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Extraction Methods for Small-Scale Features on a
Large Scale: Investigating Object-Oriented Cart
Decision Tree for Gravel Information Extraction

Yuxin Chen ", Weilai Zhang *“, Jiajia Yang

Abstract—This study employs the object-oriented Cart (Classifi-
cation and Regression Trees) decision tree methodology to delineate
contiguous gravel areas within Zamu town. The primary objective
is to devise a technique capable of efficiently identifying small-scale
features on a macroscopic scale. Given the pervasive and uninter-
rupted distribution of background elements like forests, snow, and
water in the designated study zone, the removal of these features can
significantly bolster the precision of target feature extraction. The
elimination of these background elements predominantly hinges
on the application of index thresholds. Specifically, the Normalized
Difference Vegetation Index (NDVI), Normalized Difference Water
Index (NDWI), and Normalized Difference Snow Index (NDSI)
are employed to filter out these nontarget features. Following this,
Google HD historical imagery is integrated with Sentinel-2 data
to facilitate the object-oriented Cart decision tree-based feature
extraction. OQur findings underscore that both NDVI and NDWI
are pivotal in eradicating forest backgrounds. For differentiating
snow-covered terrains, the NDVI and NDSI indices prove par-
ticularly vital. The identification of water bodies necessitates the
synergistic use of all three indices. Notably, the Cart decision tree
approach, grounded in the “cull, filter, classify, and merge” philos-
ophy, showcases superior classification accuracy relative to other
supervised classification techniques. In the realm of decision tree
rule formulation, spectral features dominate, constituting 47.6 %
of the land class classification. Concurrently, texture features are
instrumental, accounting for 38.1%. These texture features exhibit
an enhanced discriminatory capacity, whereas the incorporation
of diverse indices offers limited incremental value. Pertinently,
within the suite of features conducive to gravel extraction, both the
Blue band and gray-level co-occurrence matrix entropy emerge as
particularly efficacious.
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I. INTRODUCTION

RAVEL is pivotal in a myriad of applications, including
G environmental, military, marine as well as mining, agri-
culture, and more [1], [2], [3], [4]. It stands as an indispensable
material in realms such as construction, flood control, hydraulic
engineering, and agriculture [5], [6], [7]. The judicious extrac-
tion and utilization of gravel not only underpin infrastructure but
also maintain an ecological equilibrium in aquatic environments.
They further catalyze agricultural and industrial growth and hold
significance in ecological restoration and landscape design. A
precise identification and delineation of gravel sites bolster its
pragmatic application [8], [9].

Historically, the majority of gravel extraction research has
beenriveted on proximal river regions [10], predominantly lever-
aging measured data. Such studies invariably spotlight gravel
resources in riverbeds and along riverbanks, given their propen-
sity for gravel accumulation [11], [12], [13]. The conventional
approach involves harnessing various measurement data coupled
with geological surveys to ascertain gravel’s distribution and
characteristics, thereby optimizing its extraction. However, this
modus operandi is not without its constraints. It often narrows
its lens to specific geographical terrains, sidelining a holistic
view of gravel distribution across expansive regions. Moreover,
an overreliance on measured data grapples with challenges like
sparse sampling points, prohibitive costs, and extended time-
frames.

In light of these challenges, the ascendancy of remote sens-
ing technology in gravel extraction has been a game-changer.
This technology, with its expansive coverage, accessibility, and
time efficiency, offers a panacea to traditional limitations [14],
[15]. Through high-resolution imagery from satellites or aerial
cameras, researchers can discern gravel distribution patterns and
even proffer estimates on gravel volume. Such insights not only
illuminate gravel distribution over vast terrains but also inform
strategic planning and resource stewardship [16], [17].

The advent of remote sensing technology has revolutionized
gravel extraction, facilitating swift and precise identification of
gravel sites and tracking their evolutionary trends. This is invalu-
able for long-term strategic planning and resource governance.
In recent times, the formidable data processing prowess of the
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Fig. 1. Location map of Zamu.

Google Earth Engine (GEE) has captivated the research commu-
nity [18], [19], [20]. This platform not only simplifies remote
sensing data processing but also heralds novel avenues for gravel
analytics. GEE’s unparalleled efficacy equips researchers with a
potent tool, ushering in innovative paradigms for probing gravel
distribution and its evolution [15], [18].

Gravel extraction and classification through remote sensing
imagery have matured significantly. These techniques typically
harness spectral and texture data from multispectral and hy-
perspectral images. Enhanced spatial resolution has lessened
the challenges posed by mixed image elements. Object-oriented
target extraction has taken center stage in research, segmenting
spectral, and texture data between adjacent image elements to
delineate different regions and classify targets.

For instance, Masoumi et al. [21] utilized spectral and tex-
ture features from ASTER data, applying random forest (RF)
and principal component analysis algorithms to classify rocks,
achieving a classification accuracy of 77.21%. Li et al. [22]
focused on rock depth features, leveraging a deep convolutional
neural network migration method on high-resolution data, which
improved large-scale image element analysis. Grebby et al. [23]
combined spectral and topographic data with an object-oriented
classifier, outperforming pixel-based classification algorithms.
Despite these advancements, a gap remains in methods that ex-
tract small-scale features over expansive areas, particularly those
integrating Google HD images and Sentinel data via the GEE
platform. In this study, we employ Google HD images, combined
with a priori knowledge, and use thresholding to eliminate back-
ground values, extracting gravels through an object-oriented
Cart (Classification and Regression Trees) approach.

Cart is a decision tree algorithm introduced by Leo Breiman
in 1984. It is renowned in machine learning and data mining for
classification and regression tasks. The algorithm crafts a binary
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tree where each internal node denotes a decision based on a fea-
ture, and each leaf node signifies a class label or predicted value.
Cart’s application in remote sensing spans feature classification,
land use/land cover change detection, and urban growth analysis.
For example, Bar et al. compared Cart, RFs, and support vector
machines (SVM) for identifying forest fires using Landsat 8
and Sentinel-2 Optical Satellite Imagery. Cart outperformed
SVM and showcased the benefits of merging unsupervised and
supervised algorithms on GEE [24]; Sang et al [25] employed
Landsat imagery and the Cart method to extract land use data for
Tianjin city, introducing a land use intensity analysis approach.
Our study leverages supervised classification techniques such as
KNN, RF, NB, and SVM on the GEE platform. We juxtapose
these methods against the object-oriented Cart decision tree
classification approach to analyze gravel distribution. This com-
parative analysis seeks to pinpoint the optimal method, offering
insights for related research domains.

II. STUDY AREA AND DATASETS
A. Study Area

Zamu town, nestled in Bomi County within Linzhi City of
the Tibet Autonomous Region, is geographically positioned at
29°14'47"N and 95°26'25"E. This can be seen in Fig. 1. This
locale is ensconced on the northern foothills of the eastern
Himalayas, boasting an average elevation of 2720 meters. Its
landscape is predominantly an alluvial plain, influenced by a
plateau temperate semi-humid monsoon climate. While the re-
gion enjoys generous rainfall, sunshine is comparatively sparse,
with an extended frost-free duration. Yearly average temperature
hovers around 8.5 °C, with an annual precipitation of approxi-
mately 876.9 mm [26], [27].
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A breakdown of the land distribution reveals that cultivated
land comprises a mere 0.3% of the total expanse. Vegetation,
predominantly forests interspersed with shrubs and grasslands,
blankets 71% of the area. Water bodies account for 1.1%, snow
and ice cover about 23%, and unused land makes up roughly
3.5%.

Zamu town is not just a geographical landmark; it’s the
administrative heart of Bomi County and a pivotal transportation
nexus. Despite its bustling population and economic vibrancy,
intricate topography poses challenges to expansive land resource
utilization. Animal husbandry and tourism anchor the town’s
economy, reflecting its unique blend of natural and cultural of-
ferings. Within the broader canvas of the Tibetan Plateau, Zamu
town’s distinct climatic and topographical attributes endow it
with a special natural status. Gravels here underpin agricultural
endeavors, water retention, and conservation of soil and water.
Consequently, delving into gravel extraction in Zamu can shed
light on regional evolution and shifts in land utilization [28].

B. Datasets

1) Sentinel-2 Data Set: Part of the Earth observation pro-
gram initiated by the European Space Agency, the Sentinel-2
data set offers high-resolution remote sensing images for global
land cover and land use monitoring. This data set includes a
series of satellites equipped with the multispectral imager sensor,
capturing images in 13 bands with spatial resolutions between 10
and 60 m. These bands span a broad spectral range from visible to
near-infrared wavelengths. For this study, we sourced Sentinel-2
data from the “Sentinel-2 Surface Reflectance” dataset available
on GEE here. Our focus was on the dataset spanning the entire
year of 2020, which incorporates seven bands (1, 2, 3, 4, 8, 11,
and 12). Images in this dataset have undergone processes such
as radiometric calibration, atmospheric correction, and surface
reflectance conversion to ensure accurate surface representation.

2) Google HD Images: We sourced Google HD images from
Google Earth Pro, specifically selecting historical images of
Zamu town dated January 13, 2020. SASPlanet software facil-
itated the download, aiding in the retrieval and management of
this high-resolution imagery.

3) Land cover dataset: Originating from the research paper
“30 m annual land cover and its dynamics in China from 1990 to
2019” by Prof. Jie Yang and Prof. Xin Huang, this dataset now
extends from 1985 to 2020 with a 30-m spatial resolution. For
our study, we chose the 2020 data for analysis [29].

4) Data preprocessing: Several critical steps define the data
preprocessing phase. Initially, we fused the monthly red, green,
and blue bands of Google HD images with bands 1, 4, 11, and
12 of the Sentinel-2 dataset. This fusion aims to generate a com-
posite image of higher resolution, merging spatial details from
Google HD images with spectral information from Sentinel-2
data. Such an integrated image offers a richer representation of
the study area. Subsequently, we calculated various indices using
the maximum synthesis approach. Indices like the Normalized
Difference Vegetation Index (NDVI), Normalized Difference
Water Index (NDWI), and Normalized Difference Snow Index
(NDSI) were derived from the fused imagery. These indices are

instrumental in evaluating vegetation coverage, water bodies,
and snow presence. Analyzing these indices provides insights
into the distribution and characteristics of these features in the
study area [30], [31], [32].

Through these data preprocessing steps, our objective is to
bolster the imagery’s quality and informational depth, facilitat-
ing a precise and comprehensive analysis of gravel extraction in
the region.

III. METHODOLOGY

A. Brief Description

Both supervised and unsupervised classifications stand as the
predominant methods for image classification in remote sensing
[33], [34], [35], [36], [37]. Yet, they demand high image quality
and often fall short when extracting features in small-scale and
intricate scenes [38], [39]. In contrast, the object-oriented clas-
sification method categorizes each object based on its inherent
features. By allowing the integration of multiple attributes, it
bolsters the reliability and stability of the classification. This
method excels in preserving spatial information, making it apt
for extracting diminutive features from high-resolution images
[40]. Consequently, object-oriented classification techniques
have garnered significant interest in recent times [41], [42].
Diverging from traditional methods that pigeonhole individual
pixels, the object-oriented approach delves into the spatial in-
terplay between pixels. This nuanced perspective facilitates a
more precise and granular analysis. By amalgamating pixels into
coherent objects, such as edifices, thoroughfares, or vegetation
clusters, it offers a holistic grasp of the scene’s makeup and archi-
tecture. This method weighs the contextual data, morphological
traits, and spectral properties of objects, leading to enhanced
classification precision and a superior depiction of intricate
features [43], [44].

In our study, we champion a novel technique to extract gravel
from contiguous zones using the object-oriented Cart method.
This strategy zeroes in on the macroscopic extraction of micro-
scopic features, adhering to the “cull, filter, classify, and merge”
paradigm, as illustrated inFig. 2.

B. Rejecting Background Features

High-resolution image data is imperative for gravel extraction.
Yet, the computational demands and image quality prerequi-
sites of object-oriented feature extraction methods often confine
their use to smaller-scale images [19]. Given this constraint, it
becomes essential to eliminate prominent background features
in the study area before embarking on object-oriented target
extraction. In Zamu town, significant tracts are blanketed by
snow, forests, and water. These elements, deemed as background
features, need removal to streamline object-oriented processing.

To achieve this, our study employs the index threshold
method, pinpointing specific indices for scrutiny. Notably, we
focus on the NDVI, NDWI, and NDSI as pertinent indices. We
then undertake a month-by-month synthesis of these indices to
ascertain their annual peak values. This strategy facilitates the
recognition and evaluation of key features such as vegetation,
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Fig. 2. Flow chart of the study.

water bodies, and snow cover in Zamu town throughout the year.
It is worth noting that due to the substantial cloud coverage
in Sentinel images over Zamu town, there are no images with
an annual cloud volume of 20% or less. Hence, maximizing
synthesis becomes crucial to retain as much feature information
as possible.

To analyze the threshold range of each index, we collected
sample points for the three land classes using Google HD
imagery.

C Object-Oriented Cart Decision Tree Classification Process

1) Image segmentation principle: Multiscale segmentation
is used to segment the image at different scales, allowing for a
more comprehensive and accurate feature information extrac-
tion. This segmentation method can overcome the segmentation
errors caused by different sizes and shapes of features in single-
scale segmentation. It involves merging adjacent pixels or small
segmented objects to ensure minimal average heterogeneity
between entities while maximizing the homogeneity within each
object [44], [45]. Heterogeneity is calculated as follows:

f = Wcolorhcolor + Wshapehshape (1)
hshape = Wcompacthcompacl + Wsmoolhhsmooth (2)

Where fis the heterogeneity; W0y is the spectral information
weight; Wepape is the shape information weight; the sum of
these two weights is 1; hcolor 1S the value of spectral hetero-
geneity; hgpape 1S the value of shape heterogeneity; Weompact
and Wp,00tn, are the weights of tightness and smoothness,
respectively, and their sum is 1; Acompact and Asmootn are the
heterogeneity values of tightness and smoothness, respectively
[46].

2) Spectral difference segmentation: To classify different
land cover features in remote sensing imagery, this method starts
by extracting the spectral characteristics of various objects. First,
it obtains reflectance values from other bands using multispectral
images Then, it calculates the reflectance differences for each

pixel across the different bands, resulting in a spectral feature
space. Clustering is applied based on the distances between
image elements in the spectral feature space. This process groups
similar elements. Ultimately, the remote sensing images are
segmented into distinct feature classes. This study employs the
method as an optimization tool for segmentation. Based on a
multiscale segmentation algorithm that analyzes the differences
in spectral features of neighboring segmented objects to decide
whether to merge the neighboring objects [47]. The spectral
difference (g) is calculated as follows:

g = Wi - |b11 — b12| + Wpa - |b21 — b22| + Wpys - |b31 — b32|

(3)

Where b1, blo, and b3 denote the three bands of the image,

respectively. Wy1, Wy, and W5 are the normalized weights of

the three bands, respectively. The normalization is calculated as
follows:

Wy = Wi/ (Wit + Wi + W) 4)
Who = Wha/ (W1 + Wia + Whis) (5)
Whys = Wi/ (W1 + Wi + Wag). (6)

The spectral difference segmentation method leverages the
spectral information in remote sensing images more efficiently,
making it particularly effective in classifying features with dis-
tinct spectral differences [48]. However, when there are only
minor spectral differences between features in the image, it can
potentially affect classification accuracy [49].

3) Cart decision trees: Cart decision tree classification is
a nonparametric statistical learning method employing a tree
structure for classification and regression tasks. The funda-
mental principle of Cart decision tree classification involves
iteratively selecting the most optimal features, partitioning the
data, constructing a binary decision tree, and ultimately deriving
a decision tree that enables classification determination. [50].

In Cart decision trees, the Gini index or information gain is
typically used as the criterion for classifying attributes. The Gini
index measures the impurity of the sample set and is commonly
used in classification problems. If all the samples belong to the
same category for the sample set D, then the Gini index is 0. If
the samples are uniformly distributed in each category, then the
Gini index reaches the maximum value 1. The formula is

G = Zp(z‘) (1= p()] @)

where G is the Gini coefficient, p(i) is the probability of a sample
being classified into category i, and Cis the number of categories.

Information gain is a metric that quantifies a sample set’s
impurity reduction and is commonly employed in classification
and regression problems. In the context of a sample set D, its
information entropy can be defined as

k
-y \Ck|10g
D

k=1

G|

H(D) = 2 TD[

(®)

H(D) is the information entropy, Cj, denotes the number of
categories belonging to the kth category, and the sum of the
numbers of all categories of C.
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In the Cart algorithm, training sample selection typically
employs two prevalent methods.

1) Random selection: This method involves drawing a spe-
cific number of samples randomly from the dataset to
construct the classification tree. Such randomness ensures
the training set’s representativeness and reduces potential
biases. Although this method conserves computational
effort, it might introduce some volatility into the classi-
fication tree.

2) Selection by sample weights: Samples are chosen based on
their weights to construct the classification tree, enhancing
its stability. While this approach demands the computation
of weights for each sample, increasing the computational
load, it proves advantageous when dealing with imbal-
anced datasets or when certain samples have heightened
importance.

In our study, after sidelining numerous background features,
the emphasis shifted to classifying specific areas. Samples were
selected based on weights attributed to diverse land types, de-
rived from segmentation outcomes. Classification focused on
eight distinct classes: forest, road, unused, farm, building, gravel,
water, and snow. Google HD images, in tandem with the eCogni-
tion Developer 9.0 platform, guided the sample selection under
this classification schema, ensuring a balanced representation of
each land type and fostering precise classification outcomes.

Feature metric selection is pivotal in decision tree classifica-
tion, with its quality directly influencing classification accuracy.
Spectrum, shape, and texture are among the routinely employed
feature metrics [46], [S1]. Given the novelty of object-oriented
extraction methods in gravel research, our study harnessed the
Greedy Algorithm for feature metric selection. This optimiza-
tion strategy, rooted in a greedy paradigm, continually opts for
the best current choice, aspiring for an optimal global solution
[52]. In the realm of feature selection, the Greedy Algorithm
persistently selects the prime feature combination, expediting
the search and optimization of the feature space.

Drawing from this and integrating with pertinent Cart decision
tree classification research, we selected 24 features spanning
spectral, shape, texture, and custom domains. Spectral features
encompass seven mean band values synthesized from Google
HD and Sentinel images. Shape features spotlight metrics such
as length/width, compactness, shape index, and rectangular fit.
Texture features pivot around the gray-level co-occurrence ma-
trix (GLCM), a widely recognized texture descriptor capturing
the spatial interplay between varying gray levels in an image
[42]. GLCM indices, including mean, entropy, homogeneity,
dissimilarity std dev, contrast, and correlation, are harnessed
for texture features. Custom features, meanwhile, utilize indices
such as NDVI, NDWI, NDSI, normalized difference built-up
index), MNDWI (Modified NDWI), and BSI (bare soil index).

IV. RESULT

A. Background Feature Rejection

The annual NDVI, NDSI, and NDWI were obtained using
the maximum synthesis method. For each feature type (forest,
snow, and water), 417, 354, and 332 sample points were selected

Fig.3. NDVI, NDWI, NDSI index distribution of forest, snow, and water land
types.
TABLE 1
NDVI, NDWI, AND NDSI INDEX THRESHOLDS FOR FOREST, WATER, AND
SNOw TYPES
NDVI NDWI NDSI
Forest 0.39—-Max -0.4 to Min -0.38 to Min
Water -0.2 t0 0.39 0.2—max 0.15-0.6
Snow -0.1-0.1 0-0.2 0.6—max

based on Google HD historical images from January 13, 2020.
According to Fig. 3(a), (b), and (c), the clustering intervals of
NDVI, NDWI, and NDSI for forest are 0.39-Max, —0.4-Min,
and -0.38-Min, respectively; similarly, according to Fig. 3(d),
(e), and (f) and Fig. 3(g), (h), and (i), the clustering intervals
of NDVI, NDWI and NDSI for water and snow are obtained
respectively, The values of NDVI, NDWI, and NDSI for snow
are —0.2t00.39,0.2—max, 0.15-0.6;-0.1t0 0.1, 0-0.2, 0.6-max,
respectively (refer to Table I for details). The extraction indices
for each site are determined according to the correlation between
indices and specific situations. Extraction forest was dominated
by indices NDVI and NDWI, water was dominated by NDVI
and NDWI, and snow was dominated by NDSI and NDWI.

Fig. 4(a), (b), and (c) illustrates the extraction effect of a single
index (e.g., NDVI) specifically for the forest class. However,
when extracting the three land class categories (forest, water,
and snow), misclassifications of other land classes may occur. To
address this issue, additional indices are incorporated to improve
the accuracy of the classification. The resulting figures, Fig. 4(d),
(e), and (f), demonstrate the extraction effect after combining
multiple indices. The background feature map can be obtained
by combining the corrected three features in Fig. 5. A total of 12
sample areas are selected for object-oriented Cart decision tree
extraction of features according to Fig. 5.
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Fig. 5. Synthesis of background features and selection of the sample area to
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B. Determination of the Optimal Segmentation Scale

In object-oriented feature extraction, selecting the optimal
segmentation scale is a crucial parameter that determines the
size and shape of the segmented objects [51], [53], [54]. We de-
termined the optimal segmentation scale through trial and error
using the ESP2 (Estimation_Scale_Parameter) plugin based on
eCognition Developer 9.0, resulting in the findings presented
in Table II. In the multiresolution segmentation, the weight
proportions of each band were set as 0.5, 1, 1, 1, 0.5, 0.5, 0.5.
This adjustment was made because the r, g, b bands of Google

sow o 69

Extraction and modification of background features such as forest, snow, and water.

TABLE II
EACH PARAMETER OF MULTIRESOLUTION SEGMENTATION AND SPECTRAL
DIFFERENCE SEGMENTATION

multiresolution segmentation spectral difference

segmentation

D pai:xilgter Shape Compactness ~ Maximum spectral different

1 75 0.3 0.5 5

2 75 0.3 0.5 5

3 80 0.1 0.5 2

4 74 0.2 0.5 2

5 32 0.1 0.5 5

6 63 0.2 0.5 5

7 84 0.1 0.5 1

8 45 0.1 0.5 1

9 40 0.2 0.5 1

10 55 0.1 0.5 5

11 75 0.3 0.5

12 58 0.2 0.5 2

high-resolution images possess higher clarity and superior qual-
ity, thus their weights were appropriately increased. In the spec-
tral difference segmentation, the weight proportions for each
band were 1, 1, 1, 1, 1, 1, 1. This uniform distribution was
employed because spectral difference segmentation determines
whether merging should occur based on the spectral feature
differences of adjacent units [55], [56], [57], it is crucial to keep
the weights of each band consistent.
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Fig. 6.
correspond to (b), and sample regions 9, 10, 11, and 12 correspond to (c).

C. Image Classification and Decision Tree Construction

eCognition provides a highly automated decision tree clas-
sifier that utilizes the 24 selected feature indices to generate
classification rules through Cart decision tree classification.
However, different sample selection approaches are required
due to variations in image quality, landscape features, feature
characteristics, and segmentation scales among the selected
sample areas. Therefore, the sample areas are divided into three
categories, and different classification rules are generated based
on the differences between the images. These classification rules
are depicted in Fig. 6, where sample areas 1, 2, 3, 4, and 5
correspond to Fig. 6(a), sample areas 6, 7, and 8 correspond
to Fig. 6(b), and sample areas 9, 10, 11, and 12 correspond to
Fig. 6(c).

Analyzing Fig. 6 reveals that spectral features play a dominant
role (47.6%) in the classification of land classes, followed by tex-
ture features (38.1%). The only custom features that contribute
to the construction of classification rules are BSI and MNDWI.
The introduction of additional features is limited because they
have weak connections to this study, and the spectral band of
Sentinel 2 exhibits calculation errors that affect its response to
the feature conditions.

Among the sample areas, 1, 2, 3, 4, and 5 exhibit confusion
between building and unused land classes, while forest and
gravel classes are better distinguished. The presence of diverse
types of houses in the area and the varied characteristics of
adjacent unused land (such as bare land around rivers, open land
around buildings, and bare land on hillsides) make it challenging
to differentiate between these two land classes. In contrast, the
rules for classifying forest are simpler due to its uniform type
and concentrated distribution.

Sample areas 6, 7, and 8 exhibit more distinct clustering
characteristics and simpler feature types. However, the presence
of large shadows in the area negatively impacts the classification
of land classes. Visual interpretation can be employed later
to improve the accuracy of the classification. Sample areas 9,
10, 11, and 12 primarily consist of woodland with large-scale
distribution. The extraction rules for these areas are relatively
simpler and less challenging compared to the decision trees in
sample areas 1, 2, 3, 4, and 5.

Based on the trained classification rules depicted in Fig. 6,
a map illustrating the classification of each sample area can be
obtained [see Fig. 7(a)].
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Decision tree construction for the sample area. Sample regions 1, 2, 3, 4, and 5 correspond to the classification rules in (a). Sample regions 6, 7, and 8

D. Accuracy Evaluation and Result Analysis

To gauge the accuracy of the object-oriented Cart decision
tree classification outcomes, a supervised classification was
executed using Sentinel 2 images on the GEE platform, with
a primary focus on classifiers by using KNN, RF, SVM, and
NB. This supervised classification on GEE incorporated 7 bands
of Sentinel 2 data and 6 custom feature indices from the Cart
decision tree. The outcomes of this classification are depicted in
Fig. 7.

Upon examining Fig. 7, one discerns that the classification
outcomes, postfiltering and merging, manifest as more struc-
tured and aggregated. Conversely, the supervised classifica-
tion outcomes display a higher incidence of misclassifications.
Notably, in the extraction of the target feature (gravel), the
object-oriented Cart decision tree method demonstrates superior
accuracy compared to the supervised classification on GEE, as
detailed in Table III.

Table III presents the confusion matrices for both classi-
fication outcomes. Evaluating the accuracy data in Table III
reveals that both the user accuracy and producer accuracy for
the land class divisions, as determined by the Cart decision
tree algorithm, predominantly exceed 0.8. An exception is the
“Unused” category, which registers an accuracy below 0.7. In
juxtaposition, other supervised classification methods exhibit
diminished overall accuracy and Kappa coefficients, with only
the RF classifier surpassing an overall accuracy of 0.6. This
underscores the need for enhancing the accuracy of supervised
classification outcomes based on GEE.

The Cart decision tree’s overall accuracy and Kappa coef-
ficient surpass 0.8. In the realm of supervised classification,
merely the RF classifier’s overall accuracy hovers between 0.6
and 0.7. When focusing on the extraction of the target feature
(continuous gravel areas), the Cart decision tree algorithm out-
performs the RF algorithm in terms of accuracy and precision.
This underscores the efficacy and precision of the Cart decision
tree classification method, anchored in the “reject, filter, classify,
and merge” paradigm, for gravel extraction.

V. DISCUSSION

Removing the feature background reduces noise and interfer-
ence, thereby improving the accuracy and reliability of target
detection and identification. The use of Google HD historical
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Fig. 7.

Comparison of decision tree classification results with those obtained from other supervised classifiers. (a) represents the object-oriented classification

results based on the Cart decision tree. (b), (f), (g), and (h) represent the classification results obtained from different supervised classifiers, namely Random Forest
(RF), k-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Naive Bayes (NB) respectively. (¢) shows high-resolution Google imagery of a typical
gravel distribution area. (d) and (e) correspond to the classification results of Cart and RF, respectively (in the same area as (c)).

images for index sample selection ensures the accuracy of each
feature within the specified time range and serves as a basis
for determining index thresholds. However, removing feature
backgrounds requires considering various factors such as image
resolution, feature type, lighting conditions, weather, etc. These
factors collectively impact the removal effectiveness and need
to be carefully considered and optimized [56], [58], [59]. In this
study, it was observed that the selection of feature samples in
shaded areas and the classification of features had a negative
effect on the accuracy of feature classification. In addition, the
low quality and high cloudiness of the Sentinel data resulted in

the calculation of background feature thresholds based on the
maximum index value, which conflicted with the time range
of the Google HD images (January 13, 2020) and posed a
challenge to the accuracy of subsequent results (due to the
cloud cover exceeding 30% in the Sentinel-2 data throughout
the year 2020 in GEE and the poor data quality, selecting only
the Sentinel images that align with the Google HD historical
images from January 13, 2020, would significantly compromise
the data availability. Therefore, to err on the side of caution,
we chose to merge the Sentinel images synthesized throughout
the year with the Google HD historical images.). Moreover, the
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TABLE III
CLASSIFICATION ACCURACY EVALUATION OF DIFFERENT CLASSIFIERS

Category forest road unused farm building grave water SNOW
Producer‘s Accuracy 80.00% 90.00% 68.00% 93.94% 88.89% 100.00% 80.95% 89.58%
User*s Accuracy 90.91% 75.00% 60.71% 88.57% 84.21% 77.78% 100.00% 89.58%
classification and regression tree
Overall accuracy 84.91%
kappa 82.01%
Producer‘s Accuracy 86.84% 35.71% 48.39% 60.42% 61.54% 44.44% 81.25% 88.89%
User‘s Accuracy 75.00% 45.45% 57.69% 93.55% 42.11% 44.44% 76.47% 66.67%
Random Forest Algorithm
Overall accuracy 67.80%
kappa 61.10%
Producer‘s Accuracy 85.71% 33.33% 26.47% 80.56% 52.63% 66.67% 80.00% 81.58%
User‘s Accuracy 72.00% 45.45% 45.00% 93.55% 52.63% 44.44% 70.59% 64.58%
Naive Bayes
Overall accuracy 66.34%
kappa 59.33%
Producer‘s Accuracy 86.11% 17.24% 62.50%  43.48% 42.86% 60.00% 100.00% 93.55%
Support Vector Machines
User*s Accuracy 2. 000, 4C. 40, £0. 00, 0C. 771 15,700 33. 33l 70. COW. 0. 42,
Overall accuracy 60.00%
kappa 51.67%
Producer‘s Accuracy 76.74% 41.67% 31.25% 41.82% 58.33% 10.00% 81.25% 93.33%
User‘s Accuracy 66.00% 45.45% 25.00% 74.19% 38.89% 22.22% 76.47% 58.33%
K-Nearest Neighbors algorithm
Overall accuracy 56.86%
kappa 47.78%

classification of background features in this study was relatively
coarse, enhancing calculation efficiency but failing to consider
subcategory subdivisions. In the extraction of background fea-
tures, relying solely on a single index may yield unsatisfactory
results, necessitating the combination of multiple indices to
improve the accuracy and reliability of feature extraction.

The ESP can determine the scale of multiresolution seg-
mentation, but parameters such as shape and compactness can
only be determined through trial. Similarly, the parameters for
spectral difference segmentation are determined empirically.
However, the selected segmentation scale for spectral difference
segmentation tends to be small due to the influence of feature
type and sample area. This is because some sample areas have
a limited number of feature types, and different features are
closely clustered together. Increasing the segmentation scale in
such cases would lead to the mixing of other features within the
segmentation units [46], [60].

The greedy algorithm is employed for decision tree con-
struction. Although adding more extracted features does not
significantly impact the construction of the optimal decision
tree, reducing unnecessary feature input can enhance extraction
efficiency and automation. The exponential features introduced
in this study play a minor role in formulating classification
rules. The extraction of target features (gravel) primarily relies
on visible band and texture features. Therefore, improving the
inclusion of features in a reasonable manner becomes a way
to enhance classification efficiency. In addition, the limitations
imposed by data accuracy result in the ineffective integration
of index features into the formulation of classification rules, as

they are unable to accurately depict true features. On the other
hand, visible band and texture features heavily rely on Google
HD images, rendering them more dependable and capable of
accurately representing land features. This, in turn, enhances
their influence in the creation of decision tree classification rules.

Similarly, the Cart decision tree classification method based
on the concept of “cull, filter, classify, and merge” also faces
considerable constraints in its applicability. On one hand, the
removal of background features requires them to be a single con-
tinuous cover of a specific land type. Hence, the applicable area is
limited to regions with large coverage of single-type background
features and relatively simple land types for target extraction
within small scopes. Under these conditions, the method is less
suitable for areas with complex land type distributions.

The culminating classification outcomes underscore the ef-
ficacy of the Cart decision tree classification method, rooted
in the “cull, filter, classify, and merge” philosophy, over the
conventional supervised classification method epitomized by the
RF Algorithm. This edge is largely due to the prevalence of snow
and woodland in the study area. By sidelining pure pixels in these
terrains, the sample selection process remains largely unen-
cumbered by external interferences, simplifying classification.
Moreover, this feature exclusion paves the way for geographic
classification, facilitating the generation of a comprehensive
geographic classification map for the entire study area during
subsequent merging. Focusing on discrete small-area scopes cur-
tails land classification’s computational complexity, while the
merits of object-oriented land classification for high-resolution,
small-scale geographic areas come to the fore [59], [60]. When
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extending the classification scope to encompass the entirety of
Bomi County using this methodology, it became evident that
background feature removal was effective. However, the data
source for supervised classification is anchored in the Sentinel-2
dataset. Given the region’s pronounced cloud cover and dimin-
ished image resolution, sample selection often encompasses
mixed pixels, especially when pinpointing samples for built-up
areas. This invariably results in pronounced misclassification
and omission errors.

VI. CONCLUSION

In this article, an object-oriented approach was used to con-
struct the Cart decision tree model for gravel extraction in Zamu
town. The following conclusions were drawn.

1y

2)

3)

Culling background features have significant advantages
in image feature classification. The exponential thresh-
olding method was used to identify features with a large
area distribution, which effectively reduced the computa-
tional effort of the object-oriented approach. Thresholds
for NDVI, NDWI, and NDSI were determined for forest,
snow, and water features in Zamu town. The thresholds
for NDVI, NDWI, and NDSI for the forest class are
0.39-Max, -0.4 to Min, and -0.38 to Min respectively. For
the snow class, the thresholds for NDVI, NDWI, and NDSI
are -0.1 to 0.1, 0-0.2, and 0.6-Max, respectively. For the
water class, the thresholds for NDVI, NDWI, and NDSI
are -0.2 t0 0.39, 0.2-Max, and 0.15-0.6, respectively. The
extraction through the index method serves both as a filter
for background features and as a means of classification.
It effectively defines the range for pure pixels. However,
its application is less effective in areas with complex and
diverse land cover distributions and abundant attributes.
Compared to the traditional RF algorithm, the Cart extrac-
tion method used in this study showed higher accuracy af-
ter background feature screening. The producer accuracy
of the target feature was 2.27 times higher than that of the
RF algorithm, and the user accuracy was 1.75 times higher.
The overall accuracy was 1.25 times higher, and the Kappa
value was 1.34 times higher. These results demonstrate
that the Cart extraction method is accurate and reliable for
gravel extraction.

In small-scale gravel extraction, spectral features played a
dominant role in terrain classification (47.6%), followed
by textural features (38.1%). Texture features and spectral
features exhibited better discriminatory abilities, while the
introduction of various indices did not contribute signifi-
cantly. Among them, the Blue band and features screened
by GLCM entropy showed good distinguishing effects for
gravel extraction. These findings provide a basis for future
studies on extracting small-scale features in large study
areas.
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