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A Novel Method for Identifying Crops in Parcels
Constrained by Environmental Factors Through
the Integration of a Gaofen-2 High-Resolution

Remote Sensing Image and
Sentinel-2 Time Series

Weijia Chen and Guilin Liu

Abstract—Accurately mapping crop cultivation types is essential
for the sustainable development of precision agriculture. Environ-
mental restrictions on crop growth, such as soil salinization in arid
zones, generally lead to spatial crop growth heterogeneity within
cropland fields, which in turn generates differences in the spectral
responses reflected in optical remote sensing images of the same
croplands and leads to pixel-scale crop-mapping misclassifications.
Thus, through this article, we proposed a method to solve this prob-
lem at the geoparcel scale by integrating geometric features from
a Gaofen-2 high-resolution remote sensing image and the spectral-
temporal features derived from Sentinel-2 time series. The results
showed that cropland parcels could be accurately extracted from
Gaofen-2 images by employing the U-Net semantic segmentation
model with an overall accuracy (OA) reaching 97% and a kappa
coefficient of 0.95. Then, geoparcel-scale crop types were mapped
based on prior crop phenology knowledge and the corresponding
Sentinel-2 time series using the time-weighted dynamic time warp-
ing (TWDTW) classification algorithm. The parcel-based TWDTW
algorithm had an OA of 99.64%, a kappa coefficient of 0.99, and
optimal spatial homogeneity in the results, thus outperforming the
pixel-based TWDTW method. These results provide a potential
solution for mapping crops under spatially heterogeneous cropland
conditions affected by various environmental constraints.

Index Terms—Crop mapping, parcel-based, segment,
spectral-temporal features, time-weighted dynamic time warping
(TWDTW).

I. INTRODUCTION

W ITH the continuous growth of the global population and
the limited availability of resources, sustainable agricul-

tural development has become a significant challenge for human
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beings in today’s society. Obtaining accurate crop cultivation
maps serves as the foundation for agricultural management and
decision-making and plays a crucial role in optimizing crop pro-
duction and achieving precision agriculture management. Tradi-
tionally, mapping crop cultivation patterns has typically relied on
manual surveys. However, this method is time-consuming and
laborious and has certain limitations in large-scale mapping.
Over time, remote sensing has shown impressive potential in
mapping crop types and monitoring crop dynamics, thus grad-
ually becoming an effective means for agricultural mapping
[1], [2], [3], [4]. With the increase in available remote sensing
images, such as Landsat and Sentinel images [3], some studies
have reported that the crop-classification accuracies obtained
based on multitemporal remote sensing data are higher than
those based on single-phase remote sensing images [5], [6], [7].
This is because multitemporal satellite remote sensing images
can capture the entire crop growth process and then distinguish
among different crops by using their species-specific phenologi-
cal variations [8]. Therefore, time-series remote sensing images
and the features derived from these images can be widely used in
research involving global and regional crop-type mapping [9],
[10].

In previous studies, researchers have attempted to extract
phenological information from time-series remote sensing data
(TSRD) for crop-classification applications using machine
learning algorithms, such as random forests [5] and support
vector machines [11]. Although the above-mentioned methods
have performed well in mapping crops or land cover, their
performances are limited by several challenges, such as follows.

1) Lack of available training sample data [12].
2) Lack of efficient satellite observations for TSRD caused

by the existence of clouds [13].
3) These classifiers failed to fully utilize the crop pheno-

logical information, i.e., disrupting the temporal order of
TRSD has no effect on the performance of crop classifi-
cation [6], [7].

An effective approach to address the above challenges is
the time-weighted dynamic time warping (TWDTW) algorithm
proposed by Maus et al. [14]. Compared with the traditional
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dynamic time warping algorithm, TWDTW adds a time penalty
strategy to improve the classification accuracy [5]. The TWDTW
algorithm [14] has been proven to be effective in identifying
the phenological patterns of crops with different agronomic
management practices from TSRD [15], including vegetables
[16], [17] and grains [18], as well as in assessing cropping
patterns [19].

The aforementioned studies focused mainly on classifying
crops at the pixel-based level using TSRD. In arid zones, the
spatial heterogeneity of crop growth within croplands caused
by soil salinization leads to “salt and pepper noise” in remote
sensing-generated crop-mapping results using pixel-based clas-
sification methods. In response, some scholars have employed
the object-based image analysis (OBIA) method [20] to generate
a series of objects formed by a group of pixels with similar
spectral and geometric features for mapping crops [21]. Previous
studies have revealed that OBIA has a better crop-mapping per-
formance than the pixel-based classification strategy [5], [12].
Within the OBIA framework, the optimal segmentation scheme
for obtaining objects determines the accuracy of the subsequent
crop classification results. The development of deep learning
technology has provided a solution for the precise extraction of
cropland edges [22]. Deep learning models (e.g., convolutional
neural networks) can automatically learn representative discrim-
inative features based on existing training datasets [23], which
improves the efficiency and accuracy of satellite-image segmen-
tation and classification [13]. Recently, numerous satellite image
segmentation models based on DL have been proposed [24].
Among them, U-Net has been widely implemented for extracting
parcels from satellite images [22], [25], [26]. Zhang et al. [27]
applied the U-Net model to extract cropland boundaries from
Sentinel-2 images in the Heilongjiang region of China, and the
results showed an overall accuracy (OA) improvement of 3.78%
over traditional OBIA. These studies show that the U-Net model
has high practicability in cropland edge extraction. Meanwhile,
farmers usually manage their crops based on agricultural parcels.
Therefore, it is necessary to conduct parcel-scale crop mapping
to provide important information with reference for farmers
to develop targeted agricultural management practices and to
achieve precision agricultural management for sustainable agri-
cultural development.

In regions with heterogeneous crop growth, it is difficult
to obtain high accuracy for crop mapping based on remote
sensing data with a single feature band [28]. Some crops have
similar phenological characteristics, resulting in small spec-
tral differences between different crop types. Thus, it is dif-
ficult to distinguish even with high spatial resolution satellite
images [29]. Although multispectral resolution satellite data
(e.g., Sentinel-2, Landsat 8) can distinguish the spectral fea-
tures of different crops, the spatial resolution of satellite data
is relatively rough for identifying cropland edges, resulting
in noncrop types (e.g., roads) that can easily be misidentified
as crops [30]. Therefore, integrating the temporal-spatial and
spectral features of multisource satellite images is considered an
effective way to overcome the above-mentioned problems [29].
Wu et al. [29] combined high spatial and high spectral resolution
remote sensing data to map crop cultivation patterns in complex

heterogeneous regions and achieved much higher accuracy than
that of classification using only high spatial resolution data or
using only high spectral resolution data. Wu et al. [31] also
demonstrated that the accuracy of crop mapping can be improved
by integrating spatial and temporal spectral characteristics from
multiple satellite data sources. Overall, the combination of high-
resolution remote sensing data and medium-resolution TSRD
meets the need to obtain accurate and timely information to map
precise crop cultivation patterns and further support precision
agricultural management.

To solve the problem of crop-type misidentifications in clas-
sification results due to the heterogeneous crop-growth phe-
nomenon within croplands in arid regions, we proposed a novel
method for identifying crops through the integration of spa-
tial features and the spectral-temporal features of multisource
satellite images. We extracted agricultural geoparcels in the
study area based on a high-resolution image using the U-Net
model, assigned temporal and spectral features derived from
medium-resolution images to each geoparcel and mapped the
crop types at the parcel-based level using the TWDTW algo-
rithm. Specifically, we aimed to 1) propose a method to obtain
crop types by integrating the spatial features of a high-resolution
remote sensing image (GaoFen-2) and the spectral-temporal
features of medium-resolution satellite images (Sentinel-2) and
2) evaluate and compare the effect of the results obtained using
pixel-based and parcel-based classification methods.

II. STUDY AREA AND DATA SOURCES

A. Study Area

The study area, which covers 7196 ha, is located at the
southern foot of the Tianshan Mountains and the northern edge
of the Taklamakan Desert (see Fig. 1) [32]; this region has a
typical temperate continental climate with abundant sunshine
and little precipitation, the average air temperature ranges from
3.8 °C to 19.3 °C, and the average precipitation ranges from
11.9 to 91.9 mm [32]. The Tarim River is the main source of
irrigation water for agricultural activities in the study area. In
Alar, cotton and fruit have been the main cash crops in recent
decades [33]. The study area has prominent land degradation and
soil salinization problems [34], which have led to crop growth
heterogeneity within the local croplands.

B. Data Sources

1) Satellite Remote Sensing Images: We obtained 95
Sentinel-2 Level 2A surface reflectance images with almost
no cloud cover taken from March–November 2021 from the
European Space Agency using the Google Earth Engine (GEE)
platform (see Fig. 2). Then, we mosaicked these Sentinel-2
remote sensing images by the same acquisition date and clipped
them to the scope of the study area using GEE since the study
area is located at the intersection of four Sentinel-2 images
(the splicing domain numbers are T44TNL, T44TNK, T44TML,
and T44TMK). Meanwhile, a GaoFen-2 remote sensing image
(cloud cover < 5%) taken of the study area in August 2021
was obtained from the China Centre for Resources Satellite
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Fig. 1. Location of the study area in China (note: the Gaofen-2 red–green–blue composite image (near-infrared (NIR)/red/green) captured on August 12, 2021;
the yellow boxes represent the heterogeneity of cotton growth in the croplands; and the picture of cotton seedlings was acquired by photography in May 2022).

Fig. 2. Available Sentinel-2 time series covering the study area in 2021.

Data and Application (https://data.cresda.cn). The Gaofen-2
image contains information in four multispectral bands and one
panchromatic band (see Table I). The high spatial resolution
of GF-2 images can clearly capture the spatial characteristics
of ground objects and has been successfully applied to the
segmentation of agricultural fields [35], [36], [37]. Therefore, we
finally selected the GF-2 image for parcel segmentation. First,

we preprocessed the GF-2 image, including orthorectification
and atmospheric correction of the image by using the rational
polynomial coefficients model [38] and fast line-of-sight atmo-
spheric analysis of spectral hypercubes atmospheric correction
model, respectively. Then, to simultaneously preserve the high
spatial resolution and rich spectral information of the image,
we fused the multispectral and panchromatic bands to obtain a

https://data.cresda.cn
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TABLE I
DESCRIPTIONS OF THE GAOFEN-2 REMOTE SENSING IMAGES USED IN THIS STUDY

Fig. 3. Workflow of the pixel-based and parcel-based TWDTW classification methods.

multispectral image with a spatial resolution of one meter using
the Gram–Schmidt pansharpening method [39].

2) Training and Validation Samples: We collected 107
ground truth samples in the Alar irrigation area using a handheld
GPS instrument during the field campaign in May 2021, of which
95 samples were located in the present study area. Furthermore,
we expanded ground truth samples based on geometric features
of land cover types from high-resolution remote sensing images
of Google Earth and temporal features from Sentinel-2 time
series. Finally, we obtained 93 cotton samples, 144 orchard
samples (apple, pear, and jujube trees), and 164 noncrop samples
(bare lands, roads, water bodies, and construction lands) (see
Fig. 1). We refer to previous studies that TWDTW requires fewer
training samples [5], [7]. Therefore, among these samples, 30%
of each type were used for the classification training, and 70%
of each type were used for the classification validation.

III. METHODOLOGY

The workflow developed herein for the identification of crop
types included four major steps (see Fig. 3). First, we obtained
and preprocessed Sentinel-2 and Gaofen-2 remote sensing im-
ages. Second, we segmented the cropland parcels using the
U-Net model based on the Gaofen-2 images. Moreover, we
constructed enhanced vegetation index (EVI) time-series pat-
terns from the Sentinel-2 images and assigned values to each
parcel. Third, we implemented pixel-based and parcel-based

crop-type classification steps based on the training samples using
the TWDTW approach. Finally, the accuracies of the results
obtained using the pixel-based and parcel-based classification
methods were evaluated.

A. Prior Knowledge of Crop Phenology

In the study area, cotton is generally sown in early April,
seedlings emerge at the end of April, buds appear in mid-June,
and the EVI values continue to increase throughout this period
(see Fig. 4). The cotton-flowering event occurs in early July, and
the EVI peaks at this time correspondingly. In mid-September,
cotton enters the boll-splitting stage followed by the harvest
stage in early mid-October, and the EVI decreases correspond-
ingly. In contrast to cotton, fruit trees (apple, pear, and jujube
trees) mainly undergo vegetative growth from early April to early
May; during this period, the EVI value continues to increase at
values above those of cotton (see Fig. 4). Reproductive growth
occurs from mid-May to late August, with the EVI values peak-
ing in July but remaining lower than those of cotton. After the
harvest in September, the deciduous period starts in late October
and lasts until late November, so the EVI value decreases slowly
and becomes higher than that of cotton after August. The non-
crop land types exhibit no significant intra-annual variations in
the yearly EVI curves. In this study, the EVI was calculated from
the Sentinel-2 images to construct the temporal phenological
patterns of different crop types. Then, a Savitzky–Golay filter
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Fig. 4. (a) Phenological calendar of cotton in the study area, plant pictures obtained from the website and (b) the corresponding temporal EVI patterns in 2021
(the plant pictures were collected from Meier [42]).

was applied to reduce noise and smooth the EVI curves of
various crops (see Fig. 4) since the Savitzky–Golay filter is a
smoothing algorithm that is widely used for data stream smooth-
ing and denoising [40]. The EVI is a vegetation index commonly
used in studies of vegetation phenology and crop identification;
the EVI is more sensitive to biomass and less likely to be
saturated than the normalized difference vegetation index and
is also less influenced by atmospheric and soil conditions [41].
The EVI formula is defined as follows:

EV I = 2.5× ρNIR− ρRed

ρNIR+ 6× ρRed− 7.5× ρBlue+ 1
(1)

where ρBlue, ρRed, and ρNIR are the reflectances in the blue,
red, and NIR bands, respectively.

For the pixel-based classification, we used the mean curves
(including the mean curves of the red, NIR, and shortwave
infrared (SWIR) bands and EVI) of the Sentinel-2 time series at

the location of training samples for each crop type to construct
the phenological patterns for different crop types. Similarly,
in the parcel-based classification, we also used the mean curves,
but time series images were based on the combination of seg-
mented parcels from Gaofen-2 and Sentinel-2 time series.

B. U-Net Architecture for Image Segmentation

When the contractive path shown on the left side of Fig. 5
extracts the high-dimensional features from the Gaofen-2 im-
ages, the U-Net model increases the spectral resolution of the
Gaofen-2 images by reducing the spatial resolution and increas-
ing the number of channels (see Fig. 5) [43]. Conversely, the
expansive path shown on the right side of Fig. 5 reverts those
predictions to the size of the original Gaofen-2 images; the U-Net
model increases the spatial resolution of the images by reducing
the spectral resolution and number of channels. The contractive



CHEN AND LIU: NOVEL METHOD FOR IDENTIFYING CROPS IN PARCELS CONSTRAINED BY ENVIRONMENTAL FACTORS 455

Fig. 5. U-Net architecture.

path consists of 3×3 convolutions with a rectified linear unit
and a 2×2 max-pooling operation, which doubles the number of
channels during each downsampling iteration. The components
of the expansive path are the same as those of the contractive
path, but the operation is reversed. The parcel segmentation
results were finally mapped to a 1×1 convolutional layer (see
Fig. 5).

In this study, we selected regions of interest (ROIs) near the
study area from the Gaofen-2 image using visual interpreta-
tion in ArcGIS software. Based on the spectral features of the
Gaofen-2 image, we selected nearly half of the ROIs represent
parcels with homogeneous crop growth, and the other half of
the ROIs represent parcels with heterogeneous crop growth.
This allows the U-Net model to actively learn the spectral and
morphological features within these two types of parcels so
that both types of parcels can be accurately extracted from the
image. These labeled ROIs were then cropped into images with
sizes of 256×256, resulting in a total of 13 864 images. Among
these images, 60% were used for training, 20% were used for
validation, and 20% were used for testing. The U-Net model
was built and trained by using the Keras 2.3.1 package and
TensorFlow 1.15.0 within Python 3.6.6 software. To exploit the
performance of the U-Net model, we trained the model with
all four bands of fused GaoFen-2 images (i.e., the visible blue,
green, red, and NIR bands). After the continuous adjustment of
the model training parameters (number of model epochs, batch
size, and learning rate), the optimally trained U-Net model was
obtained by setting the number of model epochs to 30, the batch
size to 8, and the learning rate to 0.0001. After the geoparcels
were extracted, each segmented geoparcel was assigned the
mean value of the Sentinel-2 time-series pixels contained in
each corresponding segmented parcel, including the average
reflectance values of the red, NIR, and SWIR bands and the
average EVI.

C. TWDTW for Crop Classification

In this study, TWDTW was implemented using the dtwSat
0.2.6 package within R 3.6.1 software [44]. In the TWDTW

method, first, the time-penalty weight distance matrix is calcu-
lated between the reference with Sentinel-2 time series A = [A1,
A2, …, Am] and the target to be classified with Sentinel-2 time
series B = [B1, B2, …, Bn] (see Fig. 6) as follows:

Dm×n =

⎡
⎢⎢⎣

D1,1 D1,2 · · · D1,n

D2,1 D2,2 · · · D2,n

· · · · · · · · · · · ·
Dm,1 Dm,2 · · · Dm,n

⎤
⎥⎥⎦ . (2)

In the above-mentioned equation, each element in the distance
matrix Dm×n is defined as follows:

Di,j = ωi,j ∗ |Ai −Bj | (3)

where ωi,j is the time-weighting factor that follows a logistic
function. The ωi,j term is given by the following formula:

ωi,j =
1

1 + e−α(|i−j|−β)
(4)

where i represents the date at the ith position in the temporal
pattern; j represents the date at the jth position in the time series;
α is the steepness of the logical weight; and β is the midpoint of
the logical weight. We used α = –0.1 and β = 50 in this work,
representing a lower penalty for time warps shorter than 50 days
and a higher penalty for longer time warps; this decision was
made with reference to Belgiu and Csillik [5].

Second, we calculated the cumulative distance cost matrix
Cm×n, which determines the alignment relationship between
the Sentinel-2-derived temporal EVI curves of the reference and
those of the target to be classified. Cm×n is given by formula (5)

Ci,j = Di,j + min {Ci−1,j−1, Ci−1,j , Ci,j−1} (5)

Ci,j =

⎧⎨
⎩

Di,j , i = 1, j = 1
Di,j + Ci−1,1, 1 < i ≤ M, j = 1
Di,j + C1,j−1, i = 1, 1 < j ≤ N

. (6)

With this alignment relationship, the similarity and dissim-
ilarity of the two-time series, the reference and target, can be
determined; in this way, the time series of all targets from the
Sentinel-2 images were classified.
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Fig. 6. Illustration of the TWDTW algorithm (adapted from Zhao et al. [18]).

D. Accuracy Assessment

To evaluate the model-training performance, we used five
metrics, namely, the OA, precision, recall, F1-score, and kappa
coefficient [45]. In this study, the pixel-based and parcel-based
TWDTW classification results were evaluated using a confusion
matrix to calculate the OA, user accuracy (UA), producer accu-
racy (PA) metrics, and kappa coefficient [45]. The OA is the
ratio of the number of correctly classified pixels to the total
number of pixels. The kappa coefficient is a metric used to
test the consistency of classification results. The F1-score is a
harmonic mean of the model precision and recall [36]. These
metrics are defined as follows:

OA =
TP + TN

TP + TN + FP + FN
(7)

where TP, TN, FP, and FN are the number of true positive, true
negative, false positive, and false negative results, respectively

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1−score = 2× Precision × Recall
Precision + Recall

(10)

Kappa =
OA − Pe

1− Pe
(11)

Pe=
(TP+FN)×(TP+FP )×(FN+FP )×(TN+FP )

N ×N
(12)

TABLE II
CROPLAND SEGMENTATION ACCURACY OBTAINED USING THE U-NET

ALGORITHM

where TP, TN, FP, and FN are the number of true positive, true
negative, false positive, and false negative results, respectively.

IV. RESULTS

A. U-Net Model Performance on Cropland Segmentation

Fig. 7(a) shows the excellent parcel-extraction performance of
these training results obtained using the U-Net model. When the
U-Net model was trained to the 30th epoch, the training accuracy
curve tended to be stable, and the value was close to 1. Moreover,
the training loss value decreased from 0.71 to close to 0. To test
the effectiveness of the model in the geoparcel extraction appli-
cation, we validated the accuracy of the model with segmentation
results using 2773 GaoFen-2256×256 images. The OA and
kappa coefficient of the geoparcel extraction results reached
97% and 0.95, respectively (see Table II). The above-mentioned
evidence showed the excellent performance of the trained U-Net
model in extracting cropland parcels. The trained U-Net model
mentioned above was then employed to segment the geoparcels
of the croplands and other land-cover types using the Gaofen-2
image. Finally, 5971 geoparcels were obtained, of which 4320
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Fig. 7. (a) Accuracy and loss of the training set and validation set. (b) Parcel segmentation based on a Gaofen-2 fused image using the trained U-Net model (the
white lines represent the boundary of segmented parcels; the Gaofen-2 image was captured on August 12, 2021).

were cropland parcels and 1651 belonged to the other land-cover
types [see Fig. 7(b)].

B. Crop Mapping Using the TWDTW Algorithm

We mapped crop types using the parcel-based and pixel-based
TWDTW algorithms, and the results exhibited OAs of 99.64%
and 94.26%, respectively (see Tables III and IV). The OA of
the crop-classification results obtained using the parcel-based
TWDTW algorithm was improved by 5.38% compared to that
obtained using the pixel-based TWDTW classification method.
Such an improvement confirms that the parcel-based TWDTW
classification method has a better performance when identi-
fying crops from remote sensing images than the pixel-based

TWDTW classification method. Meanwhile, the kappa coeffi-
cient of the crop-classification results obtained using the parcel-
based TWDTW method (0.99) was improved by 8% compared
to that obtained with the pixel-based TWDTW method (0.91).

The UA obtained for the cotton-type identification results
using the parcel-based TWDTW method (UA = 100%) was
improved by 11% compared to that obtained using the pixel-
based TWDTW method (UA = 89%). In contrast, the PA of the
parcel-based TWDTW method was only 1% lower than that of
the pixel-based TWDTW method (see Tables III and IV). The
UA and PA of the parcel-based TWDTW method in identifying
orchard types improved by 7% and 1%, respectively, and both
were higher than those of the pixel-based TWDTW method.
We found no significant difference between the UAs of these
two approaches when identifying noncrop types (UA = 99%)
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TABLE III
ASSESSMENT OF THE CROP-CLASSIFICATION RESULTS OBTAINED WITH THE PIXEL-BASED TWDTW METHOD

TABLE IV
ASSESSMENT OF THE CROP-CLASSIFICATION RESULTS OBTAINED WITH THE PARCEL-BASED TWDTW METHOD

but observed a PA increase of 15% when using the TWDTW
algorithm from the pixel-based to the parcel-based levels. The
UAs and PAs of all types derived from the parcel-based TWDTW
method improved compared to those derived from the pixel-
based TWDTW method (see Tables III and IV).

The crop-mapping results obtained by incorporating Gaofen-
2 imagery with spatial features and Sentinel-2 time series with
spectral-temporal features were spatially finer and more accurate
than the crop-classification results obtained using Sentinel-2
data alone (see Fig. 8). The pixel-based approach may mis-
classify areas with sparse crop growth within croplands into
other types although these misclassified areas are part of the
cropland (see Fig. 8). In contrast, by averaging the EVI values
within each parcel, combining pixels as objects can help reduce
salt-and-pepper noise in the pixel-based classification process
and improve the spatial fragmentation of the classification results
(see Fig. 8). Fig. 8 demonstrates that the parcel-based crop-type
mapping results were more spatially homogeneous than the re-
sults obtained from the pixel-based method. Thus, the developed
approach effectively prevents the noise problem caused by the
presence of pixels with different attribute information within the
same cropland parcel (see Fig. 9).

V. DISCUSSION

A. Geoparcel Segmentation Based on the U-Net Method and
Gaofen-2 Image

For large-scale geoparcel-based crop mapping, accurately
segmenting agricultural parcel objects from satellite imagery is

an unavoidable difficulty [5], [12]. This difficulty comes mainly
from two aspects: 1) the accessibility of high-spatial-resolution
remote sensing images for site-specific crop mapping and 2) the
indispensability of excellent segmentation algorithms. In this
study, we selected the Gaofen-2 image to segment agricultural
land parcels and obtained precise cropland edges. In addition, to
address this difficulty, we employed the U-Net model to segment
the cropland parcels from the Gaofen-2 image covering the study
area. It is trained from scratch using a training dataset collected
near the study area. After testing, the U-Net model achieved
remarkable accuracy in agricultural parcel segmentation
(see Table II). The high precision and recall scores indicate
the model’s capability to correctly identify agricultural parcels.
Furthermore, the U-Net model is trained faster due to the use of
cross-layer connectivity and pooling operations, which reduce
the number of parameters in the network [see Fig. 7(a)]. More-
over, the U-Net model produced well-delineated boundaries for
regions characterized by homogeneous parcels and heteroge-
neous parcels and was able to deal with the spectral hetero-
geneity between different parcels [see Fig. 7(b)]. The result of
agricultural parcel boundaries extracted from a high-resolution
image using U-Net shows that the edges of the parcels can be
precisely distinguished from roads and farmland shelterbelts
(see Fig. 7). Thus, the U-Net model exhibited robustness to
data heterogeneity commonly encountered in agricultural parcel
segmentation tasks. Our findings also share similarities with
those of Waldner and Diakogiannis [22], whose results show that
U-Net can actively learn to distinguish edges that do not belong
to cultivated land. These results highlight the potential of the
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Fig. 8. (a) Crop-type mapping using the pixel-based TWDTW method and (b) the parcel-based TWDTW method (the blue dotted rectangles represent the
comparison of the classification effect on the same position under two approaches).



460 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 9. Comparison of the crop-mapping results obtained using the pixel-based and parcel-based TWDTW methods (the dashed boxes indicate the comparison
of different classification effects in the same position).

U-Net model as a reliable tool for precise parcel segmentation
in agricultural applications.

The key difference from the study by Belgiu and Csillik [5]
is the different methods implemented to segment agricultural
parcels. They employed eCognition software to automatically
segment agricultural parcels from Sentinel-2 images; however,
the method did not work well in extracting agricultural parcels in
this study. Similarly, Wu et al. [29] found that it was difficult to
extract pure cropland edges from high spatial resolution images
using eCognition and found that the extracted cropland parcels
were likely to contain noncrop types (e.g., roads) and other
problems. This incomplete segmentation of cropland may cause
confusion in the crop classification results.

In contrast to the high-resolution image used in this study,
Zhang et al. [27] used U-Net to extract cropland and found that
the spatial resolution of Sentinel-2 images could not accurately
depict fragmented parcels and could not clearly distinguish
edges between adjacent and homogeneous fields. Masoud et al.
[30] similarly believe that the 10 m resolution of Sentinel-2

images is relatively coarse for extracting cropland edges, which
may also lead to parcel segmentation results appearing to be
confused with noncrop types.

B. Advantage of the Parcel-Based TWDTW Method for Crop
Mapping

The spectral heterogeneity of crop growth within a cropland
parcel in remote sensing imagery is affected by various envi-
ronmental constraints and can lead to crop misidentifications.
Thus, we proposed an approach to address the above-mentioned
crop-classification problem by integrating high-resolution re-
mote sensing image-generated field edges based on U-Net seg-
mentation and the precise spatiotemporal features derived from
Sentinel-2 time series based on the TWDTW classification algo-
rithm. The results showed that using cropland parcels as the basic
analysis unit to map crop types not only yielded finer and more
homogeneous results than the pixel-based approach in terms of
the spatial distribution (see Fig. 9) but also outperformed the
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pixel-based approach in terms of the final classification accu-
racy (see Tables III and IV). Moreover, the crop-classification
results obtained using the parcel-based approach reflected fine
semantic features. Our findings are generally consistent with
the results reported by Liu et al. [46], who extracted precise
cropland parcels in mountainous areas using high-resolution
remote sensing images to effectively obtain the actual field edges
of croplands. Thus, this study provides a promising approach
that fully considers spatial and spectral-temporal features from
multisource remote sensing images when mapping crop types.

In addition to the problem of spectral heterogeneity within
croplands, the misclassification problem caused by spectral
confusion at cropland edges is very prominent. At field edges,
the presence of farmland shelterbelts with phenological char-
acteristics similar to those of orchards can lead to pixels that
should be classified as noncrops being misidentified as orchards
when using the pixel-based TWDTW method (see Fig. 9). The
parcel-based TWDTW method can not only accurately extract
the field edges of croplands but can also differentiate the noncrop
planted pixels outside the cropland edges from the crop-planted
pixels within the cropland, thus minimizing the spectral confu-
sion problem.

The largest differences between the parcel-based and pixel-
based TWDTW methods were observed in the cotton and non-
crop classification results (11% difference in the UA for cotton
and 15% difference in the PA for noncrops) (see Tables III and
IV). As mentioned previously, the spatial heterogeneity arising
from crop growth conditions in cotton parcels raises the issue
of significant spectral heterogeneity occurring within the same
crop type. Moreover, phenological pattern confusion among
farmland shelterbelt types belonging to the noncrop type and
orchards at cropland edges can cause errors in which farmland
shelterbelts are misidentified as orchard land. Unfortunately, the
pixel-based approach cannot handle these problems well since
it does not consider the relationships among surrounding pixels
[5]. In contrast, the parcel-based approach effectively alleviates
this problem by averaging the spectral values of all pixels within
each parcel. Ultimately, the crop-classification performance of
the TWDTW method at the parcel level is significantly superior
to that at the pixel level. This finding is in line with the results
reported by Belgiu and Csillik [5], who argued that grouping
pixels as objects reduces spectral heterogeneity within the same
type.

In addition, the TWDTW approach calculates the
dissimilarity value between each pixel or parcel and the
time-series pattern of a given land type [14]. A TWDTW
dissimilarity value closer to 0 means that the pixel or parcel
has better similarity to the given time-series pattern and vice
versa [12], [44]. In this study, the dissimilarity values obtained
for the pixel-based TWDTW approach ranged from 0.63
to 16.32 (see Fig. 10), whereas the dissimilarity values for
the parcel-based TWDTW approach ranged from 0.007 to
0.101 (see Fig. 10). These results show that the parcel-based
TWDTW approach smoothed the spectral values of pixels with
high heterogeneity by averaging the spectral values of all pixels
within and at the edges of each parcel. Thus, the dissimilarity
value at the parcel-based level was relatively close to the given

Fig. 10. TWDTW dissimilarity values at (a) the pixel-based level and (b) the
parcel-based level.

time-series pattern, thus significantly improving the resulting
crop-mapping accuracy. The TWDTW dissimilarity value
results at the parcel-based level were like those derived from
the object-based approach reported by Csillik et al. [12], whose
object-based TWDTW dissimilarity values were also spatially
smooth.

C. Recommendations and Limitations

The results showed that the PA of the cotton-identification
results obtained using the parcel-based TWDTW method was
only 1% lower than that obtained using the pixel-based TWDTW
method. The reason for this difference was that the average
spectral-temporal patterns of all pixels in a few cotton parcels
with extremely high spectral heterogeneity were like the patterns
of the noncrop land type, thus leading to cotton being misiden-
tified as the noncrop land type when using the parcel-based
TWDTW method (see Fig. 11). In contrast, some cotton pixels
could still be identified using the pixel-based TWDTW method
(see Fig. 11). Although applying the mean value of pixels within
a parcel can effectively eliminate heterogeneous disturbances
in the cropland parcel, it does not appear to be an effective
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Fig. 11. Comparison of the cotton-mapping results obtained using the pixel-
based and parcel-based TWDTW methods (the white line represents the cropland
edges extracted using the U-Net model).

solution for a few parcels with extreme heterogeneity. Therefore,
in addition to the mean values, other additional statistical values
of phenological features (including maximum, percentiles, and
standard deviation values calculated from EVI data) can also be
considered for parcel-based crop classification. In addition, we
mainly selected pixels with relatively low heterogeneity among
the cropland parcels as classification training and validation
samples and lacked samples closer to the edge of the cropland
parcels (see Fig. 1). Therefore, the classification errors on the
edges of cropland parcels could not be verified regardless of how
the training and validation samples were randomly assigned,
which led to the inability to quantitatively characterize the appar-
ent accuracy gap between the parcel-based and pixel-based crop
classifications. However, we compared the results obtained by
the two classification methods regarding the spatial morphology.
The results showed that the misclassification problem on parcel
edges could be effectively resolved by using the parcel-based
TWDTW method. Here, we recommend selecting some sample
points closer to the edges of the farmland, which can better
quantify the accuracy gap between parcel-based and pixel-based
crop classification.

Although a combination of high-spatial-resolution and mul-
tispectral data effectively improved the accuracy and fineness
of crop-type mapping in this study, we found that this ap-
proach significantly increased the number of pixels to be pro-
cessed (equivalent to 100 times the number of pixels) and
thus increased the computation time required for the TWDTW
classification process; this increase can seriously affect the
crop-mapping efficiency. Despite this shortcoming, our research
takes full advantage of multisource satellite platforms and pro-
vides a potential method for finely mapping crops over the
areas affected by various environmental constraints. In future
work, we will focus on large-scale applications of this method
by effectively overcoming this computational inefficiency
disadvantage.

VI. CONCLUSION

To eliminate spectral heterogeneity effects on the inside and
at the edges of croplands on the crop identification results, in
this article, we proposed a method that can fully utilize spatial-
temporal-spectral features from multisource satellite data to

map crop types in arid regions. In this method, first, cropland
parcels are segmented and extracted using the U-Net segmen-
tation model and a Gaofen-2 high-resolution remote sensing
image; then, the TWDTW algorithm is employed to perform
crop mapping at the segmented parcel scale using time-series
Sentinel-2 multispectral images. The results showed that the
proposed approach had a better crop-mapping performance than
the pixel-based method, with an increased OA of 5.38% com-
pared to the results of the pixel-based method. In addition, the
approach at the parcel-based scale yielded a map with relatively
fine and homogeneous crop types and effectively solved the
crop misidentification problem on the inside and at the edges of
croplands. This study provides a practical solution for fine-scale
crop mapping by reducing the interference effects of the spatial
crop-growth heterogeneity that are caused by various environ-
mental constraints within croplands on the corresponding remote
sensing spectral features. The proposed method exhibited robust
performance and can be applied to other regions in the world.
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