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A Lightweight Recurrent Aggregation Network
for Satellite Video Super-Resolution

Han Wang , Shengyang Li , and Manqi Zhao

Abstract—Intelligent processing and analysis of satellite video
has become one of the research hotspots in the representation of
remote sensing, and satellite video super-resolution (SVSR) is an
important research direction, which can improve the image quality
of satellite video. However, existing approaches for SVSR often
underutilize a notable advantage inherent to satellite video, the
presence of extensive sequential imagery capturing a consistent
scene. Presently, the majority of SVSR methods merely harness a
limited number of adjacent frames for enhancing the resolution
of individual frames, thus resulting in suboptimal information
utilization. In response, we introduce the recurrent aggregation
network for satellite video superresolution (RASVSR). This innova-
tive framework leverages a bidirectional recurrent neural network
to propagate extracted features from each frame across the entire
video sequence. It relies on an alignment method based on optical
flow and deformable convolution (DCN) to realize the alignment of
the features, and a temporal feature fusion module to realize effec-
tive feature fusion over time. Notably, our research underscores the
positive influence of employing lengthier image sequences in SVSR.
In the context of RASVSR, with better alignment and fusion, we
make the perceptual field of each frame spanning 100 frames of the
video, thus, acquiring richer information, and information between
different images can be complementary. This strategic approach
culminates in superior performance compared with alternative
methods, as evidenced by a noteworthy 1.15 dB improvement in
PSNR, with very few parameters.

Index Terms—Attention mechanism, recurrent neural network
(RNN), satellite video, video super-resolution (VSR).

I. INTRODUCTION

SATELLITE video is a new type of ground observation
method emerging in recent years, which has gained wide

attention and application nowadays [1]. A large number of video
satellites are already in orbit, such as Jilin-1 and SkySat, which
can realize gaze observation of the ground. Compared with the
traditional single-frame remote sensing, satellite video contains
time domain information, has much larger data volume, and
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has important application value in the fields of transportation,
resources, security, environment, etc. [2], but due to hardware
limitations, such as sensors, its spatial resolution and image qual-
ity are lower compared with remote sensing images. Satellite
video superresolution (SVSR) can improve the image quality
of satellite video to achieve better results on high-level tasks,
such as satellite video object detection [3], object tracking [4],
[5], and object segmentation. SVSR can also be used for data
compression and restoration to save transmission bandwidth.

Superresolution (SR) is a very classical low-level task in
computer vision, which utilizes low-resolution images to re-
construct high-resolution images for the purpose of improving
image quality. Its being a pathological problem, one input will
correspond to multiple reasonable outputs, so SR can be for-
mulated as a distribution estimation problem conditional on the
input image [6]. Based on the number of images utilized, SR
can be classified into single image superresolution (SISR) and
multiple image superresolution (MISR). Among them, SISR has
the longest history and the methods can be categorized into pre-
diction models, edge-based methods, image statistical mehtods,
patch-based methods, and deep learning methods [7]. Most of
the latest algorithms rely on data-driven deep learning models
to reconstruct the details required for SR, which automatically
learn the relationship between inputs and outputs directly from
the data, and have outperformed other traditional methods [8].
Since the information lost by image degradation cannot be
retrieved in a single frame, MISR was created, which utilizes
the information from multiple frames to reconstruct a single
image, and benefits to information fusion, higher reconstruction
accuracy can usually be achieved [9]. Image SR has been widely
used in remote sensing, such as fusing hyperspectral images to
obtain high-resolution images, and deep learning-based meth-
ods are proven to be effective when used on remote sensing
data [10], [11].

Video super-resolution (VSR) requires SR of each frame
in a video and imposes requirements on the coherence of the
image. Broadly speaking, VSR can be regarded as an extension
of image SR and can be processed frame by frame using the
SISR algorithm. However, in practice, the results of using image
SR algorithms to process video are hardly satisfactory because
it may bring artifacts and lagging, which leads to unwanted
temporal incoherence within frames [12], so most VSR methods
are designed based on MISR. Video has richer information,
and by utilizing this redundant information, VSR has a higher
upper bound than simple image SR, but video has an additional
temporal dimension compared with images, so designing SR
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algorithms for it is more challenging. In order to better utilize
this temporal information, researchers often introduce frame
alignment to remove the effects of object or background move-
ment in video, and the commonly used alignment methods are
optical flow-based motion estimation, deformable convolution,
etc. There are also many methods that do not perform alignment,
and unlike methods with alignment, methods without alignment
tend to use 3-D convolution or nonlocal networks to extract and
fuse features directly.

Compared with normal videos, first, satellite videos have
lower spatial resolution and more lack of texture information,
second, the view range of satellite videos is much larger than
that of normal videos, and the information density is greater,
third, the scales and velocities of the moving objects in satellite
videos vary greatly, which all bring more challenges to SR.
Therefore, although VSR-based on deep learning has made
great development in recent years, these generic methods are
not suitable to be directly applied to satellite videos, so there are
many recent researches specifically focusing on SVSR. Satellite
video also has some advantages that can be utilized in SR,
as the scene is more fixed, there is no significant difference
between each frame, so more valid information can be utilized
for each scene. Making full use of the multiframe information
of the video is the key to SVSR, most of the previous SVSR
methods utilize the target frame and adjacent 2–6 frames to fuse
and reconstruct a high-resolution image, without utilizing the
information of more frames. Simply increasing the number of
frames will significantly increase the computational complexity,
making it difficult for these methods to utilize more information
from the video.

Image or feature alignment of neighboring frames is a key
and difficult problem in SVSR. Due to the movement of ground
objects, such as vehicles, airplanes, ships, and the change of
view angle brought by the movement of the satellite itself,
the direct fusion will introduce errors, which will result in
the degradation of the effect. Therefore, most current methods
introduce alignment operations, which help to accurately find
missing information in neighboring frames. There are two types
of alignment operations: image alignment and feature alignment.
Image alignment is usually performed using optical flow meth-
ods, which have better results for motions of small scale, such
as the movement of ground objects, but are not as effective for
large scale changes, such as background movement. Feature
alignment now usually uses deformable convolution network
(DCN) [13] and has achieved very good performance [14], but
the training of DCN is unstable [15]. Neither optical flow nor
deformable convolution is directly suitable for satellite videos
due to the fact that satellite videos have both moving ground
objects and moving background, as well as their motion features
are even less distinct.

Although SVSR introduces an alignment operation, the error
of alignment cannot be eliminated, and at the same time, due
to the object motion in the timing of the different regions
of the occlusion, it will cause the lack of information in the
relevant region, the direct fusion of multiframe information is
prone to poor results, and may even be fused into the wrong
information resulting in the degradation of the effect [16]. In

addition, many of the current SR methods use a large number
of parametric neural networks, allowing the neural network to
memorize the mapping from low to high resolution, which makes
the computational complexity high, and does not make full use
of the advantages of the video to enhance the use of the available
information.

To solve the above problems, we propose recurrent aggre-
gation network for satellite video superresolution (RASVSR), a
concise and lightweight recurrent neural network that focuses on
sufficiently aggregating the information in the video to achieve
good SR results with very few parameters. We use a bidirectional
recurrent network to propagate the feature extracted by neutral
network of the entire video sequence, so that the reconstruction
of each frame can utilize the information of all frames. We found
in our study that the length of the sequence utilized in SVSR has
a significant effect on the results, and we believe that with good
alignment and fusion, the use of longer sequences means that
more information can be utilized. In order to fuse feature from
different frames in the propagation, we propose temporal fea-
ture fusion module (TFF), an approach based on an attentional
mechanism that enhances the utilization of critical information
and reduces the impact caused by erroneous information. At the
same time, the attention mechanism captures the key information
in the image and can generate images that are more compatible
with human visual perception [17]. We also use a DCN-based
alignment method, but incorporate an optical flow method to
assist DCN in order to address the difficulty of DCN training.

The main contributions of this article are as follows.
1) A lightweight bidirectional recurrent neural network,

RASVSR, is proposed for SVSR, which achieves good
performance with very few parameters by propagating and
aggregating information across the entire video sequence,
and we demonstrate experimentally that longer sequences
can achieve better SR results.

2) We propose TFF module for extracting valid information
and eliminating erroneous information as features prop-
agate through the sequence. And we introduce a feature
alignment method that combines the optical flow method
and DCN to achieve better alignment and thus be able to
utilize longer sequence information.

3) We create a dataset for SVSR, SAT-MTB-VSR, which is
a subset of SAT-MTB [2], produced from the raw video of
Jilin-1, covering a wide range of scenes, and is currently
the largest publicly available dataset in the field.

The rest of this article is organized as follows. In Section II,
we introduce the existing works related to VSR and SVSR. The
details of our proposed method will be presented in Section III.
In Section IV, we present our dataset, implementation details and
experimental results, and analyze the results. Finally, Section V
concludes this article.

II. RELATED WORK

A. Video Super Resolution

Many methods for VSR have been proposed so far, including
traditional methods and deep learning-based methods. Schultz
and Stevenson [18] proposed a novel observation model based
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on motion compensated subsampling, which estimates motion
by affine modeling. Liu and Sun [19] proposed a Bayesian
approach to achieve an adaptive VSR by simultaneously esti-
mating the motion, blur kernel, and noise level. Ma et al. [20]
proposed an EM framework to guide residual blur estimation
and high-resolution image reconstruction. However, the results
of these traditional methods are still hardly satisfactory and
have been largely replaced by deep learning methods. Since
superresolution convolutional neural networks (CNN) [21] first
used deep learning in the field of SR, a large number of deep
learning-based image and VSR methods have emerged, and
CNN, adversarial generative networks (GAN), recurrent neural
networks (RNN), etc., have been widely used for SR. These
methods can be broadly categorized into two groups: methods
without alignment and methods with alignment. Representative
methods without alignment include dynamic upsampling filters
(DUF) [22], which is able to generate DUF and a residual image
to avoid explicit motion compensation, ensuring the temporal
consistency of the reconstructed image. In addition, RBPN [23]
integrated the spatial and temporal contexts of consecutive video
frames using a recurrent encoder–decoder module to fuse multi-
frame information into conventional SISR. Representative meth-
ods with alignment include TDAN [14], which first introduced
DCN into VSR to calculate offsets between target and neighbor-
ing frames, and warp the neighboring frames according to the
offsets to align them with the target frames. EDVR [24] goes
a step further by invoking DCN in a multiscale way to achieve
a more accurate alignment. Basic VSR and IconVSR proposed
by Chan et al. [25] advanced in both speed and reconstruction
quality with a more concise network and proposed to divide the
VSR into four steps: propagation, alignment, aggregation, and
upsampling. The subsequent BasicVSR++ [26] achieves another
improvement in performance by enhancing the propagation and
alignment operations.

B. Satellite Video Super Resolution

SVSR techniques appeared relatively late and are still in their
infancy, but researchers have proposed many deep learning-
based methods. Alignment using DCN is a very common op-
eration in SVSR, Zhang et al. [27] is one of the earliest to utilize
multiframe images of satellite video for SR. They employs a
combination of a single-frame and multiframe network, where
the multiframe network comes from the classical generic VSR
network EDVR, which utilizes a DCN for feature alignment. The
method proposed by Ni et al. [28] also uses DCN for alignment
and proposes a scale-adaptive feature extraction module as well
as an upsampling module that enables arbitrary magnification.
Xiao et al. [29] proposed a novel fusion strategy for temporal
grouped projections as well as a DCN-based multiscale residual
alignment module, and Xiao et al. [30] achieved simultaneous
SR for both time and space in a single network that predicts
unknown frames by coupling optical flow and multiscale de-
formable convolution. The method of He et al. [31], on the other
hand, uses the optical flow method for alignment, where the
image is first upsampled before going through an attention-based
residual network to obtain the final high-resolution image. There

are also methods that use dual-stream networks, Liu and Gu’s
method [32] has two subnetworks, one branch predicts the
high-resolution image and the other predicts the blur kernel and
is coupled by a cross-task feature fusion module. Its alignment
is based on patch matching in the feature space, which is more
stable than using the optical flow. The method proposed by Shen
et al. [33] adds an edge branch to EDVR that will simultaneously
predict high-resolution edge maps and the features of both
branches are fused at the end of the network.

The authors in [34] and [35] also propose SVSR methods
without alignment which directly use 3-D convolution for fea-
ture extraction and fusion. The authors proposed a network with
arbitrary SR scale in [34], which achieves image upsampling
by subpixel convolution and Bicubic. He et al. [35] split the
objective function of the degenerate model into two subop-
timization problems and propose to fuse deep learning and
model-based approaches for SVSR for the first time. In addition
to this, there are unsupervised learning approaches in the field of
SVSR [36], which consists of a down-sampling network and an
up-sampling network and does not require LR-HR training pairs.
Wang and Sertel [37], on the other hand, apply GAN to SVSR
and introduced an attention module to improve the generative
capability.

III. PROPOSED METHODS

A. Overall Architecture of RASVSR

Fig. 1 shows the overall architecture of our network, which is
a bidirectional recurrent neural network that consists of three
main parts, a feature extraction part consisting of a residual
network [38], an information propagation and aggregation part
consisting of an alignment module, a residual network, and a
TFF module, and finally a reconstruction part for outputting
high-resolution images.

Feature extraction: The feature extraction part consists of five
residual blocks of the same structure, each containing two 3× 3
convolutional layers and a ReLU activation layer, which does
not contain a BN layer. In this part, we only extract the shallow
features and do not downsample. The feature map is noted as f1

t

f1
t = RB5 (xt) (1)

where t represents the tth frame in the video sequence, RB5

represents five residual blocks, and the extracted feature map is
f1
t ∈ RC×H×W , C = 64. One of the reasons why our method

is lightweight enough is that the feature extraction part does
not employ a deeper network, and experimentally we found that
extracting deeper features is not necessary in SVSR. Also, the
channel of the feature map is 64, which significantly reduces the
number of parameters. Information propagation and aggrega-
tion: There are two stages in the information propagation and
aggregation part, one stage passes the information forward along
time and the other stage passes the information backward, which
allows the perceptual field of each frame to be expanded to the
whole sequence. In this stage, there is also no downsampling,
and the feature maps obtained in the forward and backward
directions are f2

t and f3
t ∈ RC×H×W , respectively. Also, we

use second-order propagation, which means that f2
t and f3

t are
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Fig. 1. Overall network structure of RASVSR.

Fig. 2. Data stream of propagation and aggregation part during backward
feature propagation. This section consists of three modules, which are residual
blocks, alignment module, and TFF module.

passed forward and backward twice. Fig. 2 shows the specific
structure and information flow of the backward propagation
stage of this part, and the forward propagation stage is similar.
First, the residual blocks are used to further extract the features,
the backward phase is

f3
t
′
= RB7

(
C
(
f1
t , f

2
t

))
(2)

where C represents the concatenation operation in the channel
dimension, and after concatenation the number of its input chan-
nel is 128. The forward propagation phase has no concatenation,

and the output feature maps are all of 64 channels, for the forward
propagation phase

f2
t
′
= RB7

(
f1
t

)
. (3)

In addition to this, the network structure is the same for both
forward and backward propagation, and the following are all
examples of backward propagation. The features of t+ 1 and
t+ 2 frames are aligned to obtainf3

talign
∈ RC×H×W in backward

propagation

f3
talign

= Align
(
f3
t+1, f

3
t+2

)
(4)

where Align represents the alignment operation. Finally, the final
feature map of the stage are obtained after fusing the features by
the TFF module

f3
t = TFF

(
f3
t
′
, f3

talign

)
. (5)

Reconstruction: In the reconstruction part, the feature maps
f1
t , f2

t , and f3
t are all used to reconstruct the high-resolution

image by convolution and pixel shuffle, and we use 2× of pixel
shuffle to achieve a 4× SR.

B. TFF Module

The performance enhancement of RASVSR relies heavily
on improvements in feature fusion. Unlike other previous VSR
methods that also employ RNN [16], [25], [26], [39], we propose
a temporal and spatial attention-based feature fusion mechanism
to take advantage of RNN’s strength in feature propagation.
Due to the effects caused by occlusion, motion blur, change in
view angle, and change in illumination in satellite video, direct
feature fusion after alignment is also ineffective. The weights
redistributed by the attention mechanism can help the network
to pick up the focused information and cut down the erroneous
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Fig. 3. Structure of TFF module.

information, which can lead to the effective utilization of longer
sequences. Due to the effects caused by occlusion, motion blur,
change in view angle, and change in illumination in satellite
video, direct feature fusion after alignment is also ineffective.
The weights redistributed by the attention mechanism can help
the network to pick up the focused information and cut down the
erroneous information, which can lead to the effective utilization
of longer sequences.

The specific structure of the TFF module is shown in Fig. 3,
first, we introduce the attention mechanism in the time dimen-
sion. For the feature map f3

t
′ extracted from the current frame

and the feature map f3
talign

obtained from the alignment of the
subsequent frames, their similarity distances after embedding
by convolution are first calculated

d
(
f3
t
′
, f3

talign

)

= Sigmoid
(

Conv1

(
f3
t
′)⊗ Conv2

(
f3
talign

))
(6)

where Conv stands for convolution operation and⊗ for dot prod-
uct. After that the aligned feature map is multiplied pixel by pixel
with the similarity distance and passed through a convolutional
layer to get the final temporal attention processed feature map

f3
ta1

= Conv3

(
f3
talign

� d
(
f3
t
′
, f3

talign

))
(7)

where � stands for pixel-by-pixel multiplication.
The fused feature f3

ta1
is also processed using spatial attention,

which is constructed in the same way as in [40] to enhance
information, such as texture. The final obtained feature map is

f3
t = SA

(
f3
ta1

)
+ f3

talign
(8)

where SA stands for spatial attention operations.

Fig. 4. Structure of alignment module.

C. Alignment Module

Alignment is very important for VSR and RASVSR performs
alignment operations at the feature level and uses both opti-
cal flow and DCN methods. A very lightweight deep learning
method SpyNet [41] is used in our method to compute optical
flow maps, the optical flow network is used to compute offsets on
the RGB image, we useOt+1→t to represent the optical flow map
from frame t+1 to frame t. In order to reduce the computation
amount, our method only computes the optical flow maps of the
two adjacent frames, the second order optical flow maps, such
as Ot+2→t, is then obtained by warping the first order optical
flow maps.

However, the optical flow maps are not directly used for warp-
ing images or features, but assist the deformable convolution
for feature alignment, and the deformable convolution we use
is DCNv2 [42]. As shown in Fig. 4, its offsets are obtained
by adding the offsets provided by the optical flow and the
computed residuals of the feature map after warping. The optical
flow is first used to prealign the first-order and second-order
propagation of the feature maps

f̂3
t+1 = W (

f3
t+1, Ot+1→t

)
(9)

f̂3
t+2 = W (

f3
t+2, Ot+2→t

)
(10)

whereW represents the warping operation. In order to reduce the
computational effort, the alignment operations of the first-order
and second-order features are performed together at the same
time, which is realized by concatenating them in the channel
dimension. The prealigned feature maps are convolved to com-
pute the residuals of the optical flow and the masks of the DCN,
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so that the offsets and masks of the DCN are, respectively

po = C (Ot+1→t, Ot+2→t)

+ Convo

(
C
(
f1
t , f̂

3
t+1, f̂

3
t+2

))
(11)

pm = Convm

(
C
(
f1
t , f̂

3
t+1, f̂

3
t+2

))
. (12)

Finally, the aligned features are obtained by DCN

f3
talign

= DConv
(
C
(
f3
t+1, f

3
t+2

) | po, pm)
(13)

where DConv is deformable convolution with 128 input channels
and 64 output channels.

D. Reconstruction Module

The reconstruction part utilizes feature maps f1
t , f2

t , and f3
t .

First, three feature maps are concatenated and then further fused
and extracted through the residual blocks to get the final features

ft = RB5

(
C
(
f1
t , f

2
t , f

3
t

))
(14)

where ft ∈ RC×H×W remains at 64 channels. Then, the number
of channel is increased and the size is raised by two convolutions
and two pixel shuffles

ft(HR) = PS (ConvR2 (PS (ConvR1 (ft)))) (15)

where PS stands for pixel shuffle operation. Here, convolution
doubles the number of channels and pixel shuffle halves the
number of channels and doubles the feature map size. Finally,
two more convolutions are performed to obtain the residual
ȳt of the high-resolution image with channel number of 3.
Except for the last convolution, all the convolutions here use
the Leaky ReLU activation function. Then the final predicted
high resolution image ŷt for frame t is

ŷt = ȳt + Bicubic (xt) (16)

where Bicubic stands for bicubic interpolation. The original
image is interpolated to improve the resolution by four times
and then added with ȳt to get the final predicted image.

E. Loss Function

We chose Charbonnier Loss [43] as our loss function, which
can better handle outliers and performs better than L2 loss on
SR tasks [44]. Its computational formula is

L (yt, ŷt) =

√
‖yt − ŷt‖2 + ε2 (17)

where yt is the ground truth of the high resolution image and ε
is a constant which we set to 10−6.

IV. EXPERIMENTS

A. Dataset

Due to the lack of a publicly available large-scale dataset
in the field of SVSR, we use the original videos of Jilin-1
to produce a satellite video dataset SAT-MTB-VSR and make
it publicly available, which is a subset of the satellite video
multitasking dataset SAT-MTB. The dataset is cropped from 18

videos captured by the Jilin-1 video satellite, covering a wide
range of terrains, such as cities, docks, airports, suburbs, forests,
and deserts, with a resolution of about 1 m. And the videos
contain dynamic scenes, such as moving cars, airplanes, trains,
and ships, which test the ability of the VSR method to deal with
moving targets of different sizes and speeds. At the same time,
due to the motion of the satellite, the video contains changes in
viewing angle and lighting.

We crop out 431 videos, each of which is 100 consecutive
frames, of which 413 are used as the training set and 18 as the
validation set, and all the 18 validation sets are from different
original videos, while the size of the images is 640× 640. These
images are downsampled 4× by bicubic interpolation to get
160× 160 low-resolution images, thus obtaining the LR-HR
training pairs. Some examples of the dataset are shown in Fig. 5

B. Implementation Details

Our approach is built using Pytorch and borrows code from
the open-source toolkit BasicSR [45]. We use 2 Nvidia Titan
RTX GPUs to train our network, utilizing a total of 48 GB GPU
memory. For training, we set the batch size to 4, the length of the
video sequences to 60, and all images are randomly cropped to
256× 256 for training, as well as using image flipping and rotat-
ing for data enhancement. Adam [46] is used as the optimizer for
training, and the learning rate is set to 10−4, while we also use
the Cosine Annealing Warm Restart [47] strategy to adjust the
learning rate. The training is set to take a total of 105 iterations,
which is about ten epochs, and completing a full training takes
about three days on our device. The number of epochs for
training is less because the video data itself is more redundant.
For the optical flow network SpyNet, we use pretrained weights
whose parameters are fixed for the first 5× 103 iterations of
training, after which they are optimized with a 0.25x learning
rate.

When evaluating the quality of SR images, we mainly use
PSNR and SSIM as metrics. PSNR is calculated based on the
mean square error, which measures the ratio of the maximum
possible power of the signal to the power of the noise that
affects the quality of the signal, the higher the value the better.
SSIM measures the degree of similarity of images, which is
based on a perceptual model, with higher values being better.
In addition, we use the no-reference image metric NIQE [48],
which constructs a set of features for measuring image quality
and calculates the difference in the distribution of images over
them, with lower values being better for image quality.

C. Ablation Studies

Ablation studies on the SAT-MTB-VSR dataset have been
performed to demonstrate the correctness and effectiveness of
our method and concept. First, we analyze the effectiveness of
the alignment module and the TFF module, which are the core
of our method to be able to exploit long sequences. Then, we
validate the advantages of utilizing long sequences in SVSR, our
method benefits from being able to utilize the whole sequence
information for SR of each frame, so that only few parameters
and a small amount of computation are required.
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Fig. 5. Examples of SAT-MTB-VSR dataset.

TABLE I
ABLATION STUDY OF ALIGNMENT MODULE AND TFF MODULE

Effectiveness of alignment module and TFF module: The
results of the ablation study are shown in Table I. Alignment
operations are necessary and important in VSR, and for RNN
methods that utilize the entire video, not performing alignment
will accumulate too much error information, leading to complete
unavailability. We attempted to remove the alignment module
completely, and the training became extremely unstable, with
the PSNR reaching a maximum of only 23.345 dB, which is
even far worse than the SISR method. This is because RASVSR
is very sensitive to the alignment operation, as longer input
sequences imply greater image variations. Benefiting from the
good alignment of the optical flow plus DCN, the utilization of
longer sequences is achieved, which would otherwise lead to
the continuous accumulation of error information, resulting in a
serious degradation of the results. The enhancement of feature
aggregation by the TFF module brings further performance
improvement, we replace the TFF module with three residual
blocks for the aggregation of timing information, and the PSNR
and SSIM drop to 38.162 and 0.9511 dB, respectively, which
means that the TFF module delivers a PSNR improvement of
1.768 dB and an SSIM improvement of 0.0159 dB.

Effectiveness of long sequence usage for training: The biggest
difference between RASVSR and other current SVSR methods
is its ability to utilize information from longer sequences. Most
of the previous SVSR methods only utilize 3–7 frames of images
to SR one image, whereas our method can achieve utilization of
all 100 frames of our video. Experiments have demonstrated
that increasing the length of the training and testing sequences
has a positive effect on the results of SVSR. The first is the
sequence length used for training. There is a limit to the number
of images in a batch due to the memory constraints of the GPU,
so there is a tradeoff between batch size and sequence length. We
experimented with different batch sizes and sequence lengths,

TABLE II
ABLATION STUDY ON USING DIFFERENT SEQUENCE LENGTH AND BATCH SIZE

FOR TRAINING

Fig. 6. PSNR of the first frame for inference using sequences of different
lengths.

and all 100 frames were input for testing. The results are given
in Table II, where we find that increasing the sequence length is
more effective than increasing the batch size. The models trained
using 15 and 30 frame sequences do not perform as well as 60
frames. We believe that because there is not enough sequence
length, the model is unable to learn how to aggregate information
from long sequences, which results in the model not aligning and
fusing features well enough when using 100 frames of sequences
for inference in the test.

Effectiveness of long sequence usage for inference: In order
to prove that the model achieves information aggregation and
utilization of long sequences, we use different sequence lengths
for inference in our tests, and then calculate the PSNR and SSIM
on the first frame of the video. As given in Table III and Fig. 6,
there is a significant improvement in both PSNR and SSIM as
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TABLE III
ABLATION STUDY ON USING DIFFERENT SEQUENCE LENGTH FOR INFERENCE

TABLE IV
COMPARISON WITH OTHER METHODS

Fig. 7. Speed and performance comparison. The size of the circles indicates
the amount of parameters of these models.

the length of the used sequences increases, but there is a drop
when the sequence length is over 80, which is due to the fact
that even with the TFF and alignment module, the error cannot
be completely eliminated, and too long sequences lead to the
accumulation of error information, which results in a decrease
in effectiveness.

D. Comparison With State-of-the-Art Methods

We compare our method with several representative VSR
methods, including EDVR, MSDTGP, BasicVSR, IconVSR,
and BasicVSR++, as given in Table IV and Fig. 7, where the
runtime is the time to process 1 frame on a single Nvidia Titan
RTX. All methods are retrained on the SAT-MTB-VSR dataset
and tested on the validation set with 4× SR. All of these methods
are designed for video, but the number of frames utilized for
SR an image is different, the specific data can be given in
Table IV, and since BasicVSR, IconVSR, and BasicVSR++ are
also RNN-based methods, they are also able to utilize informa-
tion from the entire video sequence. EDVR and MSDTGP, on
the other hand, only utilize five frames, and at each time each
image is processed, they need to reextract the features of the

adjacent frames, and such repeated extraction of features greatly
increases the computational effort. The RNN-based method
extracts features only once for each image, which has a great
advantage in terms of speed.

Our method achieves the best in all three metrics, PSNR,
SSIM, and NIQE, and it still has the smallest number of param-
eters, which is only 5.4 M. As a comparison, the EDVR has a
parameter of 20.6 M. In terms of PSNR, our method outperforms
the second-place BasicVSR++ by 1.15 dB, which is a great
advantage. For SSIM, our method is still the highest at 0.9670,
which is 0.0063 higher than the second place. On the NIQE
metric, which is more in line with human intuition, our method
still outperforms the other methods at 6.8273. In terms of speed,
our method takes only 126 ms to process 1 frame, which is also
advantageous and only slightly slower than BasicVSR.

We also provide a comparison of the images after SR, as
shown in Fig. 8. For the airport runway in (a), our method
restores the most clear and sharp figure. In (b), our method most
clearly and accurately restores the area of white lines. For the
white vehicles in the lower right and upper left corners in (c), our
method reconstructs an image that can identify the boundaries
of the different vehicles instead of blurring them into a single
piece, and in some methods, there is an error in the direction of
the stripes.

E. Real-World Experiment

Our method demonstrates excellent performance on the SR of
satellite videos, but most of the current research and our study are
based on manually downsampling images to get simulated low-
resolution images to build LR-HR training pairs, not real-world
SR. Real-world SR, also called blind SR, i.e., SR of images for
which the degradation mode is not known, is a difficult problem
in the field of SR. We also tested real-world SR on RASVSR,
using it directly on raw satellite video that has not been down-
sampled. In order for the network to learn high-resolution remote
sensing information, we pretrained RASVSR using the AID
dataset [49], which is a higher resolution remote sensing image
dataset. We found that pretraining using higher resolution remote
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Fig. 8. Visualization of test results on SAT-MTB-VSR dataset.

sensing images can marginally improve performance at real-
world SR. Benefiting from the fuller use of video information,
our method also has better performance at real-world SR, as
shown in Fig. 9, where our method yields the smoothest image
with the cleanest colors and clearer vehicle boundaries in this
parking lot scene. However, there is still a long way to go for
real-world SVSR, and we believe that the most important thing
is to innovate in the training data and training method of the

network, although our method can obtain more information on
the video, but it is hard to learn the way of image degradation in
the real world, and there is still a lot of room for improvement.

F. Discussion

The continuous imaging of fixed scenes by satellite video
does facilitate SR, and with good alignment and fusion
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Fig. 9. Visualization of real-world experienment.

operations there is a richer set of information to utilize. Using
longer sequences for SR as much as possible can bring more
improvements at less cost, which has often been ignored in the
past. However, there are some drawbacks to using RNN, such
as the fact that the training and inference of the network takes
up a lot of video memory, even if we have a small number of
network parameters, which leads to higher device requirements
to run the network. In addition, we believe that the SR effect
in a real environment is still the first issue that needs to be
considered for SVSR afterward. Our method can be improved in
terms of training approach, training data and network structure
to accommodate real-world SR.

V. CONCLUSION

This article proposes a deep learning-based SR method for
satellite video, RASVSR, which is designed for the charac-
teristics of satellite video scenes that are fixed and possess
temporal information, and focuses on achieving the aggregation
and utilization of long sequence information. First, we propose
a bidirectional RNN-based information propagation structure
so that the features of each image frame can be propagated to
the whole sequence after feature extraction. We then propose
an optical flow and DCN-based alignment method and a TFF
module to enable features to be aligned and properly utilized
in propagation, reducing the accumulation of misinformation.
We also release a SVSR dataset for subsequent studies. Suffi-
cient experiments have proved that utilizing the information on
more frames has positive significance for SVSR, and thanks
to the RNN-based network structure and specially designed
information aggregation method, RASVSR achieves the best
SR effect with very few parameters and computations. In the
future, improving the SR effect of deep learning methods for
real-world satellite video is a problem worth exploring.
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