequency details, it
is also necessary to utilize perceptual loss [51], which is usually
a pretrained VGG network. Adversarial lossLadv and perceptual
loss Lper are defined as

Ladv = − log (D (ISR)) = − log (D (G (ILR))) (9)

Lper =

n∑
l=1

ωl ‖φl(IHR)− φl(ISR)‖22 (10)

where φl(·) represents the lth layer of the VGG19 network and
ωl refers to the weight of the lth layer. G(·) and D(·) refer to the
generator and the discriminator, respectively.

Although the combination of the abovementioned loss func-
tions performs better on natural images, it suffers from severe
image degradation in the field of remote sensing images. This
results in reconstructed images that still have noise and artifacts
in the high-frequency detail parts. To solve this problem by
strengthening the constraints in the high-frequency component
of the image. We design the edge lossLEdge, which is formulated
as follows:

LEdge = ‖L(IHR)− L(ISR)‖1 . (11)

Finally, the total loss for the generator is given by

LG = L1 + αLadv + βLper + γLEdge (12)
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Fig. 6. Visualization comparison of different methods on AID dataset. (a) Center253. (b) Viaduct242.

where α, β, γ are the weighting parameters of each component,
which is designed to balance the magnitudes of different losses.
In our experiment, we set them to 0.1, 1, and 0.5.

For the discriminator, the loss widely used in other GAN-
based methods is selected, which is calculated as

LD = − log (D (IHR))− log (1−D (ISR)) . (13)

We train D by minimizing LD, which allows it to distinguish
whether the input image is synthesized by the G.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

1) Datasets: In this work, we select four public remote
sensing datasets, including UCMerced [52], AID [53], NWPU-
RESISC45 [54], and LoveDA [55] for SR, classification, and
semantic segmentation. The UCMerced dataset contains 21
scene categories.1 Each class has 100 images with a spatial
resolution of one foot, and the size of all images is 256× 256. We
randomly select 80% of them as the training set and the rest as
the validation set. The AID dataset contains 10 000 images in 30

1All these 21 classes of UCMerced dataset: 1—Agricultural, 2—
Airplane, 3—Baseballdiamond, 4—Beach, 5—Buildings, 6—Chaparral,
7—Denseresidential, 8—Forest, 9—Freeway, 10—Golfcourse, 11—Harbor,
12—Intersection, 13—Mediumresidential, 14—Mobilehomepark, 15—
Overpass, 16—Parkinglot, 17—River, 18—Runway, 19—Sparseresidential,
20—Storagetanks, and 21—Tenniscourt.

classes of scenes.2 All images are 600× 600 in size. For the AID
dataset, we randomly select 80% images as the training set and
ten images per class as the validation set. The NWPU-RESISC45
remote sensing dataset is a large-scale public dataset for remote
sensing image scene classification released by Northwestern
Polytechnical University, which contains 45 different scenes. It
contains a total of 31 500 images, each with a size of 256 × 256.
The LoveDA dataset contains 5987 high SR images with 166 768
annotated objects from three different cities. It encompasses
two domains, including urban and rural. Compared to existing
datasets, the LoveDA dataset presents considerable challenges
due to its MS objects and complex background samples.

2) Evaluation Metrics: To make a comprehensive compari-
son of the performance of the model, we select three commonly
used evaluation metrics that focus on different aspects. The first
metric is PSNR, which is an objective criterion for evaluating
images. However, a higher PSNR does not necessarily corre-
spond to better perceptual quality. To better simulate human
visual perception, Zhang et al. [56] proposed learned perceptual
image patch similarity (LPIPS), which measures the similarity
of two images in a way that is more in line with human judgment.
To validate the performance of models in real-world scenarios,

2All these 30 classes of AID dataset: 1—Airport, 2—Bareland,
3—Baseballdiamond, 4—Beach, 5—Bridge, 6—Center, 7—Church, 8—
Commercial, 9—Denseresidential, 10—Desert, 11—Farmland, 12—Forest,
13—Industrial, 14—Meadow, 15—Mediumresidential, 16—Mountain, 17—
Park, 18—Parking, 19—Playground, 20—Pond, 21—Port, 22—Railwaystation,
23—Resort, 24—River, 25—School, 26—Sparseresidential, 27—Square, 28—
Stadium, 29—Storagetanks, 30—Viaduct.



1370 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE I
RESULTS OF COMPARISON WITH DIFFERENT METHODS ON THE UCMERCED DATASET

we selected the natural image quality evaluator (NIQE) as the
no-reference metric. It should be noted that the lower LPIPS and
NIQE values represent the better effect of SR reconstruction.
For the classification experiment, top-1 accuracy is used as
the metric. In the semantic segmentation experiment, we select
three general evaluation indicators: overall accuracy (OA), mean
intersection over union (mIoU), and F1-score.

B. Implementation Details and Experimental Environment

For training, the input patches are cropped in size of
128 × 128 pixels with a batch size of 16. Meanwhile, we use
random rotation and horizontal flipping to augment the training
samples. For optimization, we use Adam optimizer by setting
β1 = 0.9, β2 = 0.99, and ε = 10−8. We train the PSRM in IFE
for 1600 epochs and fine-tune the whole CEEGAN for 400
epochs. The learning rate is initialized 2 × 10−4 and decreases
to half every 400 epochs and 100 epochs for two stages. In our
experiments, the raw images in each dataset are treated as real
HR references and corresponding LR images are generated by
Gaussian blur and bicubic interpolation to construct HR–LR
pairs for training and evaluation. We first use the degraded
image as the input of different SR reconstruction methods for
the classification and semantic segmentation experiments. Then,
we evaluate the corresponding results by the same classification
or semantic segmentation model. The proposed method is
implemented by the PyTorch framework under Ubuntu18.04 and
CUDA10.2. All experiments are run on NVIDIA 2080Ti GPUs.

C. Performance of Human Visual Perception and Machine
Vision Applications

In this section, we compare the proposed methods
with state-of-the-art SR methods, including PSNR-Oriented
approaches: SRResNet [26], EDSR [27], RCAN [18],
SwinIR [41], TransEnet [42], SR3 [43], GAN-based meth-
ods: EEGAN [29], SRGAN [26], ESRGAN [28]. EEGAN and
TransENet are proposed for remote sensing images, and other
methods are proposed for natural images. For a fair comparison,
we train these models using the same training datasets.

1) Quantitative Results: Due to the different learning diffi-
culties of different scenarios, which tend to lead to large fluc-
tuations in indicators. To make a fair comparison, we calculate
PSNR and LPIPS separately for each category and report the
average scores. Tables I and II show the results of different
methods for upscale ×4 on the UCMerced and AID dataset,
respectively. From a macro perspective, PSNR-oriented methods
dominate PSNR and GAN-based methods outperform by a
significant margin in terms of LPIPS. Due to the addition of
high-frequency information by GAN to generated images aims
to produce more realistic images, it may result in a decrease in
the PSNR. CEEGAN can outperform other methods compared
with in terms of LPIPS in both two datasets, which means it
can get better visual quality results. This is because EFEM and
edge loss, designed for edge enhancement in CEEGAN, make
the model pay more attention to edge details when restoring
images. Meanwhile, ERB can fuse MS features so that refined
details can be obtained on both large and small objects. The
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TABLE II
RESULTS OF COMPARISON WITH DIFFERENT METHODS ON THE AID DATASET

clearer the edge details are, the more realistic image can be.
Although EEGAN also focuses on improving image quality
through edge enhancement, our method further incorporates
edge domain constraints and context features to guide edge re-
construction, resulting in better performance in terms of LPIPS.
It can be observed that CEEGAN can achieve the highest PSNR
compared with other GAN-based methods on the UCMerced
dataset.

2) Qualitative Comparison: To directly compare the recon-
struction results obtained by different methods, Baseballdia-
mond38 and Building12 from the UCMerced dataset and Cen-
ter253 and Viaduct24 from the AID dataset are selected to show
the details of the SR images. As shown in Fig. 5 and Fig. 6, these
SR images show that the CEEGAN can obtain more realistic
reconstruction results at the edge of objects, such as roads and
buildings. To intuitively demonstrate the effectiveness of our
method on edge enhancement, we compare the images before
and after edge enhancement, their response edge maps, and the
difference between the two edges, as shown in Fig. 7. From
Fig. 7(j), it can be seen the differences between E∗ and L(IP)

are mainly focused on the object edges, which proves that the
region of interest of CEEGAN is the edge. The addition of
high-frequency information can make the image more realistic
and comfortable for human vision.

3) Classification Results on UCMerced and NWPU-
RESISC45 Datasets: To assess the application performance of
CEEGAN in real scenarios, we conduct image classification ex-
periments over the UCMerced and NWPU-RESISC45 datasets.
First, we trained a ResNet-34 [44] image classification network
over the original images in both datasets. Subsequently, we
applied bicubic interpolation and Gaussian blur downsampling
on the HR images with a size of 256 × 256 to generate LR
images with a size of 64 × 64. We then utilize various SR
methods to obtain the corresponding reconstruction images.
Finally, we input the reconstructed images into the image clas-
sification network to obtain the classification result. As shown
in Table III, the classification task performs the best over the SR
images obtained by CEEGAN. Compared to SwinIR and SR3,
which ranked second in the evaluation, CEEGAN can achieve
significant improvements of 0.58% and 1.91% on the UCMerced
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Fig. 7. Comparison of images before and after edge enhancement is implemented. (a) Pre-SR image IP . (b) Edge map of Pre-SR. L(IP ) (c) Enhanced edge map
E∗. (d) SR image ISR. (e) Edge map of SR L(ISR). (f) GT image IHR. (g) Edge map of GT L(IGT). (h) Difference of (b) and (g) |L(IHR)− L(IP)|. (i) Difference
of (c) and (g) |E∗ − L(IP)|. (j) Difference of (b) and (c) |E∗ − L(IP )|.

TABLE III
CLASSIFACTION RESULTS ON UCMERCED AND NWPU-RESISC45 DATASET

TABLE IV
SEMANTIC SEGMENTATION RESULTS ON LOVEDA DATASET

and NWPU-RESISC45 datasets, respectively. Furthermore, it is
worth noting that our method is capable of generating results
that closely resemble HR images, indicating that our method
can effectively preserve essential image features and produce
highly realistic images. These advantages highlight the effec-
tiveness and potential of our proposed method in practical
applications.

4) Semantic Segmentation Results on LoveDA Dataset: To
further verify the practicality of our method, we have de-
signed a comparative experiment for the semantic segmenta-
tion task. The specific experimental process is similar to the
image classification task. The downsampled images are recon-
structed by different SR models. Then, they are input into the
deeplabv3 [57] model to compare the segmentation results. It
should be noted that the semantic segmentation models are
trained on the LoveDA dataset, and the SR models are trained
on the UCMerced dataset. Table IV lists the semantic segmen-
tation evaluation results of SR images obtained by different SR
models on the LoveDA dataset. Fig. 8 visualizes the semantic

segmentation results. Our method can achieve the best perfor-
mance not only in the classification task but also in semantic
segmentation, with the highest values in OA, F1-score, and
mIoU. This can be attributed to the ability of edge loss to
constrain the edge graph, allowing the generation of accurate
high-frequency information, which enable CEEGAN to achieve
results far beyond EEGAN on semantic segmentation experi-
ments. The result proves that CEEGAN can not only improve
the model’s understanding of the entire image but also improve
the model’s ability to understand images at the pixel scale.

5) Comparative Results of Real-World Scenarios SR: In
real-world scenarios, the degradation process of images may
not align with the assumptions made in creating SR datasets.
Therefore, we select the no-reference metric NIQE to evaluate
the performance of different models on a real-world scenario
image from the WorldView-3 satellite. Fig. 9 shows the SR
images reconstructed by different SR models along with their
corresponding NIQE values. It can be observed that CEEGAN
can achieve the lowest NIQE value, indicating that CEEGAN
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Fig. 8. Visualization comparison of reconstruction results using different SR methods in semantic segmentation experiments.

Fig. 9. Comparison of SR reconstruction results on real-world scene images using different methods. Red indicates the model that achieved the lowest NIQE.

can produce more natural results when faced with unknown
degraded images.

6) Model Complexity Comparison: To compare the running
efficiency of different models, we have compared the parame-
ters, floating point operations (FLOPs), runtimes, LPIPS, and
classification accuracy on the UCMerced dataset. Although our
primary objective is to optimize the performance of the SR model
for machine vision applications in remote sensing images, the
results presented in Table V indicate that our model can also
offer advantages in terms of parameter numbers, FLOPs, and
run time. In addition, it outperforms some recent models for
remote sensing image SR, such as TransENet and EEGAN, in
terms of runtime. Moreover, compared to the state-of-the-art
diffusion model in the field of SR, SR3, CEEGAN demonstrates

advantages in terms of parameters, FLOPs, and runtimes. Al-
though CEEGAN may exhibit a gap in terms of model efficiency
compared to earlier algorithms like ESRGAN, it can achieve
superior results in terms of LPIPS and practical applications
by leveraging larger models and more advanced architectural
designs. The comparative experimental results on model com-
plexity confirm that CEEGAN acquires a better balance between
complexity and accuracy and has more potential for practical
applications in real remote sensing scenarios.

D. Ablation Studies

In this section, we design a series of experiments on the
UCMereced dataset to validate the effectiveness and necessity of
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TABLE V
QUANTITATIVE COMPARISON OF PARAMETERS, FLOPS, RUNTIMES, LPIPS, AND CLASSIFICATION ACCURACY FOR DIFFERENT METHODS

TABLE VI
QUANTITATIVE COMPARISON OF DIFFERENT COMPONENTS IN EFEM

TABLE VII
QUANTITATIVE COMPARISON OF DIFFERENT COMPONENTS IN ERB

each component in our proposed method. All models are trained
with the same settings.

1) Effect of Each Part in EFEM: We first investigate the
impact of each component in EFEM, including the BiEFFB,
BiCFFB, and CEIEB. Table VI lists the evaluation results of
different settings. The result of case IV is 4.03% higher than the
result of case II on LPIPS, which indicates the guiding role of
the semantic branch on the edge branch. Case III adds semantic
branch to case II. Instead of exchanging information between
any pair of BiEFFB and BiCFFB, it takes place once in the ERB.
The results can achieve 0.75% improvement compared with case
II on LPIPS, which can demonstrate the effectiveness of our
proposed edge enhancement module based on context guidance.
By comparing the results of cases III and IV, it can be concluded
that the addition of CEIEB improves LPIPS by 3.30%, which
indicates the necessity for semantic communication after each
edge enhancement.

2) Effect of Each Part in ERB: We conduct the ablation study
on the MS architectural and CA mechanism in ERB, as shown in
Table VII. Compared to case IV, case I removes the MS structure
and CA mechanism in ERB, and only utilizes the edge features
from the maximum scale as input for edge reconstruction, which
leads to a decrease of 0.0307 in LPIPS. Case II adds the MS
architectural into case I. However, due to the absence of CA,
which helps the model understand the importance of different
channels and coordinates, the reconstruction results only im-
proved by 0.0025. Case III adds the CA mechanism into case
I, while still using only the maximum size features. Although it
resulted in a 0.0197 improvement in LPIPS, using single-scale
features cannot fully represent the objects that exist in the image.

TABLE VIII
QUANTITATIVE COMPARISON OF DIFFERENT LOSS FUNCTIONS

Compared to the combined usage of MS and CA in case IV, there
is still a 0.0110 gap in maximizing the utilization of effective
image information for edge reconstruction.

3) Effect of GAN-Loss and Edge Loss: To verify the effect
of edge loss with and without EFEM. As listed in Table VIII,
the cases I–IV are different loss function combinations with
EFEM and ERB, and cases V–VIII remove the whole process
of edge enhancement. The GAN-Loss includes adversarial loss
and perceptual loss as presented in (9) and (10). The data from
cases II and VI show that the addition of GAN-Loss causes the
decrease of both PSNR and LPIPS, which is consistent with
the purpose of adding GAN-Loss. The data from cases III and
VII show that the addition of edge loss also causes a decrease in
PSNR and LPIPS without EFEM, while its effect is more limited
compared to that of GAN-Loss. When EFEM is available, the
addition of edge loss can improve both PSNR and LPIPS. This
result indicates that edge loss can work together with EFEM
to recover more realistic image edge details in the absence of
GAN-Loss. However, since edge loss is still essentially an L1
loss, the network is not optimized in the direction of conforming
to human visual habits. Cases IV and VIII demonstrate that
the combined use of both edge loss and GAN-Loss can make
the model optimal at LPIPS with or without EFEM. This also
implies that the network can conform itself to human visual
habits and be suitable for practical machine vision applications
by learning how to incorporate high-frequency information that
is difficult to recover from L1 loss during the reconstruction
process under the constraints of these two loss functions.

4) Number of EFEM: To examine how the number of EFEMs
affects the effect of edge reconstruction and the performance
of the model, ablation experiments are carried out and the
results are shown in Table IX. Our experimental results show
that increasing the number of EFEMs can improve the model
performance. As shown in Fig. 10, the benefits of adding the
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TABLE IX
QUANTITATIVE COMPARISON OF DIFFERENT NUMBERS OF EFEMS

Fig. 10. Performance of LPIPS with the different numbers of EFEMs.

same number of EFEMs gradually decrease, while the increase
in parameter count is fixed. Although EFEM can improve the
model performance, its excessive use may increase model com-
plexity and result in a potential loss of effectiveness, leading to
overfitting and lengthier training times. Therefore, we decided
to limit the number of EFEMs used in practice to three, as it
strikes a balance between model performance and complexity.

V. CONCLUSION

In this work, a context aware EEGAN is proposed for remote
sensing SR. To address the limitations of existing edge recon-
struction methods, we propose a new edge enhancement method
that simultaneously exploits contextual semantic features with
edge features and maintains information exchange during the
gradual enhancement process. To maintain the accuracy of the
high-frequency information, the edge loss function is designed
to constrain the generated edges in the edge domain.

We compare the SR results on the UCMerced and AID
datasets with the current advanced methods and achieve the best
results on the LPIPS. The ablation experiments prove the effec-
tiveness of each part in CEEGAN and the Edge loss function.
To further demonstrate the suitability of our results for practical
remote sensing applications, classification, and segmentation
experiments are conducted on the UCMerced and LoveDA
datasets, respectively. CEEGAN achieves the best results on
multiple evaluation metrics, which proves that our method is
more suitable for the practical application of remote sensing
image SR.
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