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Transformer-Based Dual-Branch Multiscale Fusion
Network for Pan-Sharpening Remote Sensing Images

Zixu Li , Jinjiang Li , Lu Ren , and Zheng Chen

Abstract—Due to the limitations of satellite sensors, we can only
obtain MS images and PAN images separately. The focus of our
attention is to utilize the pan-sharpening method to generate the
high-resolution multispectral (HRMS) images. In this article, we
proposed the dual-branch multiscale fusion network, which based
on the spatial-spectral transformer to comprehensively capture the
information contained in MS images and PAN images at different
scales. The architecture of our network consists of three parts:
during the feature extraction and image fusion stage, we first inde-
pendently apply upscaling and downscaling operations to the MS
and PAN images. Subsequently, we concatenate the images from
the two distinct branches and input them into the shallow feature
extraction module individually. And then we input them into our
adaptive feature extraction block to further extract the crucial
details of the images using the attention mechanism. The images
a various scales in different branches are then passed through
three spectral transformer and three spatial transformer modules
to perform a comprehensive extraction of both spatial and spectral
characteristics. Finally, the residual local feature module is utilized
during the image reconstruction part to deeply extract intricate
information from the images and obtain the final HRMS fused
image. We have conducted both simulated and real experiments
on the benchmark datasets QB and WV2. The final qualitative and
quantitative comparative results demonstrate that our innovative
method outperforms the current SOTA methods.

Index Terms—Attention mechanism, convolutional neural
network, pansharpening, transformer.

I. INTRODUCTION

R EMOTE sensing image technology has received
widespread attention since its inception, the application

scope includes target detection, image segmentation, image
fusion, etc, affecting all aspects of human production
activities. [1], [2] And due to technical defects, We are unable
to acquire the multispectral images at high resolution on the
existing remote sensing sensors simultaneously, how to make
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good use of the advantages of the respective sensors to obtain the
results we want to become the focus of our attention. [3] Through
the pan-sharpening method, We have the capability to combine
the MS images captured by the sensors with PAN images to
generate the targeted HRMS images [4]. As a foundational
and continually evolving area of research, the pan-sharpening
method has been developed for nearly 40 years, which extracts
and fuses the rich multispectral distributions contained in MS
images and the rich spatial structural information contained in
PAN images to obtain the HRMS images we need [5], [6]. It
has also been proved through theory and experiment that the
method is widely used in computer vision applications, such as
coastal zone monitoring [7], land change detection [8], anomaly
detection [9], etc. The pan-sharpening method consists of three
principal components described as follows.

Founded on the CS transformation, which is often referred
to as the spectral modification method, the initial MS im-
age is spectrally transformed and the panchromatic image
is decomposed into multiple bands. The fusion process in-
volves substituting the abundant spatial information within the
PAN image with the spatial details from the MS image, ulti-
mately yielding high-resolution multispectral images. Owing
to the uncomplicated nature and efficiency of this approach,
many well-known and efficient algorithms have been derived,
such as Gram-Schmidt (GS) [10], principal component anal-
ysis (PCA) [11], Wavelet Transform-Based [12], intensity-
hue-saturation (IHS) [13] methods. In addition, the nonlinear
PCA [14] and the nonlinear IHS [15] methods are employed
to discern finer details within the images, the various types of
feature components of the image are also more easily identified.
Despite the ease of implementation and the substantial improve-
ment in spatial information acquisition achieved by methods
based on the CS transform, they ultimately lead to the spectral
information loss and distortion.

The spatial layout of high-resolution PAN images is decon-
structed in MRA-based pan-sharpening methods, employing
wavelet transformation or the generation of a Laplace pyramid,
and Embeds the separated spatial information into the LRMS
images, resulting in images endowed with abundant spatial
data and an evenly distributed spectral profile. The MRA-based
pan-sharpening methods are also simple to implement. The
traditional MRA algorithms includes three steps: multiresolu-
tion image decomposition, image fusion, and reconstruction.
It is now more widely understood that a unified framework
should be proposed to avoid the complex three-step processing.
The improved adaptive intensity-hue-saturation (IAIHS) [16],
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effectively enhances the spatial-spectral information present in
the fused images. This enhancement is made possible through
the creation of a correlation weight matrix that establishes a
relationship between the spatial structure in the PAN images and
the spectral attributes of the MS images. Other methods include
generalized Laplacian pyramid (GLP)-based methods [17], [18],
[19], additive wavelet luminance proportional (AWLP) [17],
[18] methods, curvelet transform [20] method, high-pass filter-
ing (HPF) [21], and other methods.

The VO-based pan-sharpening methods is formed on the basis
of variational theory [22], the main content is to find the best
fusion transformation function that satisfies specific constraints.
The P+XS [23] method aroused a strong reaction once it was put
forward, which made the VO-based pan-sharpening methods
gain more attention and development. Sparse representations
(SR) [24] exploit the connection between LRMS images and
PAN images to construct dictionary elements and finally in-
ject high-resolution spatial information into MS images. By
combining SR and wavelet transform, The fine-grained and
coarse-grained information of the image is improved in stages,
which is more efficient than the traditional SR [25].

Over the last few years, due to the continuous growth and
advancement in science and technology, based on deep learn-
ing (DL) pan-sharpening methods have gradually achieved
great success in the direction of remote sensing image pro-
cessing. In contrast to the aforementioned traditional tech-
niques, the basic principle of the methods is to learn and
construct the network parameters between the observation
samples and the fused images. In addition, the network’s
structure can be further enhanced by persistently optimiz-
ing the loss function between samples and the fused images,
which is particularly efficient when dealing with large-scale
datasets. However, there are exists some problems when train-
ing the network, how to construct a better and more effi-
cient network structure with more reasonable network pa-
rameters, these two factors determine the performance of
the network. In this article, we propose a two-branch multi-
scale fusion network structure based on the transformer mod-
ule for pan-sharpening, we demonstrate the performance of
this method, and carry out relevant qualitative and quantita-
tive analyses and comparative experiments on two benchmark
datasets, this article chiefly contributes to the field are as
follows:

1) We propose the spectral transfomer to enhance the ex-
traction of spectral information from images. This is ac-
complished by performing self-attention computations in
the spectral domain while implementing the multihead
mechanism in the spatial domain.

2) To address the limitations of the transformer module in
capturing fine-grained details, we have utilized multiscale
band/patch embeddings for extracting multiscale spec-
tral/spatial information from images. Leading to a signif-
icant improvement in the overall network’s performance.

3) We introduce the AFEB module into the feature extraction
process so that the network model focuses on the impor-
tant information within the images while disregarding the
irrelevant information for the current task.

The rest of the article is organized as follows:
Section II mainly describes the background of the DL-based
pan-sharpening methods, the attention mechanism, and the
transformer modules. Section III provides a more detailed and
specific analysis of the network structure. Section IV provides
an extensive overview of the experimental component of this
article, showcasing the effectiveness of our proposed method.
This is substantiated through qualitative and quantitative
comparisons of fusion results against nine current SOTA
techniques on the QB and the WV2 datasets. Finally, Section V
concludes this article.

II. RELATED WORK

A. DL-Based Pansharpening

With the explosion of DL in recent years, the potential
for its application in the field of remote sensing imagery is
also steadily advancing. Zhu et al. [26] established a network
structure with multiple layers and formed the foundation of
the deep network structure. Masi et al. [27] proposed a pan-
sharpening neural network (PNN) had three network layers and
efficiently extracted image features but struggled with deeper
feature information. Scarpa et al. [28] proposed a target-adaptive
pan-sharpening method using residual networks to deal with
the discrepancy between the dataset and various sensors dur-
ing training. The DL pan-sharpening method assumes a com-
plex nonlinear relationship between observation samples and
fused images. [29] The DNN method learns the parameters
between these samples and fused images. In conducting the
experiments, in the absence of the actual HRMS images, we
acquired the training samples following the Wald [30] protocol.
Wei et al. [31] integrated a residual network into the network
structure, enabling the network to extract deeper-level feature
information from images through nonlinear transformations.
Xu et al. [32] constructed a pan-sharpening method based on
edge information-guided pan-sharpening using sparse coding
matrices, which further expanded the pan-sharpening content.
Yang et al. [33] introduced the PanNet network, which combines
residual networks with an up-sampled MS image to bolster the
network’s proficiency in feature extraction from images. This
strategy facilitates the extraction of spatial details, while retains
the spectral distribution. Based on the CoF fusion algorithm,
Tan et al. [34] proposed the CoF-MSMG-PCNN method, which
the PAN image is decomposed into three scales, and then
fused with the HIS-converted MS image and reconstructed to
attain the eventual fused image. The multiscale image feature
extraction module (MSDCNN) proposed by Yuan et al. [35]
employed multiscale convolutional operations to capture diverse
image features, enhancing texture details within the image by
integrating a residual network. Zhange et al. [36] introduced
the TDNet, which includes three structures: bidilevel, bidi-
branch, and bidirectional. This network effectively captures the
full richness of spatial architecture and subsequently integrates
this information into the MS image during fusion stage. Ma
et al. [37] extended the pan-sharpening research by proposing an
unsupervised adversarial network-based fusion method, which
does not require observation samples in the entire training
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process and retains spatial-spectral information through the con-
structed spatial-spectral generator. On this basis, Zhou et al. [38]
proposed a PGMAN framework for pan-sharpening, which fur-
ther extends its application in GAN networks. Uezato et al. [39]
proposed a guided deep decoder network as a general prior,
which performed well in various image fusion tasks.

B. Attention Mechanism

Attention mechanisms have made rapid progress in DL ap-
plications due to their powerful feature extraction capabilities,
and they have achieved significant success in various upstream
and downstream tasks. Such as semantic segmentation [40],
natural language processing [41], and image processing [42].
Attention mechanisms enable models to prioritize the most rel-
evant information for the current task and disregard less impor-
tant data. This enhances computational efficiency and reduces
parameter complexity. Currently, spatial attention, channel at-
tention, and hybrid attention mechanisms are commonly used.
Hu et al. [43] presented the innovative “squeeze-and-extraction
network (SENet)” network. This structure incorporates a global
compression part for feature maps within individual channels.
The learned weights are then employed to extract and acti-
vate features contained in feature maps. Finally, these learned
weights are applied to the original feature maps, either ampli-
fying or suppressing specific channel features. Li et al. [44]
proposed Selective Kernel Networks (SKNet), in which the
attention mechanisms are primarily utilized to adaptively select
convolutional layers with various kernel sizes. This process
aids in determining feature weights at different scales, allowing
the network to selectively fuse multiscale information. Wang
et al. [45] proposed. the efficient channel attention (ECA), which
prioritizes the significance of individual channels. Furthermore,
the ECA module avoids interchannel interactions, thereby en-
hancing the network’s performance under limited computational
resources. [46] The spatial information network (SPANet) ad-
ditionally introduces an additional branch for handling spatial
information and integrates the extracted spatial information into
the primary feature extraction branch, consequently enhancing
the model’s effectiveness in visual task [47]. By combining
channel attention and spatial attention mechanisms, the CBAM
framework intelligently prioritizes different channels and spatial
domains, thereby enhancing its capability in feature extrac-
tion. [48] The Bam module dynamically adjusts feature channel
importance using learned weight ratios to enhance overall net-
work performance.

C. Transformer Module

In the field of image processing, while CNNs primarily focus
on local feature extraction, the transformer module enables the
model to capture feature dependencies over long distances and
simultaneously process inputs from all locations. Transformer
network has already proved their advantages in processing
sequential data. [49] The Spectralformer network generates
grouped spectral embeddings by extracting local sequence in-
formation from neighboring bands in a multispectral image. It
also incorporates a cross-layer connection to adaptively learn

Algorithm 1: The Implementation Process of our DMFN
Model.

Input: α, β( MS PAN )
Output: FOut( the final pansharpening image )
// step1 : The connection of images
∗Shallow feature extraction
F1 = Concat(α, βdown),F2 = Concat(αup,β)

end
// step2 : The feature extraction of the network
∗Shallow Feature fusion
γ = SFE(F1), η = SFE(F2)
γ′ = AFEB(γ), η′ = AFEB(η)
∗Deep Feature extraction
For i in 3 do
σ = SPET (γ′)
υ = SPAT (η′)
end

end
// step3 : The feature fusion and the image
reconstruction of the network
σup = Upsample(σ)
F δ = Concat(σup, υ)
For i in 3 do
FR = RDLFB(F δ)
end
FOut = ESA(FR)

end
// step4 :
Calculate the loss to optimize training process
lloss = MSE(x, y) + μLap(x, y)

cross-layer fusion information. Many researchers have also tried
to integrate the benefits of CNN and the transformer model
to design a more efficient network structure, He et al. [50]
presented the spatial-spectral transformer, which employs a
tailored CNN framework to extract spatial features and incor-
porates an adjusted transformer module to capture the spec-
tral characteristics present in the image. [51] The Swin trans-
former leveraged the strengths of both CNN and transformer
by performing self-attention computations within fixed-size
windows. It also utilized sliding window operations, including
nonoverlapping and overlapping cross-windows, progressively
increases the model’s perception of the image at each layer.
Zhang et al. [52] proposed a multiscale spatial-spectral inter-
active attention mechanism that combines globally and locally
extracted features from LRMS and PAN images. This effectively
enhances information complementarity while reducing redun-
dant features. Li et al. [53] treats the degradation process of
HRMS images as a unified variational problem and introduces a
local-global transformer for the prior image denoising module,
the final fused image is achieved after a series of iterative
approximations.

The algorithmic inference process of our overall framework,
as shown in Algorithm 1.
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Fig. 1. Fusion result image of pan-sharpening methods.

III. MODEL CONSTRUCTION

The following section will meticulously explain the im-
plementation algorithms and the fundamental architecture of
the Pan-sharpening method as shown in Fig. 2. In the first
subsection, we analyze the overall design idea and structure
of the DMFN network. In the second subsection, we explain
several important modules introduced in the paper. And in the
third subsection, we summarize the relevant loss functions set
in this article.

A. DMFN Framework

Fig. 2 illustrates the primary structure of our DMFN method,
which is divided into three critical components: feature extrac-
tion, image fusion, and image construction.

Feature extraction and image fusion part: we first use bi-
linear interpolation for the LRMS image α ∈ Rh×ω×B(h,ω,B
symbolize the height, width, and spectral number of the LRMS
image, respectively) and the PAN image β ∈ RH×W , which
execute up-sampling and down-sampling operations to obtain
αup ∈ RH×W×B and αup ∈ RH×W×B . It can be articulated
using the subsequent equation.

αup = Up(α), βdown = Down(β) (1)

where the Up(·) and Down(·) operations denote the up-
sampling and down-sampling operations of bilinear interpola-
tion. Then, we connect α and βdown to get αcat ∈ Rh×ω×(B+1),
and connect β and αup to get βcat ∈ RH×W×(B+1), which can
be expressed as follows:

αcat = Concat (α, βdown) , βcat = Concat (β, αup). (2)

The Concat(·) operation represents the connection between
the channel dimensions, the connection between the transmem-
brane states can realize the cross-dimensional information inter-
action between the two branches.

Since the convolution operation can easily and efficiently map
the image from low to high dimensions, in the shallow feature
extraction module, we adopt multiscale convolution to capture
the image features at different levels to enhance the model’s
ability to generalize effectively while gradually expanding the
sensory field. The shallow feature extraction module consists of
2-D convolution operations with convolution kernels of 3, 5, and
7, respectively, the output channels are 16, 16, and 32 and step
sizes of 1, 2, and 3. The outputs Fs and F ′

s can be formulated
using the equation provided as follows:

Fs = SFE (αcat) , F
′
s = SFE (βcat) (3)

where SFE(·) denotes the shallow feature extraction mod-
ule, and then we input the obtained feature images into the
adaptive feature extraction block (AFEB) on each branch, re-
spectively, for further processing to obtain Fα ∈ Rh×ω×C and
F ′
α ∈ RH×W×C , which can be symbolized by the equation that

follows:

Fα = AFEB (FS) , F
′
α = AFEB (F ′

S). (4)

The output feature images are then fed into our introduced
L=1,2,3 spectral transformer (SPET) and spatial transformer
(SPAT) for deep feature extraction. Before Fα is input to
SPET, the spectral embedding is set to B0

L ∈ RC×Dspe for
the SPET feature extraction module in the Lth layer, where
C = 16 × 2L−1 is the number of channels, and the Dspe is set to
32. Similarly before F ′

α is input to SPAT, we set the patch em-
bedding for its SPAT module in the Lth layer to P 0

L ∈ RN×Dspa ,
and Dspa is set to 256. Finally, we input to each SPET and
SPAT module to obtain the intermediate valuesBi

L(i = 1, . . ., 5)

and P j
L(j = 1, . . ., 5), which are expressed as the following

equations:

Bi
L = SPETi

(
Bi−1

L

)
, i = 1 . . . 5 (5)

P j
L = SPATj

(
P j−1
L

)
, j = 1 . . . 5. (6)

SPETi(·) and SPATj(·) denote the SPET and SPAT modules
in layer i and layer j, respectively. The learned weights are used
to aggregate the extracted multiscale features to obtain F spe

sum ∈
Rh×ω×C and F spa

sum ∈ RH×W×C .
Shallow feature extraction can extract the shallow information

from the image through a straightforward and efficient process,
while SPET and SPAT modules are more focused on extracting
the intricate feature characteristics within the image, so in this
article, we adopt the method of combining the shallow fea-
ture extraction module and the deep feature extraction module
(includes SPAT and SPET) with the skip connection operation
to ensure that the network model obtains the shallow features
while maintaining the deep feature information, which can be
illustrated through the equation that follows:

F spe = F spe
sum + Fα, F

spa = F spa
sum + F ′

α. (7)

In order to ensure that the image sizes on the two branches
are consistent before image reconstruction, we use a subpixel
convolutional layer to execute an up-sampling procedure on the
final feature image F spe to obtain F spe

up , and a spatial-spectral
feature mapF ∈ RH×W×2C is obtained by connectingF spe

up and
F spa. Subsequently, utilize it as input for image reconstruction
to generate the HRMS image.

The image reconstruction part: The images after the linking
operation are inputed into our proposed residual local feature
module (RLFM) to further extract and preserve the image’s local
structural characteristics. The residual dense local feature block
(RDLFB) discards multiple feature distillation connections and
simply adopts six stacked convolution operations and ReLU
activation function for local feature extraction, which greatly
reduces the computation time while maintaining the capacity of
the model. After three RDLFB in sequence, it is then passed
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Fig. 2. Overall framework of DMFN network for remote sensing image fusion.

Fig. 3. Architecture of AFEB.

into the enhanced spatial attention (ESA) module for further
processing, ultimately resulting in the HRMS image.

B. Adaptive Feature Extraction Block

As depicted in Fig. 3, aim to narrow the perceptual gap
between the estimated spatial-spectral details and the authentic
images, we propose the AFEB module in this article. First, the
feature information is extracted from different local regions of
the image using a convolutional kernel K ×K(Ck), and the
parameters are adaptively adjusted according to the learning
weights Ωα. In order to improve the learning efficiency, we set
K to 3 here. The learning weight Ωα is obtained by constructing
the spectral-spatial attention (SSA) mechanism to combine the
spatial-channel attention, the specific structure of SSA is shown
as follows.

The purpose of SSA is to acquire the weight matrix Ωα that
matches the size of convolution kernel K × K. First, the input
feature map F is proceeded through a 3 × 3 ×K2 convolution

layer, which fuses the channel information while reducing the
dimension of the feature map. Then, the spectral and spatial
weights are obtained by using spectral and spatial attention, re-
spectively. Spectral weights correspond to the spectral attributes
of each spectrum, while spatial weights signify the spatial char-
acteristics within each spectral channel. Each spectrum of the
image has unique spatial-spectral information, With the aim
of enhancing the harmonization between spatial and spectral
information, we sequentially carry out the inner product of the
two weights, we obtain the interleaved attention weight matrix
Ωα after perfume the reshape operation. The whole process can
be mathematically defined by the following equation:

F ′ = Conv(F )

Oτ
Ψ = Sigmoid (Conv1D (GMP (F ′)))

Oπ
Ψ = Sigmoid (Conv (Cat (MP (F ′) , AP (F ′))))

Ωα = Re (O τ
Ψ ⊗Oπ

Ψ) (8)
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Fig. 4. Architecture diagram of the proposed spectral transformer.

where F denotes the local feature map input to the AFEB,
Oτ

Ψ, O
π
Ψ denotes the spectral and spatial attention respectively,

Conv1D(·) denotes the 1-D convolution, GMP(·) represents the
application of global max-pooling, MP (·) and AP (·) denote
the max-pooling and average-pooling operations, respectively,
⊗ denotes the inner product operation, Re(·) denotes the re-
shape operation, and � denotes the convolution operation. The
adaptive local convolution kernel are obtained by weighting Ωα

and Ck with the corresponding weight values of each local. The
convolution computation on the feature map is executed using
the adaptive local convolution kernel we have obtained to get
the features under different local regions, and the final output
Oa is presented as follows:

Oa = Ωα ⊗ Ck � F. (9)

C. Spectral Multihead Self-Attention

In SPET, the spectral self-attention mechanism is cleverly
designed to obtain the correlation between spectra by calculating
the self-attention on the spectral dimensions, as shown in Fig. 4,
we first obtain the query matrix Q ∈ k

hw×DSpe , the key matrix
K ∈ k

hw×DSpe and the value matrix V ∈ k
hw×DSpe by the the

trainable linear transformation computation shown as follows:

Q = Bi
lW

Q,K = Bi
lW

K , V = Bi
lW

V (10)

where WQ,WK , and WV are learnable mapping matrices, and
then a scalar dot product function is applied to the query, key,
and value, defined as follows:

Attention(Q,K, V ) = V ·
(

softmax

(
KTQ√
Dspe

))
. (11)

The Attention(·)represents the scalar dot product computa-
tion function, where the multihead attention mechanism is used
as in VIT to maximize the ability to extract features. However,
unlike the VIT network, we assign Q, K, and V to M2 heads in
the spatial domain and set M to 2 for all datasets. The spectral
multihead self-attention (SpeMSA) is defined as follows:

Headn = Attention (Qn,Kn, Vn) , N = 1 · · ·M2

SpeMSA (Qn,Kn, Vn) = ConcateM
2

n=1 (Headn)W. (12)

Qn,Kn, and Vn denote the query matrix, key matrix, and
value matrix obtained by training linear transformation at the
nth. SpeMSA(·) denotes the spectral multihead self-attention
computation function, Headn denotes the nth head, and W ∈
k
Dspe×Dspe denotes the transformation matrix obtained by learn-

ing the parameters.

D. Multiscale Embeddings

1) Multiscale Band Embedding: For more accurate spectral
information extraction from the image spectrum, we propose the
SPET module. We introduce the multiscale spectral embedding
for multiscale spectral feature extraction. First, the convolution
process is carried out using a kernel of dimension 3 × 3 to the
different scales images with the output channels of C. Then, we
input these feature maps into the respective SPET to capture
multiscale spectral details. We aggregate the extracted multi-
scale spectral features and use the skip connection operation to
acquire the eventual output F Sum

spe , which can be expressed using
the following mathematical expression:

F Sum
spe = Add(ΣL=3

l=1 SPET, Oa). (13)

The Add(·) represents the element-wise summation opera-
tion.

2) Multiscale Patch Embedding: We use the SPAT module
to capture the spatial characteristics embedded in the image,
The SPAT structure is similar to the VIT structure, the image
is cut into fixed-size patches and embedded linearly into the
sequence for processing. The embedding of patches at different
scales obtain feature information at different fine level, so we
use multiscale patches to further enrich the spatial details of
the image. As depicted in the bottom of Fig. 2, we first split the
image into patches with different sizes, then input these different
patches into different SPAT as the embedding sequences to
further extract the image’s spatial characteristics across multiple
scales, combining the skip connection and aggregation opera-
tions to acquire the ultimate output result F Sum

spa , which can be
formally expressed by the equation

F Sum
spa = Add(ΣL=3

l=1 SPAT,Oa) (14)

E. Residual Local Feature Module

As depicted in Fig. 5, the RLFM consists of residual dense
local feature block (RDLFB) and enhanced spatial attention
(ESA), which significantly reduces the computation time while
maintaining the model capacity. Among them, the RDLFB
mainly consists of several successive stacked convolutional op-
erations and activation functions as deep local feature extraction,
and the skip connection are employed to propagate over multiple
layers while mitigating the fading problem, the complete pro-
cedure can be mathematically summarized using the following
equation:

Fi = Concate (ReLU (Conv (xi)) , xi)

Fout = Add
(
ΣL=6

l=1 Concate (ReLU (Conv (xL)) , xL) , x1

)
(15)



620 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 5. Architecture of residual dense local feature block (top) and the enhanced spatial attention (down).

where xi denotes the input at different depths, Fi denotes the
output at each stage, Conv denotes the convolution operation
with kernel size of 3 × 3, and the final output Fout is obtained
through the successive level aggregation and skip connection
operation.

The obtained Fout is used as the input to the ESA module for
further processing to obtain the final HRMS image, as shown
in the bottom of Fig. 3. Through convolution operation with a
kernel size of 1 × 1, we downscaled the input feature Fout and
yielded FConv1, and in order to reduce the spatial size of the
feature map to obtain the sensory field of a larger spatial range,
the feature map is sequentially downscaled by the convolution
and pooling operations. After the convolution and pooling op-
erations, the output is generated by performing element-wise
multiplication between the feature map and the input, and the
whole process is expressed as the following equation:

FConv1 = Conv1×1 (Fout)

FΔ = Conv3×3 (MP (Conv3×3 (Fout)))

FΛ = Sigmoid (Conv1×1 (Add (Conv1×1 (FConv1) , FΔ)))

Ffinal = Fout ⊗ FΛ (16)

where Conv1×1(·) and Conv3×3(·) denotes convolution opera-
tions with kernel sizes of 1 × 1 and 3 × 3, respectively, MP (·)
denotes Maxpool pooling operation, Add(·) denotes an element
summation operation, Sigmoid(·) denotes Sigmoid activation
function, and ⊗ denotes an inner product operation.

F. Loss Function

By calculating the loss between the fused image and the real
image in the DMFN network for propagation to continuously
optimize the network performance. The MSE loss function is
robust for small error values and its squared curve is more
smoother in the vicinity, which will not have a significant impact
like the L1 [54] loss function. Resulting in the direction of the

training model gradually deviates from the target, so we adopts
the MSE loss function. In addition, thanks to the Laplace loss
function [55], It provides enhanced robustness against abnormal
value compared to the MSE loss function, so that the fine-grained
features and spectral characteristics of the predicted images
closely resemble those of the target image. we combine the
two different loss functions in this article to train our DMFN
network, the formula is specified as follows:

lfinal = MSE(x, y) + γLap(x, y). (17)

x denotes the fused image and y denotes the truth ground. The
MSE function is defined as follows:

LMSE =
1

n
Σi=n

i=1

(
yi − ∼

yi

)2
. (18)

n represents the count of observations, (·)2 denotes the square
of the error between the predicted image and the real image, yi
represents the predicted image,

∼
yi denotes the true image, and the

squared difference of all the samples is summed and averaged
to obtain the final loss, and the Laplace loss function is defined
as follows:

Lap = Σn
j=12

j−1 | Lj(β)− Lj

(∼
β

)
|1 (19)

where Lj(
∼
β) denotes the result of the jth layer in the slap loss

function, and Lj(β) denotes the result of the real image in the
jth layer, the computed multilayer results are summed.

IV. EXPERIMENTAL RESULTS

The DMFN network is trained and validated on two bench-
mark datasets. First, we will explain in detail about the bench-
mark datasets and evaluation metrics used in our experiments,
demonstrate the enhancement of the overall network perfor-
mance brought about by the modules introduced in our exper-
iments through the ablation experiments. Finally, we conduct
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a comprehensive analysis, encompassing both qualitative and
quantitative aspects, as we compare our method with nine SOTA
pan-sharpening approaches with and without reference images,
those experiments were carried out using NVIDIA Titan RTX
and used pytorch framework.

A. Datasets and Metrics

Experiments are executed on both the QB and WV2 datasets,
where the QB dataset includes four bands, and the spatial resolu-
tions provided by the MS image and the PAN image are 2.44 and
0.61 m, respectively. The WV2 dataset includes eight bands, but
our experiments only consider four of them, the red, blue, green,
and NIR spectral bands. When it comes to spatial resolution, the
MS image provides a coarser 4 m, while the PAN image provides
a finer 1 m resolution. The DMFN network is trained according
to the Wald protocol, the training rounds are 100. The Adam
optimizer is used and the learning rate is adjusted according to
training rounds to maintain the stability of the training process
with the initial value of 0.0001. The final results are evaluated
by the qualitative and quantitative analyses. Qualitative anal-
ysis is to zoom in the regional features of the fused images
through visual operations and calculate the residual images with
the real images, which observe the different performance of
the methods more intuitively. Quantitative analysis is used to
judge the differences between the pan-sharpening methods by
comparing several common evaluation metrics, including the
reference metrics Universal Image Quality Index (UIQI) [56],
Spatial Correlation Coefficient (SCC) [56], Spectral Angle Map-
per (SAM) [56], Erreur Relative Globale Adimen-sionnelle de
Synthese (ERGAS) [57], No- Reference Evaluation Metrics
including Composite Evaluation Index (QNR) [58], Spatial Dis-
tortion Index(Ds) [58], Spectral Distortion Index(Dλ) [58].

1) ERGAS: ERGAS is used to assess the fusion quality of
remote sensing images, taking full account of the impor-
tance of each frequency band and the influence of spatial
resolution, the formula for calculating the ERGAS metric
are as follows:

ERGAS(F,G)=100 · Repan

Rems

√
1

L
ΣL

i=1

RMSE2 (Fb, Gb)

M (F 2
b )

(20)
where F and G represents the fused image and real image,
respectively, Repan and Rems refers the spatial resolu-
tion for both the PAN and MS images, Fb denotes the
constituent bands of the fused image, Gb represents the
constituent bands of the real image, M(F 2

b ) indicates the
mean bands of the fused image,RMSE2(Fb, Gb) denotes
the mean square of each band in the fused image and
real image. Smaller ERGAS values correspond to higher
quality in the fused image, and the best value is 0.

2) SAM: The SAM are used to compare the angular differ-
ence between two spectral vectors to measure the spectral
similarity between pixels or regions. A reduction in the
angle corresponds to an escalation in spectral similarity,
and the best value is 0. The calculation formula described

as follows:

SAM = arccos

(
α · β

‖ α ‖‖ β ‖
)

(21)

where α and β denote the corresponding spectral vectors
between the real image and the fused image, respectively,
(·) denote the inner product operation of the vectors, ‖ · ‖
denote the modulus of the vectors. As the SAM value
approaches 0, it indicates a higher degree of spectral
fidelity in the fused image.

3) Q: The Q is used to compare the similarity of structural
and spectral information between the fused image and
the real image.A higher Q value signifies an enhanced
resemblance between the fused image and the real image,
and the best value is 1. Its calculation formula is expressed
by the following equation:

Q =
4 · μxy

μxμy
· ηxηy
η2x + η2y

· μxμy

μ2
x + μ2

y

(22)

where μ∗, η∗, and μxy denotes the standard deviation,
mean deviation, and covariance between the fused image
and the real image.

4) SCC: The primary purpose of the SCC is to assess the
spatial similarity between the fused image and the original
image. When the SCC value approaches 1, it indicates a
higher degree of spatial structural richness in the fused
image.

5) QNR,DS andDλ: These three metrics are mainly used for
no-reference measurements, in which QNR mainly evalu-
ates the clarity and noise level of the image by quantifying
the signal-to-noise ratio in the image, Dλ represents the
spectral distortion of the image, and Ds represents the
spatial information distortion rate of the image. The QNR
is calculated based on Dλ and Ds, defined as follows:

QNR =
(
1−Dλ)

γ
(
1−Ds)

δ (23)

The fused image’s spatial-spectral information becomes
more abundant as QNR gets closer to 1, and the ideal
value of Ds and Dλ is 0.

B. Ablation Experiment

In this section, to demonstrate that our introduced modules
bring performance enhancement to our proposed DMFN net-
work, we conduct ablation experiments of AFEB and enhanced
spatial attention (ESA) modules on four different network on
benchmark datasets QB and WV2. The ablation experiments are
conducted on four different network. We find the best network
through qualitative and quantitative comparative analyses.

1) DMFN(orin): This network serves as the initial network
structure for the experiments, the ordinary convolutional
operations are used to replace the AFEB and ESA mod-
ules, which demonstrate the performance enhancement
brought by the introduced modules to the network.

2) DMFN(AFEB): This network only introduces the AFEB
module to process the feature maps based on the initial
network, which highlights the performance enhancement
brought by the module to the network.
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Fig. 6. Ablation experiments were conducted on QB dataset using the four network. The first line shows the enlarge detail of the red rectangle and yellow
rectangle, and the second line shows the pansharpening fusion images of the four models,the third line shows the residual images of the four pansharpening results
with ground truth image.

3) DMFN(ESA): In contrast to the above network model, we
only introduce the ESA module based on the initial net-
work model to further prove the capability of the module.

4) DMFN: As the network introduced in this article, the
DMFN network structure introduced the AFEB module
in the feature extraction and image fusion stages to use
the attention mechanism on the input images of different
scales, which emphasize the crucial aspects of the image
and mitigate irrelevant details. The ESA module is also
introduced in the image reconstruction process, which en-
hances the extraction of image features with little increase
in the capacity of the model, thus generating the final fused
image.

We performed ablation experiments on the QB dataset with
the four network and obtained the fusion images and the residual
images with the real images as shown in Fig. 6, where the red
rectangles and the yellow rectangles are the results of zooming
in on some areas in the image.

The yellow rectangles include roofs, pools, and forest areas,
while the red areas contain roofs, cars, and forest parts. The
spectral distortion of the image generated by DMFN(orin) is
more serious as can be seen in the image. Zooming in the yellow
and red rectangles also reveals that the pools and roofs are dark

and the spatial structure is incomplete. Zooming in the residual
images, we can discern that the residuals are most obvious
in DMFN(orin). In contrast, the quality of the fused images
generated by DMFN(AFEB) and DMFN(ESA) is evidently im-
proved. By zooming in the yellow rectangle in DMFN(AFEB),
we can see that the color of the pool and the roof are significantly
improved compared with DMFN(orin). Zooming in the red
rectangle in the figure, we can see that the spatial structure of
the roof is richer, and the details of the contours have been sup-
plemented. The fused image of DMFN(ESA) is also obviously
clearer than DMFN(orin), zooming in the yellow image we can
see that the spectral distribution of the pool is more uniform
than DMFN(AFEB), and the spatial distribution of the roof is
obviously richer than that of DMFN(orin) from the zoomed-in
red rectangle. Zooming in the residual images, we can see that
the spatial structure information of the fused image is complete
and the spectral distribution is uniform, which is closer to the real
image. Zooming in the yellow rectangle and the red rectangle
in the figure, we can also see that the color distribution of the
pool and the roof has been greatly improved. And it is clearer
and more complete than the fused image of DMFN(AFEB) and
DMFN(ESA) network, better than the other network models
mentioned above.
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Fig. 7. Ablation experiments were conducted on WV2 dataset using the four network. The first line shows the enlarge detail of the red rectangle and yellow
rectangle, and the second line shows the pansharpening fusion images of the four models,the third line shows the residual images of the four pansharpening results
with ground truth image.

We conducted ablation experiments on the above four network
on the WV2 dataset and obtained the fusion images and the
residual images with the real images as shown in Fig. 7, the red
rectangles and the yellow rectangles are the results of zooming
in some areas in the images.

The yellow rectangle includes rivers and buildings, and the red
rectangle mainly includes house roofs. The zoomed-in residual
image show that the DMFN(orin) fusion image has the most
serious problems of spatial information loss and spectral dis-
tortion. The yellow and red rectangles also show that the river
and the roofs of the buildings have serious color distortion, the
whole image is dark and the spatial information is incomplete, it
is almost impossible to see the roofs clearly after the zoomed-in
operation. In contrast, DMFN(AFEB) and DMFN(ESA) have
improved the ability of the network to extract the spatial-spectral
information of the image in a certain extent, and it is evident that
the spatial structure and spectral information of the fused images
of these two models are richer than the DMFN(orin) from the
enlarged residuals. The spectral distributions of the river area are
more uniform from the enlarged yellow picture, the enlarged
red rectangle also reveals that the DMFN(ESA) fusion image

is richer in spatial structure information than DMFN(AFEB),
and the details of the contours of the red roofs are better com-
plemented with a uniform spectral distribution. Compared with
the above model, the fused image produced by our innovative
DMFN algorithm closely approximates the real image. A deeper
analysis of the residual image under magnification reveals that
our method not only maintains comprehensive spatial details, but
also achieves a more even distribution of spectral information.
From the enlarged yellow rectangle, we can see that the color
distribution of the river area is greatly improved, and the spatial
details of the roofs are also significantly improved. From the
enlarged red rectangle, we can also find that both the spatial and
spectral distributions of the roofs are enriched, the details of the
roofs’ contours are clearly visible, which is better than the other
network structures mentioned above.

We carry out the quantitative analysis of the ablation ex-
periments on the benchmark datasets QB and WV2 and the
comparative results are presented in Tables I and II, in which
the best values of the SCC and Q are 1, and the best values
of the SAM and ERGAS are 0. It can be seen that all the
metrics of DMFN(AFEB) and DMFN(ESA) are superior than
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TABLE I
QUANTITATIVE COMPARISON OF FOUR METHODS ON THE QB DATASET

TABLE II
QUANTITATIVE COMPARISON OF FOUR METHODS ON THE WV2 DATASET

TABLE III
COMPARASION OF PARAMETERS AND FLOATING-POINT OPERATIONS OF DL

MODEL

DMFN(orin), which indicates AFEB and ESA modules can
provide improvement to the performance of the model. Boosting
the model’s aptitude for extracting spatial structure and spectral
distribution from the image. Our DMFN method achieves the
best results in all the metrics, which indicates that our method
has the strongest ability to extract spatial details and recover
spectral distribution, the fused image is closer to the real image.

C. Experiment and Evaluations

We will perform a qualitative and quantitative assessment of
the method presented in this article, contrasting it with nine
current SOTA techniques using both simulated and real data,
which are three classical methods: IHS, GSA, MTF_GLP_HPM,
and five DL-based methods: PanNet, MSDCNN, GDD [39],
MSIT [52], LGT [53], GPPNN. The datasets and codes of the
abovementioned methods are all open source projects, the pa-
rameter values are established following the recommendations
detailed in this article.

To comprehensively analyze the performance of each network
from different perspectives, we also conducted a comparative
analysis of the complexity (Params) and computational costs
(FLOPS) of each network structure. The Table III displays the
numerical values associated with the various DL networks used
in this article. It is evident that our proposed network model
does not exhibit an advantage in terms of parameter count and
computational cost. However, as demonstrated in the subsequent
comparative analysis experiments, this network has achieved a
balance between performance and efficiency.

1) Simulated Data Experiment: The above nine pan-
sharpening methods are experimented on the benchmark
datasets QB and WV2 following the Wald protocol, and the
HRMS images are used as our real reference images for com-
parison and analysis.

Fig. 8 illustrates the fusion images of all the above pan-
sharpening methods on the simulated dataset QB and the
zoomed-in images of some regions in the figure, the main content
of the figure includes the roof, container, road, and other regions,
the yellow rectangle is the zoomed-in area of the container in
the figure, and the red rectangle is the zoomed-in area of the
roof and the road in the figure. The GDD and MSIT methods
exhibit the most severe spectral distortion, resulting in an overall
image over-brightness. Upon closer examination of the magni-
fied yellow rectangle in the image, we can observe a significant
loss of color in the containers and a pronounced blurring of their
overall outlines, making it challenging to discern finer details.
Similarly, when we focus on the magnified red rectangle, a
substantial disruption in the spatial structure of the rooftops
becomes evident, with nearly all edge details being heavily
blurred, leading to a significant loss of spectral information.
In contrast, the ability of IHS, PanNet, MTF_GLP_HPM, and
GSA methods to extract the information embedded in images
is greatly improved, but from the magnified regional images,
there are still exists spectral distortion and spatial distortion
phenomenon, in which the yellow rectangle of the container
area of the color distribution and spatial information of the IHS,
PanNet, and GSA are better than MTF_GLP_HPM. Observing
the zoomed-in red rectangle, it is also found that the roof color
remains severely skewed, the specific spatial contour details
are blurred, and the spatial characteristics have been seriously
impaired. The ability of MSDCNN, LGT, and GPPNN meth-
ods to extract spectral information is significantly better than
any of the above pan-sharpening methods, from the zoomed-in
yellow rectangle, the spectral information of the container is
obviously recovered, and the spatial structure information is
greatly enriched, so that the details of the container’s contour
can be observed. From the enlarged red rectangle, we can
also find that a noticeable enhancement in the roof’s color is
apparent when contrasted with the method mentioned above,
and the spatial profile information of the highway is further
expanded. The comparative analysis indicates that the GPPNN
pan-sharpening method outperformes in capturing both spatial
and spectral information when compared to the MSDCNN and
LGT methods. In contrast, our proposed DMFN method out-
performs all the previously mentioned pansharpening methods
in extracting both spatial and spectral information. The mag-
nified images vividly depict the spatial distribution details of
containers and roof while retaining the rich spectral information
contained in the MS image, closer to GT images. It achieves
optimal performance when compared to the aforementioned
methods.

Fig. 9 illustrates the residual images with the real image, it
is evident that the residual values of MTF_GLP_HPM, GSA,
and IHS methods are the most obvious, which indicates that
these pan-sharpening methods have more serious spectral dis-
tortion problems and lose more spatial information. In contrast,
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Fig. 8. Fusion images of nine pansharpening methods on the QB simulation dataset. The yellow rectangle and red rectangle are the detailed enlarged images,you
can zoom in to visualize the image details.

Fig. 9. Fusion results of nine pan-sharpening methods on the QB simulation dataset and the residual images with ground truth images. The images can be zoomed
in to view the details.

the residual values of PanNet, GDD, and MSIT methods are
significantly reduced, the PanNet method exhibits the most ob-
vious residual values, indicating more severe spectral distortion
and significant disruption of the spatial structure compared to
the other two methods. While the GDD method keeps more
spatial information, which explains the less apparent residual
values. The MSDCNN, LGT, and GPPNN methods capture the
spatial intricacies and spectral information of the image more
deeply, the zoomed-in residual image shows a few obvious
white contours, the rest of the image all black background.
The residual value of GPPNN is the smallest, which indicates
that the GPPNN method extracts the relevant spatial structure
details of the image as completely as possible and maintains
the spectral information, performing the best among the three
methods. Zooming in the residual image generated by our pro-
posed DMFN method, we will find that the whole background
is almost black without any white contour, which indicates that
our method proves proficient in the preservation of spectral
distribution and the extraction of spatial details to the maximum
extent.

Fig. 10 exhibits the fused images on the simulated dataset
WV2 compared with the other pan-sharpening techniques as
well as the zoomed-in images of some areas in the images. The
main contents of the figure are wheat fields, roofs, and roads. The
yellow rectangle are the zoomed-in areas of roofs and the red
rectangle are the zoomed-in areas of wheat fields. The fusion
images of GDD and MSIT fusion image has serious spectral
distortion problem, and the spatial structure suffer damaged. In
addition, observing the enlarged yellow rectangle, it is appar-
ent that the roof’s color experiences significant distortion, and
there is partial blurring in its spatial structure, which hinders
the clear visibility of specific structural details on the roof.
In the enlarged red rectangle, the color of the wheat field is
heavily distorted, with an overall brightening and blurring of the
specific contours. In contrast, the IHS, GSA, MTF_GLP_HPM,
and PanNet methods are more capable of extracting the spatial
structure and spectral distribution of the image. Observing the
enlarged yellow rectangle reveals that the spatial distribution
of roof details is rich, and the spectral information distribution
is more uniform than the other three methods, shows a better
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Fig. 10. Fusion images of nine pansharpening methods on the WV2 simulation dataset. The yellow rectangle and red rectangle are the detailed enlarged images,you
can zoom in to view image details.

Fig. 11. Fusion results of nine pan-sharpening methods on the WV2 simulation dataset and the residual images with ground truth images. The images can be
zoomed in to see the details.

performance. The extraction of the spectral distribution informa-
tion by the MSDCNN, LGT, and GPPNN methods is obviously
stronger than the abovementioned methods, the overall image
color tends to be more similar to the real image. What can be
seen in the zoomed-in yellow rectangle is that the spatial details
of the roof are more complete, the contours are clearly visible
and the spectral distribution is uniform. From the enlarged red
rectangle, we can see that the color distribution of the wheat
field is uniform, and the spatial structure is clear and complete.
From the enlarged image, we can also found that the color
distribution of the roof and the wheat field of MSDCNN is
more uniform and richer than the other two methods, which
indicates that the performance of MSDCNN is better than the
LGT and GPPNN methods. Our proposed DMFN method has
the best performance in extracting spatial detail information
and spectral distribution information. The zoomed-in yellow
rectangle shows that the spatial detail structure of the roof is
basically complete and the spectral distribution is more uni-
form. The zoomed-in red rectangle also shows that the wheat

field is full of hues, the spectral distribution is uniform and
the specific details of the distribution can be seen clearly. The
ability to extract the spatial structure and spectral distribution
information is better than any of the above pan-sharpening
methods.

Fig. 11 shows the final fused image and the residual image
with the real image. Compared with other pan-sharpening meth-
ods, the residual value of GDD and MSIT pan-sharpening meth-
ods is the most obvious. The color of the fused image is bright,
which reveals that the loss of spatial structure is notably obvious
compared with the other methods. The whole road and house
contours are clearly visible in the image, means that there is still
a large loss of value compared with the real image. Compared
with MTF_GLP_HPM and PanNet methods, although the IHS
and GSA fused images are darker with fewer regions of residual
values. However, when zooming in on certain areas within the
residual images, it becomes evident that there is a significant
loss of spatial structural information in the images. The fusion
images from MSDCNN, LGT, and GPPNN methods closely
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TABLE IV
QUANTITATIVE COMPARISON ON THE QB DATASET

resemble the real image. From the residual images, it is evident
that except for a few white regions, the rest of the background
appears black. This indicates a uniform spectral distribution and
rich spatial details in the images, surpassing the other mentioned
pansharpening methods. The residual values in the GPPNN
method are notably smaller than those in the MSDCNN and LGT
methods, implying that the GPPNN method excels in capturing
both spatial and spectral information from the images compared
to the other two methods. In contrast, when observing the fused
image and the residual map of our method, it is found that the
residual map’s background all black. The zoomed-in residual
image contains almost no residual values, and the fused image
closely approximates the real image, which indicates that the
loss of this method in extracting the spatial structural and the
spectral distribution information is almost negligible. Surpasses
all the aforementioned pan-sharpening approaches.

Furthermore, we conduct a quantitative comparison and anal-
ysis of the fusion outcomes for all the compared methods on
two simulated datasets QB and WV2, where we select four
metrics as the reference metrics, namely ERGAS, SCC, SAM,
and Q. the ideal value for SAM and ERGAS is 0, and the best
value for Q and SCC is 1. Table IV shows the results of the
experimental comparison with nine pan-sharpening methods on
the QB dataset, we bolded the best value and underlined the
second value of each metric. It becomes apparent that our method
surpasses all others, consistently ranking first in all four metrics.
SAM is 0.0028 higher than the second MSDCNN, ERGAS is
0.0689 higher than GPPNN, SCC is 0.0009 higher than GPPNN,
and Q is 0.0032 higher than it. In general, the images fused by
our our method show the best performance.

The WV2 dataset was used to conduct experiments comparing
our method with nine other pan-sharpening techniques, and the
results are displayed in Table V. It is apparent that except for
the SAM, which is 0.0026 lower than the GPPNN method, our
method performer the best in the other metrics. The ERGAS
is 0.2126 higher than the GPPNN method, the SCC is 0.0006
higher than the GPPNN method, the Q is 0.004 higher than
the GPPNN method. To sum it up, our approach boasts the
best performance, indicating that the DMFN network achieves

TABLE V
QUANTITATIVE COMPARISON ON THE WV2 DATASET

superior results in extracting information in contrast to other
methods.

2) Real Data Experiment:: We also conduct qualitative and
quantitative comparative experimental analyses of these nine
different pan-sharpening methods on the benchmark datasets of
QB and WV2. The real QB dataset was used to generate the
fusion results depicted in Fig. 12 for various pan-sharpening
methods, which includes the areas of rooftops, highways, au-
tomobiles forests. The yellow and red rectangles shows the
magnified results of the pool and the forest areas. We can
see that the GDD and MSIT methods has serious problems of
spectral distortion and the loss of spatial information. From the
zoomed-in red rectangle, we can also find that the structure of
the forest area is seriously twisted and the forest area is seriously
blurred, we can hardly see any details of the specific contours.
From the zoomed-in yellow rectangle, we find that the pool is
seriously distorted and the spatial structure is seriously damaged.
In contrast, the GSA and PanNet methods make up for the spatial
and spectral loss of the image to a certain extent. From the
enlarged yellow rectangle, we can see that the color distribution
of the pool has been improved, and the peripheral distribution
contours can be seen vaguely. From the enlarged red rectangle,
we can find that the spatial details of the forest region have
been enriched. The IHS and MTF_GLP_HPM methods obtain
the spatial structural and spectral distribution of the image more
efficient, as can be seen from the enlarged yellow rectangle,
the spectral distribution of these two methods is closer to the
MS image with better spatial detail distribution, and the contour
detail distribution of the pools is obviously clearer. Observing
the enlarged red rectangle also reveals that the IHS method blurs
the forest region more than the PAN image, and the spatial
detail information of the forest region in the MTF_GLP_HPM
method is closer to the PAN image, but the color distribution
is obviously darker than the MS image. MSDCNN, LGT, and
GPPNN methods further improve the ability of the nerwork
to extract the information of the image. From the zoomed-in
yellow rectangle, we can find that the spectral distribution of
the pool region is greatly improved, its spatial contour details
are constantly enriched compared with the PAN image,and
the area around the pool can be observed more clearly. From
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Fig. 12. Fusion images of nine pansharpening methods on the QB real dataset. The yellow rectangle and red rectangle are the detailed enlarged images,you can
zoom in to view image details.

Fig. 13. Fusion results of nine pan-sharpening methods on the QB real dataset and the residual images with PAN images. The images can be zoomed in to view
the details.

the enlarged red rectangle, we can also see that the spectral
distribution and spatial structure information of the forest region
are further expanded. The spatial details of the forest region in
the MSDCNN and the GPPNN methodS are richer than the LGT,
which is closer to the PAN image. Observing the fused images
using our method, we can find that our method effectively obtains
the spatial structure contained in PAN image, while recovers
the spectral distribution of the MS image to the largest extent.
Observing the enlarged yellow and red rectangles, we can find
that the spectral distribution of the pool and the forest region is
uniform, the spatial details are clear and the contour distribution
has been further demonstrated. Our approach outperforms the
pan-sharpening methods mentioned above.

Fig. 13 shows the fused images of these nine pan-sharpening
methods and the residual images with the real images. It is
apparent that the residual value of the GDD, MSIT methods
are the most, which indicates that the spatial structure details
of the image has been seriously damaged. The loss of spectral
information is more serious, and the contours of the highway

and the forest area can be clearly seen from the residuals. In
contrast, the residual values of GSA, PanNet, MTF_GLP_HPM,
and IHS methods are reduced, and the spatial structure of the
images is closer to the PAN images. there still exists serious
spectral distortion, compared to the MS images, the images
manifest a darker color tone. The traces of the road’s residual
value has been much decreased and the richness of spatial
information exceeds that of the methods mentioned above. By
enlarging the residual images, we find that the residual values of
MSDCNN, LGT, and GPPNN methods are obviously reduced,
we can hardly see any obvious residuals in the highway or the
forest area, which indicates that the ability of these methods to
obtain spatial characteristic information is obviously better than
the abovementioned methods. The color distribution shown a
significant enhancement in comparison to MS images and the
residual images are much more smoother. Correspondingly, the
fused image of our method is closer to the real image, the whole
residual image is in a smooth state, and the residual values can
hardly be seen in the zoomed-in residual image, which indicates
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Fig. 14. Fusion images of nine pansharpening methods on the WV2 real dataset. The yellow rectangle and red rectangle are the detailed enlarged images,you
can zoom in to see image details.

that our method comprehensively captures the spatial intricacies
of the PAN image while also adeptly preserving the rich spectral
distribution details of the MS image.

In Fig. 14, the fusion outcomes of nine pan-sharpening tech-
niques applied to the WV2 real dataset are depicted, which con-
tains the roof, forest, and car areas. the yellow and red rectangles
are the zoomed-in results in the figure. we can see from the fused
image that the GDD and MSIT methods suffer from serious
spectral distortion and the loss of spatial information. Zoomed-in
the yellow rectangle, we can find that the car and forest areas
are seriously blurred, the colors of the cars and forests are pale
compared with the MS image, and the spatial structure details
inherent in the PAN image is seriously lost. Zooming in the
red rectangle reveals that the roof’s overall outline is notably
well-preserved, but the roof is not as complete as the PAN image.
Although the overall outline of the roof is relatively complete,
the spatial details are damaged and the blurring is serious. In
contrast, the IHS, PanNet, MTF_GLP_HPM, and GSA methods
can better extract the spatial structure and spectral information
of the image. Observing the enlarged yellow rectangle, we can
find that the spectral distribution of the forest and the car is more
balanced, the distribution of the specific contours is also clearer.
The fused image generated by the MTF_GLP_HPM method is
obviously clearer than the other three methods, retains plentiful
spatial details in the PAN image better. From the enlarged red
rectangle, we can see that the spatial distribution of the roof is
effectively preserved, but the spectral information distribution
is still insufficient compared with the MS image. We can see
that the MSDCNN, LGT, and GPPNN methods have further
improved the spatial details extraction and the spectral informa-
tion recovery. By observing the enlarged yellow rectangle, it is

evident that the spectral distribution of the forest and the car
area is almost the same as the MS image. At the same time,
the rich spatial structural information contained in the PAN
image has been retained. From the zoomed-in red rectangle,
we can also see that the spatial details of the roof are effectively
preserved, and the distribution of the specific contours is almost
the same as the PAN image. In contrast, the fused image of
our method effectively captures the abundant spatial details
embedded in the PAN image and efficiently recovers the rich
spectral distribution information contained in the MS image.
Observing the zoomed-in yellow and red rectangles, we can
find that the spatial structure of the roof and the forest area
is effectively preserved with clear contours and uniform color
distribution, which is better than any of the above methods.

Fig. 15 shows the fused images of these ten pan-sharpening
methods and their residual images with the real images. Notably,
the GDD and MSIT methods exhibit the most striking residual
artifacts, suggesting a substantial deterioration in spatial struc-
tural information and the subsequent degradation of spectral
content in the fused images. The overall colors of the fused
images are darker than the MS image. In contrast, the residual
maps of GSA, IHS, MTF_GLP_HPM, and PanNet are more
smoother, and the zoomed-in yellow rectangle show that the spa-
tial information of the highway area is more complete than the
above methods, and contains richer spatial information than the
MS image. But there are still existed serious spectral distortions,
the overall image is darker and the residual values in the residual
maps are more obvious, which indicates that these methods
lose a lot of details when extracting the spatial structure infor-
mation. On the other hand, the MSDCNN, LGT, and GPPNN
methods have enhanced their ability to extract image spectral
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Fig. 15. Fusion results of nine pan-sharpening methods on the WV2 real dataset and the residual images with PAN images. The images can be zoomed in to see
the details.

TABLE VI
QUANTITATIVE COMPARISON OF NINE METHODS ON TWO REAL DATASETS QB AND WV2

information. It can also be noticed from the residual images that
the residual values for these methods are not very significant,
the fused image contains rich spatial details compared with the
PAN image, and the specific spectral distribution information
is closer to the MS image. The image’s spatial and spectral
distribution characteristics are fully exploited by our method.
From the residual image, it becomes apparent that our method
yields results devoid of any residuals. The DMFN method not
only preserves the abundant spectral data within the MS image,
but also captures the extensive spatial details from the PAN
image, which is better than the abovementioned pan-sharpening
methods.

We also carry out quantitative and comparative experimental
analysis of these nine pan-sharpening techniques on the bench-
mark datasets QB and WV2, as depicted in Table VI, we use the
no-reference metrics DS , Dλ, and QNR as the comparisons, the
optimal values of Dλ and DS are 0 and the best value of QNR
is 1. We bolded the optimal value and underlined the second
in the table. We can see that our method achieves best in all
metrics in the QB dataset. In the WV2 dataset, except for the Dλ

is 0.004 lower than that of GPPNN, the rest metrics performes
best. Overall, our method is more proficient than the other nine
pan-sharpening methods and effectively obtains both the spatial
and spectral details within the image.

In both qualitative and quantitative assessments on simulated
and real datasets, our method consistently exhibits superior
performance in recovering the spectral distribution and spatial
information inherent in MS and PAN images, surpassing other
pan-sharpening approaches.

V. CONCLUSION

We present a novel pan-sharpening methodology called
DMFN in this articlle, whose full name is transformer-based

dual-branch multiscale fusion network for pan-sharpening re-
mote sensing. The network model is separated into three com-
ponents: feature extraction, image fusion, and image recon-
struction. We commence by interconnecting the MS image and
PAN image through up-sampling and down-sampling operations
within distinct branches, and then after our shallow feature
extraction, it is inputted into the AFEB to combine the spatial-
channel attention, only focus on the important information of
the image. Then, the feature maps of multiple scales in the
two branches are input into each (spatial transformer) SPAT and
(spectral transformer)SPET for spectral and spatial information
extraction, after the Upsample operation on the final output of
SPET, it is connected with the final output of SPAT and input
into the residual dense local feature block To capture the image’s
deeper characteristics again, and get our final fusion image after
the process of ESA module.To establish the superiority of our
method, we begin with ablation experiments on the QB and
WV2 benchmark datasets. We then proceed to comprehensive
qualitative and quantitative assessments, comparing our method
with nine recent pan-sharpening techniques on both simulated
and real datasets. The above experiments prove that our DMFN
method adeptly captures the abundant spatial details inherent in
PAN images, while preserving the consistent spectral character-
istics found in MS images.
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