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SASiamNet: Self-Adaptive Siamese Network for
Change Detection of Remote Sensing Image
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Abstract—With increasingly rapid development of convolutional
neural networks, the field of remote sensing has experienced a sig-
nificant revitalization. However, understanding and detecting sur-
face changes, which necessitate the identification of high-resolution
remote sensing images, remain substantial challenges in achiev-
ing precise change detection. Excited deep learning-based change
detection techniques often exhibit limitations and lack the neces-
sary precision to detect edge details or other nuanced information
in remote sensing images. To address these limitations, we pro-
pose a unique semantic segmentation deep learning network, the
self-adaptive Siamese network (SASiamNet), specifically devised
for enhancing change detection in remote sensing images. The
SASiamNet excels in real-time land cover segmentation, adeptly
extracting local and global information from images via the back-
bone residual network. Furthermore, it incorporates a primary
feature fusion module to extract and fuse the primary stage feature
map, and a high-level information refinement module to refine the
resultant feature map. This methodology effectively transmutes
low-level semantic information into high-level semantic informa-
tion, thereby improving the overall detection process. Aimed at em-
pirically testing the effectiveness of the SASiamNet, we utilize two
distinct datasets: the public dataset, LEVIR-CD, and a challenging
dataset, CDD. The latter is composed of bitemporal images sourced
from Google Earth, spanning various regions across China. The
experiment results unequivocally demonstrate that our approach
outperforms traditional methodologies as well as contemporary
state-of-the-art change detection techniques, hence underscoring
the efficacy of the SASiamNet in the context of remote sensing image
change detection.

Index Terms—Change detection, deep learning, remote sensing,
Siamese network.

I. INTRODUCTION

CHANGE detection in remote sensing involves identifying
semantic and nonsemantic changes in images. To be more

specific, the related images are captured at different times from
the same region. Recent hardware advancements have made
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acquiring these images easier, but precision (PR) in high-
resolution image change detection remains challenging because
of factors, such as lighting changes, atmospheric disturbances,
and registration accuracy. Conventional and deep learning al-
gorithms are proposed for change detection, but shortcomings
persist.

Recent progress in hardware technology, particularly in sen-
sor capabilities, has facilitated the acquisition of remote sens-
ing imagery. Revisiting data provide more comprehensive land
cover information compared with dense time series images.
In addition, these images are with medium spatial resolution.
However, this technological advancement presents its own chal-
lenges [1]. High-resolution images often suffer from a decline
in registration accuracy, making precise change detection an
intricate task [2]. In addition, dynamic variables, such as alter-
ations in illumination and atmospheric disturbances, compound
the complexity of obtaining sufficient feature information from
bitemporal remote sensing images [3]. There are numerous of
existing change detection methodologies, which can be mainly
divided into two types: traditional techniques with conven-
tional strategy to deal with change detection tasks and deep
learning-based techniques. Traditional techniques, while valu-
able, demonstrate limitations when dealing with high-resolution
data and complex environmental conditions [4], [5]. Deep
learning-based techniques, although innovative and promising,
still grapple with challenges in detecting detailed nuances, such
as edge information. This article proposes a state-of-the-art
approach that strives to address these constraints, thereby im-
proving the PR in change detection of remote sensing image.

Generally, traditional techniques incorporate the image arith-
metic method, whose main strategy is comparing the pixel values
of two bitemporal images, and then producing a differential
image. By establishing a suitable threshold, pixels are classi-
fied to indicate whether a region in an image is changed or
unchanged. Among traditional techniques for image change de-
tection, principal component analysis (PCA) is commonly used,
which is a classical algorithm for dimensionality reduction based
on image transformation [6]. However, the dependency of PCA
on the statistical properties of data exposes it to considerable
impacts arising from unbalanced datasets. In response to this
problem, Celik [7] introduced an unsupervised change detec-
tion technique, which effectively combines PCA with K-means
clustering. Singh and Singh [8] proposed a technique, which
considers both spectral and statistical properties, utilizing canon-
ical variate analysis (CVA) to seize spectral change information
and a fuzzy classifier for change detection in fused images.
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Despite the fact that unsupervised methods anchored on arith-
metic and transformation lack prior knowledge of labeled data,
and primarily hinge on model assumptions or comparative rules
to pinpoint changed areas, they are afflicted by certain limi-
tations. To enhance change detection performance, researchers
have shifted from unsupervised to supervised approaches. Deng
et al. [9] proposed a method that can effectively identify and
quantify changes in land use through using hybrid classifiers
to combine unsupervised and supervised classification. How-
ever, arithmetic and transformation-based methods heavily de-
pend on empirical design, which makes them less effective for
high-resolution images. Juan et al. [10] proposed a detection
technique, integrating both pixel and object representations,
which utilizes supervised subimages to discern areas of change
that encompass artificial objects, achieved by partitioning large-
scale images into overlapping subimages. Despite the advance-
ments these methods have contributed to change detection,
the challenge of accurately capturing texture characteristics in
relatively complicated topographic environment and details in
high-resolution images persists.

Deep learning algorithms have shown great potential in
change detection in remote sensing images [11], [12], [13]. The
inherent advantage of deep learning methods is their adeptness at
recognizing complex features in images full of subtle semantics
through hierarchical structures [14], [15], [16]. Compared with
traditional change detection algorithms, deep learning methods
do not require tedious manual design and show significant ad-
vantages in adapting to the various intricate features of complex
remote sensing datasets. To be more specific, deep learning
methods address issues, such as edge blurring and missed small
targets in change detection, by leveraging their ability to learn
complex hierarchical features directly from data. Recently, deep
convolutional neural networks (CNNs) have played a significant
role in the segmentation of remote sensing images and have
continuously shown their efficacy in situations where change
detection is required [17], [18], [19]. CNNs, renowned for their
capacity to discern spatial hierarchies, learn from local input
patches, enabling the precise demarcation of regions of change
while preserving spatial continuity. Furthermore, the robust
handling of multispectral data by CNNs, facilitated by their
multilayered convolution process, allows for the extraction of
features that effectively capture spectral, spatial, and temporal
dynamics inherent to remote sensing imagery. These abilities are
critical for the comprehensive identification and interpretation
of changes over time. There exist many networks known for
their outstanding performance in image classification tasks, such
as the visual geometry group (VGG) network [20], residual
network (ResNet) [21], deep learning with depthwise separable
convolutions (Xception) [22], and the densely connected con-
volutional network (DenseNet) [23]. In the domain of remote
sensing change detection, the inability of shallow networks to
comprehensively extract image feature information from high-
resolution images has led to a diminished standing. Ideally, to
extract richer image information, a network should be as deep as
possible. However, an increase in network layers could introduce
the issue of the vanishing gradient, leading to the loss func-
tion nearing zero, subsequently resulting in decreased network
training efficiency. After a thorough evaluation, we have selected

ResNet as the backbone network for our proposed model due to
its superior ability in mitigating the problem of gradient vanish-
ing through its multitude of residual blocks. The residual block
excels in fitting the classification function, thus achieving higher
classification accuracy. It can effectively address the problem of
optimization training as the network layers deepen. However,
fitting a potential identity mapping function, H(x) = x, can be
challenging for certain layers, potentially contributing to the
complexity of training deep networks. Designing a network as
H(x) = F (x) + x is a simpler approach. Transitioning to learn
a residual function, F (x) = H(x)− x, makes fitting the resid-
ual more straightforward once F (x) = 0 is achieved, forming
an identity map, F (x) = H(x)− x. This allows the ResNet
to eliminate identical components and emphasize the minor
changes in the feature image. The primary aim is to extract
sufficient feature information and combine low-level and high-
level semantic features using an attention mechanism to improve
prediction accuracy. General CNNs have been widely used in
various computer vision tasks, including image classification
and segmentation. They excel at learning hierarchical features
from data, enabling the identification of complex patterns and
structures in images. However, in the domain of remote sensing
change detection, particularly with high-resolution imagery, the
limitations of shallow networks become evident. Shallow net-
works struggle to comprehensively extract feature information
from these images, which often exhibit subtle changes and intri-
cate details. As a result, deep learning methods have emerged as a
more effective solution, as they can address issues, such as edge
blurring and the detection of small targets, while maintaining
spatial continuity, making them particularly valuable in this
context. As for recent methods proposed for remote sensing
image change detection, Daudt et al. [24] introduced a trio of
fully CNN architectures, of which two are extensions of the
fully convolutional paradigm with Siamese configurations. This
Siamese architecture has manifested superior performance in the
domain of change detection when compared with antecedent
methodologies. Chen and Shi [25] proffered a spatiotemporal
attention neural network predicated upon connective principles,
while Chen et al. [26] proposed dual-time image Transform-
ers, adept at effectively modeling both temporal and spatial
contexts. In a similar vein, Ding et al. [27] conceived a novel
dual-branch end-to-end network tailored to the exigencies of
building change detection. Notably innovative in its approach,
this network introduces cross-layer addition and skip connection
modules, judiciously guided by a spatial attention mechanism,
thereby enabling the aggregation of multilevel contextual in-
formation. This innovation is instrumental in enhancing both
network performance and robustness through the incorporation
of deep supervision modules. Further advancing the domain,
Wang et al. [28] devised a high-resolution feature difference
attention network dedicated to the task of change detection.
This network introduces a multiresolution parallel architecture,
which comprehensively harnesses image information across
varying resolutions to mitigate the degradation of spatial in-
formation. Notably, the intrinsic challenges within this realm
are exacerbated by variations in sun altitude angles, lighting
conditions, seasonal fluctuations, and the occlusive effects of
building shadows across the two images. Consequently, identical
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objects may exhibit stark disparities in their spatial positioning
and spectral characteristics, giving rise to deviations both in
position and spectral attributes. The complications are further
magnified in the context of high-resolution images, rendering
the task of change detection particularly arduous. Presently,
extant deep learning-based change detection algorithms are
faced with the formidable challenge of accurately discerning
between areas that have undergone change and those that remain
unaltered.

To solve the problems mentioned, our research propose self-
adaptive Siamese network (SASiamNet) for high-resolution re-
mote sensing image change detection. In our study, we create
two auxiliary modules to assist network training. To be more
specific, to distinguish and classify the changed area and un-
changed area, we introduce the difference module (DM) and
assimilation module (AM), respectively, which are proven to
have an outstanding performance in extracting features of bitem-
poral remote sensing images. Moreover, with another module
called representative feature extraction module (RFEM), we
focus on extracting the temporal features of two remote sensing
images. Considering combining the features extracted by these
three submodules, a primary feature fusion module (PFFM) is
created to fuse the output of DM, AM, and RFEM. We also pro-
pose a module called high-level information refinement module
(HIRM), which is aimed at aggregating and refining the global
information from different scales, especially for the high-level
feature, so that we can attain more precise semantic informa-
tion. These contributions form our main achievements in this
study.

1) We introduce a state-of-the-art deep learning network, the
SASiamNet, for high-resolution remote sensing change
detection. Our network efficiently extracts pertinent image
features, addressing issues, such as ambiguous changed
target edges and small target omission. As an end-to-end
trainable network, SASiamNet simplifies the change de-
tection task by obviating the need for separate component
training.

2) We introduce several modules for enhanced change de-
tection, including the DM, RFEM, AM, PFFM, HIRM,
and global feature fusion module (GFFM). DM and AM
perform weight training on changed areas, augmenting
RFEM to improve prediction accuracy across multiple
feature map scales. HIRM, inclusive of the GFFM sub-
module, uses four feature map scales to refine and fuse pre-
dictions through adaptive weight allocation and effective
information integration from varying feature map sizes.

3) We evaluate the proposed SASiamNet on two datasets: the
publicly available LEVIR-CD dataset and our proposed
CDD dataset. The results demonstrate the superior relia-
bility and accuracy of SASiamNet compared with various
existing deep learning methods for change detection.

II. METHODOLOGY

This study utilizes CNNs due to their process in semantic
segmentation, particularly suited to classifying “changed” and

“unchanged” regions in remote sensing images. To further en-
hance this approach, a Siamese network architecture is em-
ployed, taking advantage of its weight-sharing mechanism.
Siamese networks, composed of two or more identical subnet-
works, ensure a consistent parameter set for feature extraction
from different images. This uniformity promotes a robust com-
parison between image pairs, a pivotal aspect of the change
detection task. This weight-sharing characteristic allows the
network to learn a similarity measure between paired inputs,
leading to the extraction of more robust feature representations
by observing the same changes from different perspectives
or timepoints. The combination of CNNs’ superior semantic
segmentation capabilities and the Siamese networks’ weight-
sharing attribute provides a compelling approach for accurate
and consistent change detection in remote sensing images.

The U-Net architecture serves as the foundation for our
proposed network due to its structure, originally designed for
semantic segmentation tasks. Its fully convolutional nature,
combined with an encoder–decoder pattern, is advantageous
for change detection in remote sensing images. The encoder
captures the context while reducing spatial dimensionality, and
the decoder uses these features to restore spatial dimensions,
producing high-resolution output. Skip connections in U-Net
enable the transfer of fine-grained details from encoder to
decoder, thus aiding the generation of precise segmentation
maps, which is pivotal for intricate change detection. The U-Net
architecture’s efficiency in training and its ability to perform well
even with fewer training images enhances its suitability for our
task. Furthermore, we selected ResNet [21] as the backbone of
our architecture due to its demonstrated success in deep learn-
ing tasks. ResNet’s introduction of residual learning addresses
the vanishing gradient problem often encountered with deep
networks. Through skip or shortcut connections, gradients can
backpropagate to earlier layers without significant degradation,
facilitating the learning of complex hierarchical features essen-
tial for effective change detection in remote sensing tasks. The
wide acceptance and excellent performance of ResNet across
various image recognition tasks further validate our selection
for the network backbone. Moreover, two auxiliary modules
are created: PFFM and HIRM. PFFM can effectively extract
the feature of images in the primary stage, which means that
it detects the difference and similarity between two remote
sensing images by automatically positioning the pixels, and
more importantly, it depresses the features that are relatively
insignificant and less typical, and combines the output together
to obtain a rather comprehensive feature map with rich informa-
tion, enabling the whole network to effectively detect the small
objects. More specifically, the submodule within PFFM, RFEM
contributes a part to handle the issue of edge blurring and missing
targets through enhancing the weight of representative features.
The HIRM can aggregate the features from multiple scales and
refines the semantic features effectively, which enables the net-
work to fuse the high-level information and obtain more accurate
semantic change information. More importantly, this module
can adaptively select the features with more significant and
representative semantic information, which is derived from the
pixels positioned in PFFM. At this stage, through combining the
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Fig. 1. SASiamNet framework: C represents concatenation, R represents feature map refinement, F represents fusion. Two auxiliary modules: PFFM, HIRM.

two auxiliary modules in our proposed method, the problem of
misdetection is solved. The overall model structure is displayed
in Fig. 1.

Given our intention to extract both deep and shallow infor-
mation via the backbone, we have chosen to employ ResNet
as our backbone network. Within this network, the backbone
consists of five convolutional blocks: Conv-1, Res-2, Res-3,
Res-4, and Res-5. We allow Conv-1 to remain detached, while
integrating the remaining blocks, specifically Res-2 to Res-5,
into the network, with the outputs from each layer serving as
inputs for subsequent modules.

A. Primary Feature Fusion Module

The fundamental objective of an image change detection
algorithm is to discern the areas of alteration via bitemporal
images. The task of change detection primarily incorporates
two interconnected subtasks: identifying regions of change and
those of nonchange. Currently, a plethora of strategies exist to
approach this task. Traditional remote sensing change detection
algorithms, such as the improved ratio median absolute devia-
tion (IR-MAD) method, MAD method, change vector analysis
(CVA), and PCA are frequently used for change detection in

remote sensing data. However, these techniques may prove
ineffective in detecting minute changes or may exhibit sensitivity
to data noise. With the rapid advancement of graphics processing
units (GPUs) capable of handling an extensive volume of data
and executing complex tasks with superior PR and speed com-
pared with traditional central processing units, the efficiency
of deep learning methods in complex scenery change detec-
tion has seen significant improvements. These methods include
CNNs, recurrent neural networks, and generative adversarial
networks. Nevertheless, current modules struggle to accom-
modate variability in lighting conditions, changes in weather,
and differing shooting angles, which significantly contribute
to errors in remote sensing detection. In response, we devel-
oped a robust module dubbed the PFFM designed to extract
primary stage features and effectively fuse them. These primary
stage features predominantly encapsulate low-level character-
istics, which depict basic and local patterns or structures in
the data, such as edges, colors, and textures. Importantly, this
module exhibits resilience against a variety of environments and
mitigates the influence of factors that could cause minor de-
viations in the results of remote sensing change detection.
In essence, PFFM comprises three branches, each with three
child modules designed to address distinct issues. The module’s
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Fig. 2. (a) PFFM structure of the first branch, which is connected with the Res-
2 layer. (b) PFFM structure of the rest four branches. R represents refinement,
C represents concatenation, + represents elementwise summation, × represents
elementwise multiplication, and U represents an upsampling operation.

structure is illustrated in Fig. 2. It is worth noting that the
structure of the first branch, where the input originates from
the Res-2 layer, slightly deviates from the other four branches
due to the size of the feature map.

The inputs of each layer are different. As we design, con-
sidering the original image size is C ×H ×W , then the out-
put of Res-2, Res-3, Res-4, and Res-5 are expected to be
64× 1

4H × 1
4W , 128× 1

8H × 1
8W , 256× 1

16H × 1
16W , and

512× 1
32H × 1

32W respectively. More importantly, to avoid
losing detail of feature maps, we generate three outputs from
different location in this module, which could also be helpful
for the entire network to get global semantic information. One
output is the output of RFEM, which is denoted as a3. In this
module, we design three branches: DM, AM, and RFEM. In
order to extract the rich semantic information, we design to
combine and refine the output feature map of DM and RFEM,
and AM and RFEM, through adding them together, then passing
the added feature map through a 2-D convolution layer, applying
batch normalization and ReLU to the output, which also con-
verts three branches to two branches, reducing the number of
parameters. After feature refinement, the information of changed
and unchanged regions is combined. Then, we concatenate the
refined information and then send the output to a 2-D convolution
layer. Similarly, we still apply a batch normalization and a ReLU.
The reason why we always use the strategy of Conv+BN+ReLU
is that convolutional layer extract feature information and can
filter the information, and the implementation of batch nor-
malization is responsible for smoothing the loss function and
gradient decrease, and utilizing ReLU prevents the exponential
rise of the compute needed to run the neural network. We also
add the output from the main path in this module with the output
of AM, then multiply the output with the output of the DM.
Similarly, after each operation, such as add and multiplication,
a BN layer and a ReLU layer are followed. The output of the
main path in PFFM is denoted as a1. Considering combining
the feature maps of different scales, we apply upsampling to the
output from the branch of Res-3, Res-4, and Res-5, to make sure
the image sizes are the same as the output from Res-2, where

the output of upsampling is denoted as a2. Due to the size of the
output from Res-2 is already the desired size, we do not employ
upsampling to it.

1) Difference Module and Assimilation Module: The core
of image change detection is identifying the modified areas
between two bitemporal images. This endeavor is chiefly delin-
eated by the tasks of detecting areas of change and areas of conti-
nuity. Accordingly, we have constructed a differentiation module
and an AM. Each of these is tasked with extracting feature
maps from the changed and unchanged areas, respectively. The
inherent complexity of this undertaking is attributable to the vari-
ability of objects under different sensor perspectives. This results
in a lack of one-to-one correspondence between all pixels in the
two images, captured at distinct points in time. This predicament
is accentuated in the presence of multisensor usage, which can
lead to varied building angles, particularly for buildings with
significant three-dimensionality. As an illustration, transforma-
tion detection in intricate urban scenarios—encompassing shifts
in pedestrian movement, vehicles, and vegetation precipitated
by seasonal weather variations and other elements—becomes
increasingly vulnerable to minute deviations in sensor perspec-
tives. This discrepancy becomes glaringly apparent when the
observation distance is minimal, the object height is substantially
high, and the spatial resolution is expansive, thereby preventing
a one-to-one pixel correspondence. Conventional techniques,
such as PCA-means and IR-MAD1, are predominantly unsu-
pervised, lacking prior knowledge of labeled data and instead
depending heavily on particular assumptions or similarity rules
to discern changes. Furthermore, the majority of these conven-
tional change detection methods necessitate module adjustments
in the face of evolving scenarios, a process that is both time and
labor-intensive. Conversely, the employment of unsupervised
learning in the analysis of bitemporal remote sensing images
may render the process excessively simplistic. Consequently, it
becomes a formidable task for standard image processing tech-
nology to contend with change detection problems in complex
scenarios. However, deep learning methods have demonstrated
their capacity to effectively address these challenges, facilitating
the conversion of area parameters into individual values for
comparison. Existing modern techniques, such as SegNet and
ENet, encounter constraints when processing high-resolution
input images. Specifically, their lightweight base models risk
compromising spatial information, resulting in considerable loss
of the original image’s spatial attributes. In response to this
limitation, we put forward two feature extraction strategies that
not only preserve the wealth of spatial information but also
enable the detection of differences and similarities between two
images of the same subject captured at separate intervals.

In the DM, the feature maps of the identical area captured
at different time intervals are processed through the recursive
residual group (RRG). Following this, a subtraction operation
is performed on these feature maps, generating a new feature
map that delineates the discrepancies between the two images.
Conversely, the AM adds together the two feature maps, cre-
ating a feature map that emphasizes the similarities between
the two images. The structures of DM and AM are depicted in
Fig. 3. Both these modules are capable of transforming regional
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Fig. 3. (a) Structure of the DM. (b) Structure of the AM. RRG represents the
recursive residual group, and - and + stands for elementwise subtraction and
summation, respectively.

parameters into single comparable values. To elaborate, in DM,
once the feature map is processed by the RRG module—which
maintains the size of the feature map—it is passed through
three convolution layers, where the feature map’s size reduces
to one-eighth of the original dimension. Each convolution layer
comprises a convolution operation with stride = 2, followed
by batch normalization and a ReLU activation function. This
method, which maps the information corresponding to the orig-
inal feature image into a single value after several convolution
blocks, significantly enhances the accuracy of our proposed
network. These two modules serve unique roles within the
proposed model. While the difference network emphasizes fea-
ture extraction from the altered region, the assimilation net-
work concentrates on retrieving feature information from the
unchanged region. The primary network is fused with the two
auxiliary networks utilizing a multiscale feature aggregation
method, forming the complete network. Throughout the training
phase, the network parameters are updated by monitoring the
training progress, enabling the model to learn all information
autonomously. We establish a loss function to facilitate train-
ing. The functions of the two auxiliary networks can be better
comprehended by visualizing their outputs on the original map.

2) Representative Feature Extraction Module (RFEM):
CNNs are the most widely used deep learning models for
extracting rich feature information. CNNs have proven to be ex-
tremely effective in many computer vision tasks, such as object
recognition, image segmentation, and scene understanding. The
ability of CNNs to automatically learn features from raw input
data by applying filters at multiple scales allows them to capture
hierarchical and complex features. This enables them to extract
and represent relevant and discriminative features for various
applications. In previous research, although some models (such
as VGG, ResNet, InceptionNet, AlexNet, and DenseNet) can
extract rich feature information from a feature map, the issue
of feature redundancy emerges as the number of convolutional
blocks increases. To be more specific, with the deepening of

Fig. 4. Representative feature extraction module (RFEM).

the CNN, the extracted feature map may contain some irrel-
evant features, which can also be seen as feature redundancy.
Sometimes, the representative features are mixed with irrelevant
features, leading to worse network performance, which increases
the chance of the problem of misdetection. The representative
feature stands for the features that CNN should learn to identify
including changes in land cover, such as the conversion of green
spaces to built-up areas, variations in infrastructure, such as the
construction of new roads or buildings, and alteration in color
pattern, such as vegetation, rooftops, or paved surfaces. As for ir-
relevant features, the dataset may also contain irrelevant features
that do not contribute to accurate change detection, such as cloud
cover, seasonal changes in vegetation, shadows, or differences
in image acquisition conditions (e.g., lighting and sensor angle).
On account of mixed features, misdetection may occur. More
specifically, if CNN learns to associate some of these irrelevant
features with change detection, it may lead to misdetection. For
instance, the network may mistakenly learn that cloud cover in
the T2 image is an indicator of urban expansion, as it might
obscure the actual land use changes. As a result, when the
network encounters a pair of images where the only difference is
the presence of clouds in theT2 image, it may incorrectly identify
urban expansion. CNN’s performance is negatively impacted
by the mixture of representative and irrelevant features during
training. Having considered that some features are redundant,
we propose a RFEM. This module mainly extracts the detailed
feature of images and has the capability of enhancing the features
that are crucial and discarding some unimportant features, which
is shown in Fig. 4.

In RFEM, we first send the pair of the original feature maps to
a 3 × 3 convolution layer, obtaining a pair of processed feature
maps, denoted as f1 and f2, respectively, which are multiplied
together and sent to another 3 × 3 convolution layer where the
result is denoted as fm. In this process, we denote the original
input feature maps as fT1 and fT2, then we can get the processed
feature maps f1 and f2

f1 = f3×3(fT1) (1)
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f2 = f3×3(fT2) (2)

fm = f3×3(fT1 ⊗ fT2). (3)

In these formula, f3×3(·) represents the 2-D convolution,
batch normalization, and ReLU activation function with con-
volution kernel size equaling 3, stride equaling 1, and padding
equaling 1.

Then, we subtract the two original input feature maps of the
same remote sensing images captured in different times and pass
through a 3 × 3 convolution layer, which can be denoted as fs

fs = f3×3(abs(fT1 − fT2)) (4)

where abs(·) denotes absolute difference operation.
Next, on account of the intention of reaching a balance be-

tween the rich feature information and the redundant informa-
tion, we add the result of the subtracted feature map fs and the
multiplied feature map fsm together, obtaining a feature map
fa with strengthened difference features, which can be seen as
the major branch of this proposed module

fa = fs ⊗ fm. (5)

Then, we multiply the pair of the original feature maps with
the processed feature maps f1 and f2, which are the two branches
of RFEM. The result feature maps can be denoted as B1 and B2

fB1w = fT1 ⊗ f1 (6)

fB2 = fT1 ⊗ f2. (7)

Finally, given that we intend to focus on the more representa-
tive information and also the global information, we concatenate
the outputs of three branches and pass through a 1 × 1 convo-
lution layer to adjust the channel number of the output. Thus,
the output of RFEM can be represented as fout in the following
formula:

fout = f1×1(Concat(fa, fB1, fB2)) (8)

where f1×1(·) denotes a block with the 2-D convolution, batch
normalization, and ReLU activation function with convolution
kernel 1, stride equaling 1, padding equaling 1, and Concat(·)
stands for concatenating the feature maps.

It is proved that this module achieves a good performance on
extracting the representative information from the feature map
through suitable operation on the information and comprehen-
sively fuse the features. In other words, it combines the feature
information of changed and unchanged areas and focuses on the
information with higher representative meaning.

B. High-Level Information Refinement Module

After extracting the features in the primary stage, we consider
extracting features with high-level information, which refers to
abstract, complex, and semantic information extracted from the
data, often involving the relationships, context, and meaning
associated with the objects or patterns present. Compared with
other common methods, our proposed module can obtain the fea-
ture map precisely, in an adaptive way. High-level information
is usually derived from low-level features, which represent more
basic and local patterns or structures in the data, such as edges,

colors, and textures. From the aspect of change detection in
remote sensing images, high-level feature information involves
understanding the complex and abstract patterns related to the
changes occurring in the landscape over time, which is extracted
from low-level features detected in the initial layers of a deep
learning model, such as a CNN. In our research, a deep learning
model is trained to detect deforestation using pairs of satellite
images taken at different time periods (T1 and T2). More specif-
ically, in the scenario of change detection in remote sensing
images, high-level information could include the following.

1) Land cover classification: Discerning specific land cover
categories, such as forests, agricultural lands, urban areas,
or water bodies, by combining low-level features, such as
color and texture.

2) Change patterns: Comprehending patterns of change be-
tween T1 and T2 images, including deforestation (the
conversion of forested areas to nonforested land), refor-
estation (the transformation of nonforest areas into forest),
or urban expansion (the development of nonurban land
into urban zones).

3) Contextual information: Interpreting the spatial relation-
ships and context surrounding the observed changes, such
as deforestation events occurring near roads, rivers, or
urban locales, which can offer insights into the underlying
driving forces.

4) Temporal information: Inferring the temporal characteris-
tics of landscape changes, such as the deforestation rate,
seasonality, or the regeneration of vegetation following a
disturbance.

In our research, which is based on the scenario of change
detection in remote sensing imagery, high-level information
serves a critical role in understanding the intricate patterns of
landscape changes, including deforestation, and enables the
proposed deep learning model to accurately detect and inter-
pret changes in remote sensing images across time. Hence, we
propose a module called HIRM, which is shown in Fig. 1, in
the orange box surrounded by red dashed line. In this module,
we also design a submodule called GFFM to fuse four feature
maps in different sizes and then restore them back into four
different sizes, where we can get four feature maps, which can be
denoted as f(Pi(i=3,4,5)). Then, we conduct feature refinement
through using these feature maps by first concatenating them
with the outcome feature map from PFFM, respectively, and
send the feature map into a 3-by-3 convolution block, which can
be denoted as

f(Ci(i=3,4,5)) = f3×3(Concat(fi(i=2,3,4,5), fPi(i=3,4,5))) (9)

where fi(i=2,3,4,5) represents for processed four feature map
in different scales from PFFM. Then, we refine the high-level
semantic information through add the feature map from module
PFFM and send the feature map into a 3 × 3 convolution block.
The result feature map is also added with the output feature map
fRi(i=3,4,5) from the previous convolution block. The process
can be represented as

fRi(i=3,4,5) = f3×3(f3×3(fCi(i=3,4,5)

+ fi(i=2,3,4,5)) + fCi(i=3,4,5)) (10)
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Fig. 5. Global feature fusion module (GFFM).

where fCi(i=3,4,5) stands for the outcome feature map of the
previous formula, and fi(i=2,3,4,5) represents for processed four
feature map in different scales from PFFM.

1) Global Feature Fusion Module (GFFM): Feature fusion
in CNNs is a technique that combines information from different
layers or sources to improve the overall performance of the
model. In the context of change detection in remote sensing,
feature fusion can help to identify and monitor changes in land
cover, urban growth, or natural disasters more accurately. In
remote sensing, change detection is the process of identifying
differences between satellite or aerial images taken at different
times. This task can be challenging due to various factors, such
as variations in illumination, atmospheric conditions, and sensor
noise. Feature fusion can alleviate these issues by combining
information from multiple sources or levels of abstraction in
CNN. There are various approaches to implementing feature
fusion, given in the following.

1) Skip connections: Introduce skip connections between
different layers in the CNN, allowing the model to learn
multiscale features and capture changes at various resolu-
tions.

2) Multilevel feature fusion: Merge features from different
layers in the CNN to create a more robust feature repre-
sentation. This can be done using concatenation or ele-
mentwise summation.

3) Multisource fusion: Combine information from different
sources, such as optical and radar images or different
spectral bands, to improve the model’s performance.

In our proposed module GFFM, which is displayed in Fig. 5,
we use multilevel feature fusion, that is, to merge feature maps
from different layers. Before entering GFFM, in the previous
module PFFM, we design to upsample one of the outputs, that is,
a2, in order to uniform the size of each feature map. Thus, aimed
at fusing the features from different scales, we concatenate the

four feature maps together. The concatenated feature map can
be represented as fc

fc = Concat(f2, f3, f4, f5) (11)

where f2, f3, f4, and f5 stand for four feature maps from dif-
ferent scales. Actually, in remote sensing images, after passing
through several convolutional layers, there are often a large num-
ber of feature channels, representing different spectral bands,
textures, and other image features. However, not all of these
features are equally important for detecting changes between
images. Moreover, in remote sensing applications, the process-
ing of large-scale images can be computationally intensive,
especially if the CNN needs to analyze multiple images at once.
To solve these two issues, we add an efficient channel attention
(ECA) block. The ECA block can improve feature relevance
by helping the CNN to learn to selectively enhance or suppress
the most relevant feature channels, leading to better detection
performance. In addition, ECA is designed to be computation-
ally efficient, using a 1-D convolutional filter to compute the
attention weights for the feature channels. This can help to
reduce the overall computational burden and speed up the change
detection process.

Hence, after concatenating four feature maps from different
scales, we send the concatenated feature map into the ECA
block, then the result feature map passes through an ECA block,
with a 1-D convolution block where kernel size is 3, where the
result can be represented as fe

fe = ECA(fc). (12)

In the formula, ECA(·) denotes the ECA block, where there
is a kernel size equaling 3 and padding equaling 1.

Then, fuse the feature map by passing it through a 2-D
convolutional block. The fused feature map is refined by a
refinement block, which implements through adding two relative
feature map and send it to a 2-D convolutional layer with kernel
size equaling to 3. This module takes into account the previous
feature maps at different scales and the fused feature maps,
ensuring the preservation of important features of the original
feature maps at various scales, while at the same time taking into
account the impact of the global features. Considering restoring
the processed feature, an adaptive pooling block is added, result-
ing in an outcome of four feature maps in four different scales,
which can be denoted as fP2, fP3, fP4, and fP5, representing
the outcome from four branches Res-2, Res-3, Res-4, Res-5,
respectively

fPi(i=2) = f3×3(f2 + f3×3(fe)) (13)

fPi(i=3,4,5) = AvgPool(f3×3(fi(i=3,4,5) + f3×3(fe))) (14)

where fe is the output feature map of the ECA block, and
AvgPool(·) stands for 2-D average pooling layer, where the
pooling kernel size and stride are varied. When i = 2, there is
no average pooling because the major aim of the pooling layer
is to achieve feature map restoration, namely, to recover the size
of the feature map to its original size. When i = 3, the kernel
size and stride are 2. When i = 4, the kernel size and stride are
4. When i = 5, the kernel size and stride are 8. The size of each
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Fig. 6. Partial sample diagrams of LEVIR-CD.

output can be calculated through the formula

out(Ni, Ci, h, w) =
1

kH · kW

kH−1∑

m=0

kW−1∑

n=0

input(Ni, Ci

stride[0]× h+m, stride[1]× w + n)
(15)

where given the input feature map size is input (N,C,H,W), and
the output feature map size is out(Ni, Ci, h, w), and the pooling
kernel size is (kH, kW).

III. DATASETS

We evaluate our proposed SASiamNet using the publicly
available datasets LEVIR-CD [25] and CDD [33] because a
dataset that is sufficiently sizable can be persuasive in demon-
strating the model’s capability in handling remote sensing
change detection tasks. The performance of the model in com-
plicated urban situations is verified by LEVIR-CD, which is
partially depicted in Fig. 6; the performance of the model in
dealing with CD tasks in various seasons is verified by CDD,
which is partially depicted in Fig. 7.

A. LEVIR-CD Dataset

The LEVIR-CD dataset is a vast collection of high-resolution
images that is designed to detect changes in buildings. Com-
prised of 637 pairs of images obtained from Google Earth, the
dataset is focused on monitoring significant land changes that
have occurred over a period of 5–14 years, with a particular
emphasis on changes in buildings. The dataset encompasses
various types of buildings, including villas, high-rise apartments,
warehouses, garages, and other similar facilities. Moreover, the
dataset takes into account environmental factors, such as light
conditions and seasonal variations, which can play a significant
role in detecting changes in buildings over time. Overall, the
LEVIR-CD dataset offers a valuable resource for researchers and
practitioners working in the field of remote sensing, facilitating
the development and evaluation of algorithms for detecting and
monitoring changes in urban landscapes.

Fig. 7. Partial sample diagrams of CDD.

B. CDD Dataset

The CDD dataset is a frequently utilized publicly accessible
change detection dataset that takes into consideration variations
caused by seasonal changes. The dataset includes 11 pairs of
bitemporal remote sensing images with a spatial resolution rang-
ing from 3− 100 cm/pixel. Seven of the pairs have a resolution
of 4725 × 2700, while the remaining four pairs have a resolu-
tion of 1900 × 1000. The dataset encompasses various change
categories, such as cars, roads, and different large buildings. Due
to GPU device limitations, all image pairs have been cropped to
a size of 256 × 256 pixels to establish the training, validation,
and test sets, which are comprised of 10 000, 3000, and 3000
images, respectively, as shown in Fig. 8.

IV. EXPERIMENTAL ANALYSIS

All related experiments in our research are conducted on the
GeForce RTX 3090 and are based on PyTorch. In addition,
the Adam optimizer and BCEWithLogitsLoss loss function are
utilized in the neural network. During the network training
phase, the learning rate is identified as a crucial hyperparameter.
To ensure optimal performance, the ploy method is employed
to dynamically adjust the learning rate, initially set to 0.0015.
The decay index is set to 0.9, while the batch size and maximum
training iterations were configured as 16 and 200, respectively.

Ablation and comparing experiments are conducted on the
CDD and LEVIR-CD datasets, respectively. The results revealed
that our proposed algorithm outperformed other methods in
change detection. To quantify the performance, PR, recall (RC),
mean intersection over union (MIoU), and pixel accuracy (PA)
were used as the quantitative indicators. The MIoU of the change
and nonchange categories were used as the primary evaluation
metrics. The calculation formula is shown as follows:

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)
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Fig. 8. Comparison diagrams of experiment results on LEVIR-CD.

TABLE I
RESULTS FROM USING RESNET WITH DIFFERENT DEPTHS ON LEVIR-CD

MIoU =
TP

TP + FP + FN
(18)

PA =
TP + TN

TP + TN + FP + FN
. (19)

In these formulas, TP stands for true positive, referring to change
area that is correctly predicted, FP stands for false positive,
referring to the unchanged area is incorrectly predicted as the
part of the changed area, TN stands for true negative, referring
to the unchanged area that is correctly predicted, and FN stands
for false negative, referring to the part that incorrectly predicts
the changed area as unchanged.

A. Network Backbone Selection

We first test the effectiveness of our suggested network by
altering the depth of neural networks while maintaining the
default values for every training parameters. This was done
in order to pick the best backbone network. The tests were
conducted using ResNet18, ResNet34, and ResNet50, and the
results are given in Table I. ResNet18, ResNet34, and ResNet50
from the LEVIR-CD dataset are represented by SASiamNet_18,
SASiamNet_34, and SASiamNet_50 in the table. It has been
demonstrated that our suggested network, which uses ResNet18
as its core, performs optimally for change detection in remote
sensing images.

TABLE II
ABLATION RESULTS ON TWO AUXILIARY MODULES: PFFM AND HIRM

B. Ablation Experiments

To assess how well each module performs, we conduct ab-
lation experiments on the LEVIR-CD dataset. When creating
complicated neural networks, ablation research is crucial since
it increases the effectiveness of network development while also
allowing for a deeper knowledge of the proposed network. To
test each module’s efficacy, we specifically changed the network
in this experiment by removing or adding the suggested blocks
in the backbone network. In order to evaluate each module’s
performance, the assessment mostly employed the MIoU statis-
tic. The results of the ablation trials are given in Table II, where
the training method for every module remained consistent with
the planned network. These results prove the planned network
performed superbly, according to the research.

1) Ablation Experiment of PFFM: The PFFM can gain the
feature at an early stage, especially the difference and similarities
between two images in the same region, and has the capacity of
resisting the different environments and all factors that could
influence the result of change detection of remote sensing with
a slight deviation. It is proved that with the PFFM, we have a
better performance on the LEVIR-CD. Namely, the numerical
results in Table II reveal that PFFM increases the MIoU score
by 5.90%.

2) Ablation Experiment of HIRM: The HIRM aggregates
and refines global information across different scales, focusing
on high-level features for more precise semantic information.
It adaptively extracts high-level features from multiple scales,
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TABLE III
ABLATION EXPERIMENT OF PFFM THROUGH ADDING SUBMODULES IN PFFM,
WHERE PFFM_0 STANDS FOR THE BLOCK PFFM WITHOUT ANY SUBMODULE

ADDED, AND PFFMAM STANDS FOR THE BLOCK PFFM WITH ONLY ONE

SUBMODULE AM, AND VICE VERSA

TABLE IV
ABLATION EXPERIMENT OF HIRM THROUGH CHANGING THE

NUMBER OF HIRM

amalgamating significant features into a comprehensive feature
map. This process, enhancing meaningful and suppressing irrel-
evant features, results in improved prediction accuracy. As seen
in Table II, adding HIRM elevates the MIoU score by 3.32%
compared with ResNet18+PFFM, indicating superior semantic
information extraction. However, it is effective only in conjunc-
tion with PFFM, suggesting their interdependent relationship in
network performance enhancement. Therefore, primary stage
feature extraction is a prerequisite for effective information
refinement.

1) Ablation experiment of PFFM: During the design of the
PFFM, we incorporated three submodules: the DM, AM,
and RFEM. To evaluate the effectiveness of these sub-
modules, we conducted an ablation comparison experi-
ment on the PFFM. Table III presents the results, where
PFFM_0 refers to the PFFM block without any submod-
ule, PFFMAM represents the PFFM block with only the
AM submodule, and vice versa.
Furthermore, we also conduct an ablation experiment on
the count of HIRM. As given in Table IV, two layers of
HIRM can effectively aggregate and refine the high-level
image information, while too many layers may cause
issues, such as overfitting.
The findings demonstrate that the inclusion of the AM,
DM, and RFEM submodules leads to improvements in
the MIoU score. Specifically, the MIoU score increases
by 2.85%, 2.69%, and 3.66% with the addition of AM,
DM, and RFEM, respectively. Furthermore, when AM
and DM work together to detect changed and unchanged
areas in different periods, the experimental results show
a combined improvement of 4.15%. This indicates that
these two modules complement each other’s functions
effectively. Moreover, the addition of RFEM, which se-
lectively extracts the most representative features from

TABLE V
ABLATION EXPERIMENT OF HIRM THROUGH ADDING THE SUBMODULE

GRRM IN HIRM AND CHANGING THE CONNECTION OPERATION IN GFFM

the feature map, further enhances the MIoU score by
1.66% compared with the results obtained by only adding
AM and DM to the PFFM. These experimental findings
demonstrate the collaborative and supportive nature of
these three submodules, leading to enhanced performance
of our network.

2) Ablation experiment of HIRM: Aimed at verifying the
effectiveness of HIRM, we also carry out two ablation
experiments on HIRM. First, we set the number of block
HIRM as 1, and we then conduct the ablation experiment
on the submodule of HIRM, that is, GFFM. Table V gives
the result of the experiment, where HIRM_0 stands for
block HIRM without submodule, HIRMGFFM+

stands
for block HIRM with submodule GFFM, whose fusion
approach for aggregating the feature map in four scales is
to add them together, and HIRMGFFMc

stands for block
HIRM with submodule GFFM, whose fusion approach is
concatenating. It is proved that with the insert of GFFM,
where concatenating is applied, can achieve a better score
of MIoU. In Table V, the MIoU scores of our proposed
model are increased by 4.13% and 1.34%, respectively,
compared with no submodule GFFM within HIRM, and
elementwise summation in GFFM, respectively.

C. Comparative Experiments

To provide a comprehensive evaluation of our proposed
model, we conduct a comparative analysis using two open-
source datasets, assessing its performance in diverse change
detection scenarios, including different lighting conditions,
complex urban buildings, and wasteland areas. We compare
our method with various traditional unsupervised algorithms
(IR-MAD and PCA-Means), semantic segmentation algorithms
based on CNN (UNet, DeepLabv3+ and BiseNet), seman-
tic segmentation algorithms based on Transformer (ViT and
PvT), CNN-based change detection algorithms (FC-EF, FC-
CONC, FC-DIFF, TFI-GR, SNUnet, DTCDSCN, STANet and
IFNet), and hybrid CNN and Transformer-based change de-
tection algorithms (BIT, TransUNetCD, UVACD and Tran-
sCD). All deep learning models in the comparison experi-
ment undergo the same training modes to ensure fairness and
objectivity.

Evaluation results for the LEVIR-CD and CDD datasets are
given in Table VI. Traditional unsupervised methods, such as
IR-MAD and PCA-Means, have low accuracy and struggle with
identifying change regions. While CNN-based change detection
methods generally perform better, they exhibit lower accuracy
than hybrid CNN and Transformer-based models due to limi-
tations in capturing global information. Despite their ability to
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TABLE VI
RESULTS OF COMPARISON EXPERIMENTS ON TWO PUBLIC DATASETS, LEVIR AND CDD

Fig. 9. Comparison diagrams of experiment results on CDD.

capture global context, Transformer-based models may neglect
critical local features. To address this, we propose SASiamNet,
a Siamese network with a U-shaped backbone structure. The
PFFM ensures adequate multilevel feature information extrac-
tion, further refined by the HIRM. On the LEVIR and CDD
datasets, SASiamNet achieves PA indices of 97.68 and 97.76,
RC indices of 75.90 and 69.02, PR indices of 83.02 and 64.19,
and MIoU indices of 85.13 and 73.97, respectively, validating

its robustness for change detection in high-resolution remote
sensing. SASiamNet consistently outperforms comparative al-
gorithms.

Fig. 9 shows the prediction outcomes from different tech-
niques on two public datasets. Traditional unsupervised methods
struggle to identify changing areas, and semantic segmentation
algorithms generate many false detections in complex scenes.
Conversely, change detection algorithms enhance overall predic-



LONG et al.: SASiamNet: SELF-ADAPTIVE SIAMESE NETWORK FOR CHANGE DETECTION OF REMOTE SENSING IMAGE 1033

tion accuracy by accurately recognizing change areas, reducing
false detections, and limiting missed detections. However, these
techniques face issues when dealing with pixel discrepancies
due to seasonal changes or inconsistent sensor angles, primarily
due to subpar location and semantic information extraction and
fusion. As shown in Fig. 10, comparison algorithms produce
rough edge predictions in these scenarios. However, our pro-
posed SASiamNet method, using a U-shaped backbone network
with a Siamese structure and PFFM, effectively overcomes these
limitations by extracting and learning multilevel feature infor-
mation. The superior performance of SASiamNet in complex
change detection tasks is further validated by results from three
public datasets.

V. CONCLUSION

The present study introduces a SASiamNet designed to dis-
cern changes in high-resolution remote sensing imagery. This
proposed network showcases outstanding performance in real-
time land cover segmentation tasks. It employs ResNet as the pri-
mary architecture, which is used to extract both local and global
information from high-resolution remote sensing images. The
network incorporates the PFFM, responsible for the extraction
and fusion of primary stage feature maps. This is followed by the
HIRM, which refines the extracted feature map and efficaciously
transmutes low-level semantic information into high-level se-
mantic information. The efficacy of SASiamNet is evaluated
using two datasets, LEVIR-CD and CDD. These datasets com-
prise bitemporal images sourced from Google Earth, covering
various regions across China. Experimental results illustrate that
the proposed technique surpasses traditional methodologies and
current leading-edge change detection methods in performance.
Nevertheless, there remains an opportunity for further improve-
ment in the proposed algorithm, primarily due to the intricate
nature of the model. As a result, subsequent research must focus
on reducing model complexity while preserving the accuracy of
detection results. Future work will aim to decrease the number
of parameters without adversely affecting the model’s change
detection accuracy.
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