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Multilateral Semantic With Dual Relation Network
for Remote Sensing Images Segmentation

Weiheng Zhao , Jiannong Cao , and Xueyan Dong

Abstract—Semantic segmentation of remote sensing images is an
extensively employed and demanding task. Although deep convolu-
tional neural networks have significantly increased the accuracy of
semantic segmentation, the problems of losing detailed features in
segmentation and ignoring rich contextual information of images
still exist. To solve these challenges, we propose a multilateral
semantic with dual relation network (MSDRNet) for remote sensing
images segmentation. The proposed MSDRNet consists of two par-
allel modules, the detail semantic module and the global semantic
module, for extracting image detail and global features, respec-
tively. Subsequently, improved spatial relation block and channel
relation block are introduced in two separate parallel modules to
further enhance the contextual connection of the images. Finally,
a feature refinement module is added to balance the multilateral
features between the features extracted from the two branches.
We display the robustness and effectiveness of the proposed MS-
DRNet on the publicly available ISPRS Potsdam and Vaihingen
datasets. We further experimented with the Gaofen image dataset,
which contains information on larger scale features, to demonstrate
the validity of our model. The results of extensive experiments
conducted on the aforementioned three datasets show that the
proposed approach outperforms several state-of-the-art semantic
segmentation methods.

Index Terms—Attention mechanisms, deep learning, remote
sensing image, semantic segmentation.

I. INTRODUCTION

S EMATIC segmentation plays a crucial role in recognizing
and extracting information from remote sensing images,

making it an essential tool for remote sensing analysis. There-
fore, it has become a prominent research topic in the field of
remote sensing, including land cover classification [1], building
extraction [2], road extraction [3], forest stands identification [4],
urban land-use classification [5], and environmental monitoring
[6].

Manuscript received 27 June 2023; revised 11 September 2023 and 1 October
2023; accepted 1 November 2023. Date of publication 8 November 2023; date
of current version 23 November 2023. This work was supported in part by
the National Natural Science Foundation of China under Grant 41571346, in
part by the Open Fund for Key Laboratory of Degraded and Unused Land
Consolidation Engineering, and in part by the Ministry of Natural Resource
under Grant SXDJ2017-10 and Grant 2016KCT-23. (Corresponding author:
Xueyan Dong.)

Weiheng Zhao and Xueyan Dong are with the School of Earth Sci-
ence and Resources, Chang’an University, Xi’an 710064, China (e-mail:
2019027008@chd.edu.cn; 2019027009@chd.edu.cn).

Jiannong Cao is with the School of Geological Engineering and Survey-
ing, Chang’an University, Xi’an 710064, China, and also with the Ministry
of Natural Resources, Key Laboratory of Degraded and Unused Land Con-
solidation Engineering, Chang’an University, Xi’an 710064, China (e-mail:
caojiannong@126.com).

Digital Object Identifier 10.1109/JSTARS.2023.3330731

In the emerging research on semantic segmentation of remote
sensing images, deep convolutional neural networks (DCNNs)
[7] have shown their strong capability in feature learning and
target extraction. In particular, the introduction of fully convo-
lutional network (FCN) [8] has provided innovative ideas for
image semantic segmentation, which is essentially a pixel-level
classification task. Subsequently, advanced end-to-end semantic
segmentation models have drawn significant inspiration from the
FCN concept and embraced an encoder–decoder architecture.
The encoder component extracts information from input images
and generates high-level feature maps. On the other hand, the
decoder component utilizes these feature maps to reconstruct
masks and achieve pixel-level segmentation through upsampling
operations. In contrast to natural images, remote sensing images
display extensive variations on a large scale, with a broader
imaging range and more complex and diverse backgrounds. Con-
sequently, the diverse nature of objects within remote sensing
images poses significant challenges for semantic segmentation.
Specifically, in remote sensing images, some classes of objects,
particularly buildings, are commonly composed of various ma-
terials. Conversely, different objects such as forests and grass-
lands often exhibit striking visual similarities. The presence of
global intraclass variance and local interclass variance in remote
sensing images presents significant difficulties in achieving con-
sistent labeling for semantic segmentation. To address the afore-
mentioned challenges, He et al. [9] introduced edge information
into FCN to refine the segmentation results based on remote
sensing imagery. Tian et al. [10] proposed an end-to-end class-
level segmentation framework called class-wise FCN, which uti-
lizes a shared encoder to process class-specific features, thereby
improving segmentation accuracy. Fu et al. [11] employed the
FCN as the backbone network and replaced the fully connected
layer with convolutional layers to enhance network efficiency.
Mo et al. [12] utilized FCN to generate directional elevation
gradients between adjacent pixels and established the relativity
between the altitude system of the training data and the output.
DCNNs have also achieved excellent results in hyperspectral
image segmentation. Zhang et al. [13] proposed SOT-Net to
redesign the information complementary collaboration approach
and redundancy exclusion operator to enhance the semantic
relevance. Yu et al. [14] proposed an FADCNN with a feedback
attention mechanism, and for the first time, a feedback attention
module was developed, which utilizes semantic knowledge at
the higher level of the dense model to enhance the attention
mapping. However, these methods often neglect the problem of
missing details in semantic segmentation and fail to effectively
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integrate global and local features. As a result, they may not
capture the intricate characteristics of objects in remote sensing
images, leading to potential limitations in segmentation accuracy
and boundary delineation.

In remote sensing images, objects exhibit strong spatial de-
pendencies in the geographic space. Objects of the same class,
particularly those at larger scales such as forests and water bod-
ies, tend to have highly consistent pixel-level features with sur-
rounding pixels of the same class, while significantly differing
from pixels belonging to different classes. In addition, remote
sensing images also contains a considerable number of dispersed
objects with intricate structures, such as cars and small buildings.
These detail objects exhibit long-range dependencies. However,
due to the limitations imposed by the FCN-based methods, the
relationships and dependencies between objects cannot effec-
tively contribute to their role in semantic segmentation. In recent
years, transformers have demonstrated advanced performance in
various natural language processing tasks, offering new insights
for semantic segmentation in the field of computer vision [15].
Yue et al. [16] proposed TreeUNet based on the framework of
deep semantic modeling, utilizing the TreeCutting algorithm to
transmit the feature layer, fusing the multiscale features and
learning the optimal weights of the model, which achieves
better results in the semantic segmentation work. Hang et al.
[17] proposes a multiscale progressive segmentation network
that utilizes a three-level subnetwork to segment image objects
layer by layer, and a scale-guided module for the internetwork
feature learning. Niu et al. [18] introduced channel attention
modules and region attention modules into the network to reduce
feature redundancy during semantic segmentation. Liu et al.
[19] proposed a novel hybrid attention semantic segmentation
network consisting of intraclass attention branch and interclass
attention branch, resulting in significant improvements in Mars
terrain segmentation. Shi et al. [20] utilized a high-resolution
network as the backbone network and integrated region attention
modules and context fusion modules to enhance the relationship
between local and global pixels. Li et al. [21] introduced a
multiattention network that addresses the insufficient correlation
of multiscale feature information by extracting contextual infor-
mation through attention modules. Cheng et al. [22] achieved
higher object localization accuracy in the semantic segmentation
process by aggregating multiscale features through a context
fusion module.

Global features and local features play a pivotal role in se-
mantic segmentation tasks. Despite the integration of spatial
and channel relationships into image processing through atten-
tion mechanisms in these methods, certain challenges persist.
On one hand, these two types of features inherently demand
distinct network architectures. Detail features are situated in the
initial stages of the network and necessitate a broader channel
dimension. Conversely, high-level global information relies on
abstraction from deep-level features. Managing these two types
separately guarantees the precision of semantic segmentation.
However, simply fusing the acquired global features and local
features leads to a network constrained in exploring the intricate
associations among relation modules, feature map attributes

(size, depth, and abstraction level), and receptive fields. Conse-
quently, this constrains the overall performance of the semantic
segmentation model.

To tackle these aforementioned problems, a novel multilateral
semantic with dual relation network (MSDRNet), which takes
into consideration both relational and contextual features, is
proposed for remote sensing images segmentation. The back-
bone structure of the MSDRNet is based on ResNet [23]. In
order to fully capture the relationship features and contextual
features required for semantic segmentation, we establish two
parallel branches: the detail semantic module (DSM) and the
global semantic module (GSM). Furthermore, to enhance feature
aggregation, we introduce the feature refinement module (FRM)
to reduce the disparities among semantic information.

Intuitively, remote sensing images are rich repositories of
spatial information. To enhance the representation of intricate
details, we introduce a spatial relation block (SRB) within the
first branch’s DSM. This leverages a broader channel width
and a shallower branch depth to extract meticulous semantic
features. Furthermore, global contextual information plays a
pivotal role in resolving the issue of inconsistencies within and
between classes in images, a vital consideration in determin-
ing object categories during semantic segmentation. Hence, in
the second branch’s GSM, we incorporate a channel relation
block (CRB). This module utilizes multiple residual blocks to
extract deep-level features effectively, thereby capturing global
information in the image and ensuring the precision of seman-
tic segmentation. Finally, considering that the distribution and
positioning of local and global features differ, directly merg-
ing them inevitably introduces background noise from detail
features. This noise can compromise feature robustness and
potentially lead to the loss of details. Therefore, we introduce
the FRM to harmonize semantic feature discrepancies between
the two branches and to comprehensively assess the aggregation
capability of context information, facilitating multiscale feature
encoding.

The contributions of this article are summarized as follows.
1) We introduce MSDRNet, a multilateral network that

merges global and detail semantic information through
the global semantic module (GSM) and detail semantic
module (DSM), addressing the problem of neglecting
small-scale features.

2) We consider the pixel-channel relationship vital for se-
mantic segmentation. Thus, we introduce SRB and CRBs
to boost attention mechanism performance and minimize
information loss.

3) To enhance multilateral features, we introduce the fea-
ture refinement module (FRM), which reduces semantic
differences, distinguishes similar features, and integrates
features from various levels to boost prediction accuracy.

The rest of this article is organized as follows. Related works
on DCNNs-based semantic segmentation methods and Attention
mechanisms are reviewed in Section II. Section III describes
the details of MSDRNet and the structure of each module. The
experimental results and discussion are presented in Section IV.
Finally, Section V concludes this article.
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II. RELATED WORK

A. Semantic Segmentation for Remote Sensing Imagery

Semantic segmentation aims to assign labels to each pixel in
remote sensing imagery, dividing the image into meaningful and
distinct regions with homogeneous attributes. Deep learning-
based approaches leverage the training and learning between
multiple layers of networks, enabling effective capture of both
detail and deeply abstract features in remote sensing imagery. As
a result, these approaches have been widely applied in semantic
segmentation of remote sensing imagery [24]. The FCN was
the first to apply image classification models to semantic seg-
mentation in natural images. The end-to-end FCN effectively
addresses the inefficiency and limited feature utilization issues
commonly found in traditional methods.

Building upon the foundation of the FCN, several prominent
encoder–decoder semantic segmentation models have been de-
veloped. The U-Net [25] introduced skip connections between
the encoder and decoder, which significantly improved the ac-
curacy of medical image segmentation. SegNet, proposed by
Badrinarayanan et al. [26], employed indexing in the encoder
and utilized it for efficient upsampling in the decoder, reduc-
ing the number of trainable parameters. The Deeplab series
of networks, pioneered by Chen et al. [27], [28], [29], have
made remarkable contributions to deep-learning-based semantic
segmentation. DeepLab_v1 [27] introduced dilated convolu-
tions into the network to expand the receptive field, enabling
the preservation of multiscale feature information. DeepLab_v2
[28] further advanced the model by introducing the atrous
spatial pyramid pooling (ASPP), which incorporated multiple
parallel branches of dilated convolutions to extract multiscale
features and effectively address the challenge of small-scale
object filtering by deep networks. DeepLab_v3 [29] built upon
the ASPP by incorporating a global pooling layer, allowing for
better integration of both local and global information.

There are also some state-of-the-art methods that have been
proposed. Adversarial learning [30] can enhance the accuracy
of 3-D semantic segmentation by reducing the domain gap
between the source and target domains. Gao et al. [31] combines
adversarial complementary learning (ACL) with CNN to obtain
complementary information for multisource data classification.
Qiu et al. [32] introduce the adversarial semantic guidance
network (ASGN) for image segmentation, addressing the issue
of pixel distribution similarity. Furthermore, the introduction
of cross-scale mixing attention [33] aims to handle long-term
dependencies among large-scale features in multispectral data.
There is also a research [34] that utilizes a cross-scale mixed
attention network to segment smoke, which is fundamentally
inspired by attention methods. Depthwise separable convolution
networks are also applicable to image segmentation. Huang et
al. [35] propose an end-to-end depthwise separable U-shaped
convolution network for medical image segmentation.

However, the methods mentioned earlier frequently disregard
the challenge of missing details in semantic segmentation, mak-
ing it difficult to seamlessly integrate both global and local
features. Consequently, these approaches may struggle to ac-
curately depict the intricate attributes of objects within remote

sensing images, ultimately leading to potential shortcomings in
segmentation precision and boundary delineation.

While numerous efforts have been dedicated to leveraging
graph neural networks to tackle this issue, their effectiveness
is significantly contingent on their ability to learn long-term
dependencies, which may not always yield optimal results in the
context of semantic segmentation with remote sensing imagery.

B. Attention Mechanisms

Attention mechanisms, as effective signal processing mecha-
nisms, have been widely employed in deep learning [36], [37].
They can rapidly filter out the relevant information from a large
volume of visual signals, making them highly applicable in
various deep learning tasks. In the context of semantic seg-
mentation of remote sensing images, attention models play a
crucial role in enhancing the segmentation capability [38]. By
assigning different weights to the scale features of pixels in
different positions, attention models focus on important features,
effectively improving the performance of semantic segmentation
in remote sensing imagery.

Hu et al. [39] introduced the squeeze-and-excitation networks
(SENet), which incorporated attention mechanisms into the
segmentation network for natural images, effectively improv-
ing both the efficiency and accuracy of the models. Building
upon SENet, Ding et al. [40] proposed a lightweight network
architecture that concentrated on the useful features using the
squeeze-and-excitation (SE) block, thereby reducing network
overhead. Liang et al. [41] integrated the SE block into a
dual-encoder model and achieved excellent segmentation results
in medical imaging. However, SE attention, which computes
channel attention using global average pooling, may lead to
the loss of object localization in remote sensing imagery. To
address this issue, researchers have explored various methods
to incorporate attention models into neural networks. Fu et al.
[42] proposed the dual attention network, which employed two
attention modules to enhance the connections between features
in an FCN backbone. Huang et al. [43] introduced the criss-cross
network, which captured full-image dependencies by acquiring
contextual information for all pixels in the image.

In addition, other studies have also incorporated attention
mechanisms to enhance segmentation results by focusing on
global features and suppressing local features and image noise
[44], [45].

While these methods leverage attention mechanisms to in-
corporate spatial and channel relationships in the imagery, they
often fail to deeply explore the intricate connections between
relation modules and the size, depth, abstraction level, and
receptive field of feature maps. As a result, there may be missed
opportunities to fully exploit the rich contextual information and
capture long-range dependencies, potentially limiting the overall
performance of the semantic segmentation models.

III. MULTILATERAL SEMANTIC WITH DUAL RELATION

NETWORK (MSDRNET)

In this work, we present an MSDRNet for remote sensing im-
ages segmentation, which is illustrated in Fig. 1. In the following
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Fig. 1. MSDRNet architecture. The structure primarily consists of two parallel modules, the DSM contains three non-downsampled blocks and an SRB for
extracting detailed features, and the GSM includes three residual blocks and a CRB for extracting global features. The FRM is introduced to refine and integrate
the feature maps generated by the DSM and the GSM.

sections, we will describe four significant parts of MSDRNet,
including MSDRNet backbone, relation blocks, and FRM.

A. MSDRNet Backbone

The backbone of MSDRNet is built upon the ResNet50 ar-
chitecture, which is known for its multiscale design. ResNet50
consists of 50 residual units, and its skip connections effectively
address the problem of network degradation, reducing errors
in semantic segmentation models. The ResNet50 used in this
study comprises five modules, allowing for effective separation
of image features at different levels and extraction of essential
information for semantic segmentation. The decision to use
ResNet50 instead of ResNet101 or ResNet152 was driven by the
aim to achieve competitive segmentation results with a simpler
network. In training process, we use a pretraining strategy based
on transformation learning, which can reduce overfitting to some
extent. Since the output is a feature map, only the convolution
operation is retained during pretraining, and the fully connected
layer and downsampling operations are removed.

For the input remote sensing images of MSDRNet, we initially
utilize a 7 × 7 convolutional layer and a max-pooling layer to
generate a feature map layer that is 1/4 the size of the input
image. Subsequently, we pass this layer through two residual
blocks, resulting in a feature map layer that is 1/8 the size of the
input image. Following that, the network structure branches out
into two distinct modules: the DSM and the GSM.

The DSM aims at extracting spatial detail information in
low-level features. Remote sensing images have a large amount
of spatial detail information due to the complex distribution
of features and different scale sizes. As the convolution depth
increases with the introduction of residuals, a lot of detailed
information is lost, such as edges between features and small-
scale targets. Therefore, we need to design a shallow structured
module that can retain rich detailed information. The overall
design principle of DSM is to use wide channel sizes and shallow
layers, i.e., larger branch widths and smaller branch depths, to
handle spatial details. In order to preserve more spatial details,

pooling operations with residual connections are not used in the
module. The feature map after the DSM extraction contains rich
spatial detail information, and at the same time, contains a lot of
spatial relationship context information due to less image size
reduction. Therefore, the SRB is added to the DSM extraction
to enhance the detail extraction effect.

The SRB updates the features of each channel by weighting
the sum of the features of each channel, where the weights are
defined by the similarity of the features at the corresponding
positions. Specifically, the entire DSM consists of three convo-
lutional blocks and the SRB. The first block comprises two sets
of 3 × 3 convolutional layers, followed by batch normalization
and activation functions. The following two blocks consist of
three sets of 3 × 3 convolutional layers, also followed by
batch normalization and activation functions. Since there is no
downsampling pooling layer, the output feature map remains at
1/8 the size of the original input after passing through these three
blocks. Finally, the feature map undergoes the SRB to obtain the
detail semantic feature map layer.

We use the GSM for extracting the deep global segmenta-
tion information in the RSIs. The distribution of features in
RSIs has certain continuity and regularity, and the extraction
of deep semantic features helps to obtain advanced features by
integrating global information on a higher perception field. Due
to the small size and large number of features of the extracted
high-level semantic information, it contains a large amount of
channel information. Therefore, the CRB is added to the GSM
extraction to enhance the global information extraction effect.
The CRB updates the parameters by weighting the features of
each layer of channels with the features of other layers. This
design enables effective integration of a large number of feature
parameters in the global semantics. The GSM consists of three
res-blocks and the CRB. Resblock3 and Resblock4 correspond
to the third and fourth residual blocks in ResNet, resulting in
output feature map sizes of 1/16 and 1/32 of the original input
image, respectively. Resblock5 shares the same structure and
number of convolutional layers as Resblock4, but it doesn’t
further reduce the feature map size. Instead, it compresses the
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Fig. 2. Cross-fusion operation. The yellow rectangle XD represents detail
semantic feature, and the blue rectangle XG represent global semantic features.
� denotes matrix addition.

feature dimensions, yielding a feature layer that is 1/4 of the size
of the previous block. Finally, after passing through the CRB,
deep-level and multifeature high-level semantic information is
obtained.

Simultaneously, to enhance the connection between the DSM
and the GSM, we introduce cross-fusion operations in two paral-
lel network modules. As shown in Fig. 2, the detail feature map
XD(i-1) undergoes downsampling with 3× 3 convolutions using
a stride of 2. This downsampling adjusts the feature map size
and feature dimensions to match those of the global feature map
XG(i-1) and produces the next layer of global feature map XG(i).
On the other hand, the global feature map XG(i-1) undergoes
1×1 convolutions to modify the feature dimensions and perform
upsampling to adapt to the detail feature map XD(i-1). Through
fusion, the next layer of detail feature map XD(i) is generated.
The downsampling frequency of XD(i-1) and the upsampling
factor of XG(i-1) are determined by the corresponding feature
map layer sizes.

B. Relation Blocks

In DSM, we introduced SRB with the aim of preserving
rich detail information. In addition, for global features within
the images, we enhance the effectiveness of global information
extraction in the GSM by introducing CRB. The CRB update
parameters by weighting the features of each channel layer with
features from other layers. This design effectively integrates a
vast number of feature parameters in global semantics, resulting
in deep, multifeature, and high-level semantic information.

1) Spatial Relation Block (SRB): The SRB updates the target
pixel parameters by considering the feature similarity between
the target pixel and its weighted sum of the neighboring pixels. In
the remote sensing images, the surface objects are distributed in
complex and different sizes, in which there are a large number
of spatial relations. Therefore, the use of spatial relation for
remote sensing images is effective for reducing intraclass errors,

Fig. 3. Relation blocks. (a) Spatial relation block (SRB). (b) Channel relation
block (CRB). Here,⊕ and⊗ represent matrix addition and matrix multiplication,
respectively.

enhancing interclass differences, and identifying small targets
on the surface.

As shown in Fig. 3(a), the input to the SRB is the feature
map X ∈ RC×H×W , where C represents the number of channel
layers, and H and W represent the height and width of the feature
map, respectively. We first perform the convolution operation
on the feature map X and accomplish reshape and transpose
operations on the result to get the feature layer Q. We perform the
convolution operation on the feature map X, and then, perform
reshape operation only to obtain the feature map K. Q and K
characteristic sizes are RC×N , where N = H × W is the number
of pixels.

Subsequently, matrix multiplication is performed on Q and
K, and a softmax layer for computing the spatial relation map
S ∈ RN×N

sij =
exp (Qi ·Kj)∑N
j=1 exp(Qi ·Kj)

(1)

where sij measures the jth pixel’s impact on the ith pixel. We
then perform a convolution operation on the feature map X to
obtain a new feature map V and reshape it to the same shape
as K and Q. Afterwards, S is subjected to reshape and transpose
operations and the result is matrix multiplied with V to obtain a
fusion feature map. Finally, we use the scaling parameter α to
multiply with the fusion feature map and perform the element-
wise addition of the obtained features with to obtain the final
result Y ∈ RC×H×W as follows:

Yi = α

N∑

j=1

(sijVj) +Xi. (2)

According to (2), the new feature maps at different positions
are obtained by applying multilayer convolutions to the original
feature X. These new feature maps are then merged with the
original feature maps using weighted fusion, resulting in the
output feature maps Y at each layer. The parameterα, initially set
to 0, allows the weights to be learned and updated continuously.
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This process effectively aggregates contextual information from
the relationship maps that is beneficial for achieving accurate
segmentation. By sharing the acquired information among pix-
els, semantic consistency is enhanced, reducing the likelihood
of misclassifications between objects.

2) Channel Relation Block (CRB): The CRB integrates the
information of individual channels in the high-level features into
integrated features, and updates the individual channel parame-
ters by the weighted sum of the features of each channel. It can be
used to enhance the feature discrimination in the channel domain
and improve the feature representation for specific semantics.
With the high-dimensionality features and large channel differ-
ences of remote sensing images, the interdependencies between
channels can be explicitly modeled using the CRB. It also
distribution but differing in channel dimensions.

As shown in Fig. 3(b), the input to the CRB is the feature map
X ∈ RC×H×W , we first perform the reshape operation on the
feature map X to obtain the featureQ ∈ RC×N . At the same time,
transpose and reshape the feature map X on another path to obtain
the feature K ∈ RC×N . We then use matrix multiplication to
merge features Q and K, and use the softmax layer to compute
the channel relation map E ∈ RC×C as

eij =
exp(Ki ·Qj)∑C
j=1 exp(Ki ·Qj)

(3)

where eij is to calculate the degree of influence of the jth
channel on the ith channel. The result RC×H×W is obtained
by transposing E and after matrix multiplication with the initial
feature X. Similar to α of spatial relation, we propose a scale
parameter β for the weighting operation. And the obtained
features are element-wise added with X to obtain the final result
Y ∈ RC×H×W as follows:

Yi = β
C∑

j=1

(eijXj) +Xi (4)

where β is gradually updated with weight values starting from
0. As shown in (4), the final semantic feature layer is obtained
by weighting and summing the features of each channel with the
original features.

C. Feature Refinement Module (FRM)

The introduction of the FRM aims to refine and integrate the
feature maps generated by the DSM and the GSM. Due to the
different feature extraction methods, making a large semantic
difference between the two feature maps. Thus, a module that can
combine uniform feature size and reduce semantic differences
is needed to merge detailed and global semantic features. The
FRM leverages the contextual information from the integration
feature maps to guide the feature responses of both the DSM
and the GSM. By introducing residual connections, it effectively
considers features at different scales, allowing for the encoding
of multiscale information.

As shown in Fig. 4, after the extraction from the DSM and
the GSM, we obtain the detail semantic feature and the global
semantic feature, respectively. To integrate these two feature
sets, the global semantic feature is first upsampled by a factor

Fig. 4. FRM. The yellow rectangle represents detail semantic feature, and the
blue rectangle represents global semantic feature. The mixed color rectangle
represents the integration feature of the aforementioned two features. Here, ⊕
and ⊗ represent matrix addition and matrix multiplication, respectively.

Fig. 5. Illustration of the ASPP.

of 4 to match the feature size of the detail semantic feature.
Then, the two features are combined through element-wise
summation, resulting in integration features. Subsequently, the
integration features undergo convolutional operations and are
element-wise multiplied with the detail semantic feature and
the global semantic feature obtained after the ASPP operation.

Finally, the resulting features are further integrated for sub-
sequent processing. The aforementioned ASPP was proposed
in [28] and has shown excellent segmentation capabilities in
practical studies. The ASPP combines a spatial pyramid pooling
module and separable convolutional layers to extract features at
different scales, where multiple parallel convolutional layers can
effectively expand the range of the received domain and ensure
more effective information output. The ASPP uses different dila-
tion rates for different scales to capture multiscale information,
and each scale is a separate branch, which effectively avoids the
acquisition of redundant information and focuses directly on
the correlation between objects. Thus, the ASPP can effectively
reduce the information redundancy of global semantic features
and enhance the spatial multiscale characteristics and feature
diversity of the feature map, while increasing the number of
feature layers allows the network to encode rich spatial details,
as shown in Fig. 5 . The ASPP consists of a 1 × 1 convolution,
a pooling pyramid with three different expansion factors, and
ASPP, so its output feature map combines the information of the
aforementioned five layers.
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Fig. 6. Datasets display. (a) ISPRS Vaihingen challenge dataset images and
labels. (b) ISPRS Potsdam challenge dataset images and labels. (c) GID images
and labels.

Finally, the reintegrated features undergo a sequence of
convolutional operations and are combined with the initially
integrated features through summation. The resulting feature
maps are then subjected to further convolution and upsampling
operations, leading to the final segmentation results.

IV. RESULTS

In this section, we first introduced the ISPRS 2-D Semantic
Labeling Challenge datasets for Vaihingen and Potsdam. We fur-
ther experimented with the Gaofen image dataset (GID), which
contains information on larger scale features, to demonstrate the
validity of our model the above three datasets are displayed as
shown in Fig. 6. Then, we delve into the specific implementation
details of MSDRNet, along with a comprehensive description
of the evaluation metrics and comparison methods employed.
Finally, we evaluate the effectiveness of the proposed network
architecture in semantic segmentation by utilizing these three
cutting-edge remote sensing image pairs as benchmarks.

A. Datasets

1) The ISPRS Vaihingen challenge dataset comprises 33
aerial images in the IRRG (infrared, red, green) format.
Each image has a spatial resolution of 9 cm and dimensions
of 2494 × 2064 pixels. Among these images, 17 are
primarily allocated for online testing, while the remaining
16 annotated images are designated for evaluating our
proposed method. Specifically, 11 images are randomly
assigned for training data, 3 images for testing data, and
2 images for validation data. It is worth noting that the
digital surface model and normalized digital surface model
data corresponding to each image in the dataset were not
utilized in our experimental analysis.

2) The ISPRS Potsdam challenge dataset comprises 38 aerial
images in the IRRGB (infrared, red, green, blue) format.
Each image has a spatial resolution of 5 cm and dimensions
of 6000 × 6000 pixels. This dataset offers a larger cover-
age area compared to the Vaihingen dataset and provides

higher resolution. However, the labels remain consistent
with six predefined categories. Random partitioning of the
dataset resulted in 24 training images, 8 testing images,
and 6 validation images. Similar to the Vaihingen dataset,
the digital surface model and normalized digital surface
model data associated with each image were not employed
in our experiments.

3) The GID is a large-scale land-cover dataset with Gaofen-2
(GF-2) satellite images. GID consists of two parts: a large-
scale classification set and a fine land-cover classification
set. The large-scale classification set contains 150 pixel-
level annotated GF-2 images, and the fine classification set
is composed of 30 000 multiscale image patches coupled
with 10 pixel-level annotated GF-2 images. Note that
we have only used large-scale classification set, which
involves five classes, to validate the performance of our
model for segmentation of large scale RSIs. The large-
scale classification set was randomly divided into a train-
ing set (100 images), test set (30 images), and a validation
set (20 images).

B. Implementation Details

We employed three methods for image augmentation: random
scaling, random cropping, and random horizontal flipping. The
input image size was set to 512 × 512. In the first ten epochs, we
utilized the warm-up policy [23] to smoothly adjust the learning
rate from 0.001 to 0.01, which helps maintain model stability
at a deeper level. Afterwards, we implemented a polynomial
learning rate policy that reduces the learning rate by a factor
of 0.1 every 20 epochs. The optimizer used was AdamW, with
an initial learning rate of 0.01. Training was conducted for 110
epochs on an NVIDIA 2070 GPU, with a batch size of 8 and 6
threads.

C. Evaluation Metrics

To assess the quantitative performance, three benchmark
metrics were used: overall accuracy (OA) derived from the
pixel-based confusion matrix, F1 score (F1), and intersection
over union (IoU). OA is defined as

OA =
TP + TN

N
(5)

where TP and TN are the number of true positives and true
negatives, respectively, and N is the total number of pixels. F1
is defined as

F1 = 2
Pre × Rec
Pre + Rec

(6)

Pre =
TP

TP + FP
(7)

Rec =
TP

TP + FN
(8)

in which FP and FN are the number of false positives and false
negatives, respectively. IoU is defined as

IoU (𝒫m,𝒫gt) =
|𝒫m ∩ 𝒫gt|
|𝒫m ∪ 𝒫gt| (9)
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TABLE I
ABLATION STUDY FOR ASPP PARAMETERS ON THE ISPRS VAIHINGEN

TEST DATASET

where 𝒫gt is the set of ground-truth pixels, and Pm is the set of
prediction pixels; “∩” and “∪” denote the intersection and union
operations, respectively.

D. Comparing Methods

To verify the performance, the proposed MSDRNet is com-
pared with six state-of-the-art deep models on the two datasets
above. The main information regarding these models is summa-
rized as follows.

1) FCN [8]: Shelhamer et al. [8] propose the FCN for seman-
tic segmentation, which is the first pixel-level segmenta-
tion network. There are three versions of FCN models:
FCN-32s, FCN-16s, and FCN-8s. We use the best perfor-
mance model FCN-8s as comparison.

2) U-Net [25]: Ronneberger et al. [25] propose U-net for
biomedical image segmentation. The main structure of
U-Net consists of two parts, upsampling and downsam-
pling parts, and incorporates a jump connection operation
between the encoder and decoder.

3) SegNet [26]: SegNet is characterized by an FCN architec-
ture and follows an encoder–decoder paradigm. It consists
of two parts, an encoder and decoder, and is capable of
segmenting the region where the object is located in the
image at the pixel level.

4) PSPNet [46]: Zhao et al. [46] propose PSPNet for pixel-
level prediction tasks, which proposes a pyramid pooling
module that integrates global contextual information, and
this global priori information is effective in obtaining high
quality results in scene semantic analysis.

5) DeepLabv3+ [47]: DeepLabv3+ is proposed by Chen
et al. [47] for semantic segmentation, which proposes an
improved Xception as a backbone network and uses an
ASPP structure to solve the multiscale problem.

6) DDCM-Net [48]: The dense dilated convolutions’ merg-
ing network (DDCM-Net) consists of densely dilated
image convolutions merged at different dilation rates,
expanding the sensory field of the network with fewer
parameters and features.

E. Ablation Experiments

1) ASPP Parameters: In the proposed FRM, we have in-
troduced the ASPP operation. To verify the effect of different
settings of atrous rate in ASPP on the segmentation results, we
designed a set of ablation experiments on Vaihingen dataset
presented in Table I.

TABLE II
ABLATION STUDY FOR RELATION BLOCKS AND FRM ON THE ISPRS

VAIHINGEN TEST DATASET

It can be seen that when the atrous rate is (3, 6, 9), OA and
mean IoU (mIoU) have the highest values of 90.28% and 81.12%
respectively.

2) Relation Blocks and FRM: In the proposed MSDRNet,
two relation blocks SRB and CRB are employed in DSM and
GSM, respectively. The FRM aims to refine and integrate the
feature maps generated by the DSM and the GSM.

To further verify the performance of these blocks and module,
we conduct extensive experiments with different settings on
Vaihingen dataset in Table II. As shown in Table II, the pro-
posed relation blocks and FRM bring a significant improvement
compared with the baseline MSDRNet.

The OA and mIOU of the network with all the relation
blocks and FRM added are 90.35% and 80.21%, respectively,
which are 4.59% and 3.77% higher than the baseline structure.
Meanwhile, we found that CRB has the most significant effect on
accuracy improvement among these blocks and module. In the
case of adding only CRB and no other blocks OA and mIOU are
improved by 2.86% and 9.94%, respectively, over the baseline
results.

F. Comparison With Deep Models

To perform a comprehensive evaluation of the proposed
MSDRNet, we compare it against six existing methods: FCN,
U-Net, SegNet, PSPNet, Deeplabv3+, and DDCM-Net. We
employ three accuracy assessment metrics: F1 score, IoU, and
OA.

1) ISPRS Vaihingen Challenge Dataset: The comparison re-
sults on the ISPRS Vaihingen dataset are shown in Table III. Our
proposed MSDRNet demonstrates an average IoU of 79.21%,
surpassing the other six comparative methods. Specifically, it
achieves a 3.07% improvement over the highest average IoU
achieved by U-Net. Furthermore, MSDRNet exhibits an average
F1 score of 88.32%, outperforming the other five methods.
In particular, it shows a 1.89% enhancement compared to the
highest average F1 score obtained by Deeplabv3+.

The OA value of MSDRNet is 90.35%, which is 0.66% higher
than U-Net’s 89.69%. This result indicates the effectiveness of
the connection between the detail and GSMs in MSDRNet.
In terms of vehicle segmentation, MSDRNet exhibits an IoU



514 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE III
QUANTITATIVE COMPARISON (%) WITH THE STATE-OF-THE-ART DEEP MODELS ON ISPRS VAIHINGEN CHALLENGE VALIDATION SET

Fig. 7. Qualitative comparison with the state-of-the-art deep models on ISPRS Vaihingen challenge dataset. The label includes six categories: impervious surface
(imp surf, white), building (blue), low vegetation (low veg, cyan), tree (green), car (yellow), and clutter/background (red). (a) input image, (b) ground truth, (c)
FCN results, (d) U-Net results, (e) SegNet results, (f) PSPNet results, (g) Deeplabv3+ results, (h) DDCMNet results, and (i) MSDRNet results.

that is 2.34% lower and an F1 score that is 1.71% lower than
PSPNet. The reason for this outcome is that PSPNet focuses on
addressing the problem of predicting small objects by enhancing
the representation capability of information at different scales.
However, PSPNet is primarily designed for scene parsing appli-
cations, which is why its performance in segmenting impervious
surface, for example, is inferior to that of MSDRNet. MSDRNet
also demonstrates excellent segmentation performance in build-
ing segmentation, achieving IoU of 91.26% and F1 score of

94.88%. Particularly noteworthy is its exceptional performance
in shrubbery segmentation, where MSDRNet outperforms other
models with a remarkable increase of 13.77% in IoU and 5.57%
in F1 score. Moreover, the MIoU, MF1, and OA values of
MSDRNet are 10.58%, 7.50%, and 4.04% higher than those
of the DDCM-Net, respectively.

The qualitative comparison experimental results on the Vai-
hingen dataset are depicted in Fig. 7. The results clearly indi-
cate that our proposed MSDRNet achieves segmentation results
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TABLE IV
QUANTITATIVE COMPARISON (%) WITH THE STATE-OF-THE-ART DEEP MODELS ON ISPRS POSTDAM CHALLENGE VALIDATION SET

Fig. 8. Qualitative comparison with the state-of-the-art deep models on ISPRS Potsdam challenge dataset. The label includes six categories: impervious surface
(imp surf, white), building (blue), low vegetation (low veg, cyan), tree (green), car (yellow), and clutter/background (red). (a) input image, (b) ground truth, (c)
FCN results, (d) U-Net results, (e) SegNet results, (f) PSPNet results, (g) Deeplabv3+ results, (h) DDCMNet results, and (i) MSDRNet results.

that closely resemble the ground truth. In comparison to other
segmentation models, MSDRNet excels in preserving complete
segmentation boundaries and accurately identifying impervious
surfaces (as shown in the second row). On the other hand, FCN,
SegNet, and Deeplabv3+ are more prone to being affected by
shadows, resulting in fragmented object boundaries. When it
comes to building segmentation, U-Net and SegNet exhibit holes
in their segmented buildings, requiring further refinement. In
contrast, MSDRNet demonstrates no significant shortcomings

in segmenting various land features and effectively captures
intricate details, such as building corners.

2) ISPRS Postdam Challenge Dataset: Table IV presents the
numerical results obtained on the Postdam dataset. The results
indicate that MSDRNet achieves notable performance with av-
erage IoU of 83.69%, average F1 score of 91.23%, and OA of
90.57%. Due to the larger dataset size and the block-like distri-
bution of labels in the Postdam dataset, segmentation accuracy
tends to be higher compared to the Vaihingen dataset. Notably,
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TABLE V
QUANTITATIVE COMPARISON (%) WITH THE STATE-OF-THE-ART DEEP MODELS ON GID VALIDATION SET

Fig. 9. Qualitative comparison with the state-of-the-art deep models on GID. The label includes five categories: background (black), water body (blue), wood
land (cyan), plow land (green), and residential area (red). (a) input image, (b) ground truth, (c) FCN results, (d) U-Net results, (e) SegNet results, (f) PSPNet results,
(g) Deeplabv3+ results, (h) DDCMNet results, and (i) MSDRNet results.

MSDRNet demonstrates significant improvements in vehicle
segmentation accuracy on the Postdam dataset, exhibiting an
impressive 18.59% increase in IoU and a remarkable 14.07%
increase in F1 score. MSDRNet achieves an OA that is 7.86%
higher than DDCM-Net. In terms of segmentation performance
in the impermeable layer, MSDRNet achieves an IoU of 83.43%
and an F1 score of 90.72%, both of which significantly surpass
the results obtained by DDCMNet. This improvement can be
attributed to the larger number of vehicle samples available
in the Postdam dataset. Furthermore, in terms of building seg-
mentation, MSDRNet achieves IoU of 90.25% and F1 score of

95.51%. Compared to U-Net, MSDRNet shows an improvement
of 0.43% in IoU and 0.87% in F1 score. While MSDRNet’s seg-
mentation performance in shrubbery is slightly inferior to that
of Deeplabv3+, it demonstrates relatively accurate predictions
across all four land cover categories.

Fig. 8 displays the visualized segmentation results on the
Postdam dataset. It is evident that U-Net and SegNet struggle
with handling segmentation boundaries, resulting in inconsis-
tent edges between different land cover categories. The FCN
performs well in segmenting small-scale vehicles, but tends to
produce holes in large buildings and continuous shrubbery areas,
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leading to incomplete segmentation. Conversely, Deeplabv3+
exhibits poor sensitivity to buildings, resulting in noticeable
misclassification and omissions in building segmentation. Com-
pared with other methods, our proposed MSDRNet can accu-
rately distinguish the building area sandwiched between shrubs
and trees (as shown in the third row), and the segmentation
between the building boundary and impervious surface is more
complete (as shown in the fifth row). These experimental results
show that MSDRNet fully takes into account the local and global
semantic information of the features, and effectively avoids the
easy misclassification and omission in the segmentation process.

3) Gaofen Image Dataset (GID): Table V shows the accu-
racy evaluation results of the GID. The results show that the
average IoU, average F1, and OA of MSDRNet are 73.60%,
85.99%, and 89.12%, respectively. Since the spatial scale of the
GID dataset is more macroscopic and the intraclass attributes are
more different, the segmentation accuracy of the GID dataset is
overall worse compared to the previous two datasets. For the
segmentation of water bodies, the IoU and F1 of MSDRNet
are 72.18% and 86.68%, respectively, which is an improvement
of 2.71% in IoU and 4.7% in F1 compared to PSPNet. Since
residential areas have the most samples in training, each model
achieves the highest accuracy here, and although our proposed
MSDRNet has a slightly lower segmentation performance than
U-Net for residential areas, it makes relatively accurate predic-
tions for segmentation of all four of its landcover classes. On the
contrary, Plow land and Plow land have relatively fewer training
samples, and hence, poorer validation accuracy.

The visualization results of GID segmentation are shown in
Fig. 9. It can be seen that FCN and U-Net have the worst overall
segmentation effect, and some of the features are misclassified
and fragmented during the segmentation process. SegNet and
PSPNet have better overall morphological segmentation of fea-
tures, but there are still fragmentation and discontinuity in spatial
details, which leads to incomplete segmentation. Compared
with other methods, our proposed MSDRNet can effectively
reduce the omission and mis-segmentation of features (shown
in the first and fourth rows), and the segmentation between
feature boundaries is more complete, without a large number
of broken features (shown in the second and third rows). These
experimental results show that MSDRNet fully considers the
local and global semantic information of features and effectively
enhances the completeness of feature segmentation.

V. CONCLUSION

In this article, we present an end-to-end MSDRNet for se-
mantic segmentation in remote sensing images. MSDRNet is
designed to effectively capture both local details and global fea-
tures in the image, enabling accurate segmentation results. Our
proposed method addresses this challenge through the following
three main aspects.:

1) A network consisting of two parallel modules was adopted
in this article, which fully considered the details and
global semantic features of the image. Shallow and depth
information are accurately extracted as a result.

2) SRB and CRB are introduced separately in the two parallel
modules to further enhance the contextual relationship of
the image.

3) To balance the semantic differences between the extracted
features from the two modules, a FRM is incorporated.

These specific designs allow MSDRNet to effectively incor-
porate image features from both global and local perspectives,
enabling semantic segmentation from coarse to fine scales. This
greatly improves its performance and accuracy in the segmen-
tation task.

However, MSDRNet has longer processing times compared to
other networks. This is mainly because the DSM requires pixel-
wise calculations and comparisons for detecting fine-grained
semantic features, which consumes a significant amount of
time. And due to the limitations of the experimental platform
and considering the complexity of the model, this article did
not effectively incorporate multiscale features into the model.
Therefore, in the future we intend to develop a lightweight
network to address the issue of longer processing times and focus
on proposing an improved DSB that incorporates multiscale
features and optimizing and enhancing the CRB in GSM.
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