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ABLAL: Adaptive Background Latent Space
Adversarial Learning Algorithm for Hyperspectral

Target Detection
Long Sun , Zongfang Ma , and Yi Zhang , Member, IEEE

Abstract—Hyperspectral images (HSIs) are challenging for hy-
perspectral object detection (HTD) due to their complex back-
ground information and the limited prior knowledge of the tar-
get. This article proposes an adaptive background latent space
adversarial learning algorithm for hyperspectral target detection
(ABLAL). We begin by using a coarse screening method to select
pseudobackground and pseudotarget sample sets, addressing the
issues caused by insufficient prior target information and com-
plicated background information, which result in low detection
accuracy. Next, we utilize an Adversarial Autoencoder (AAE)
based backbone network to extract the background latent spatial
information of the HSI. It should be noted that we adaptively
constrain the accuracy of the extracted information through the
pseudotarget dataset, accounting for the impact of potential targets
in the pseudobackground dataset. Furthermore, we fully utilize the
information extracted by AAE and employ a strategy combining
multiple output results of AAE. Specifically, we use the distance
between the target latent space vector and the background latent
space vector, and the HSI reconstruction difference to suppress the
background. Finally, extensive experiments are conducted on real
datasets to demonstrate the effectiveness of the proposed method.

Index Terms—Adversarial learning, hyperspectral image (HSI),
latent space, target detection, weak supervised learning.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) is a powerful technology
that can simultaneously capture the morphological and

spectral information of objects in a specific area. Morphological
information highlights the external features of object samples,
including size and shape. Meanwhile, different components
absorb spectra uniquely, generating variations in reflections
for different objects in the image at specific wavelengths. The
spectral information therefore reflects the differences in the

Manuscript received 15 May 2023; revised 26 July 2023, 26 August 2023,
and 29 September 2023; accepted 30 October 2023. Date of publication 3
November 2023; date of current version 23 November 2023. This work was
supported in part by the National Natural Science Foundation of China under
Grant 62276207, in part by the Technology Innovation Leading Program of
Shaanxi under Grant 2023GXLH-055, in part by the China Postdoctoral Science
Foundation under Grant 2018M643592, in part by the Natural Science Basic
Research Plan in Shaanxi Province of China under Grant 2018JM5127, and in
part by the Science and Technology Program Project of Ministry of Housing and
Urban-Rural Development of China under Grant 2017-K2-014. (Corresponding
author: Yi Zhang.)

The authors are with the College of Information and Control Engi-
neering, Xi’an University of Architecture and Technology, Xi’an 710311,
China (e-mail: sunlongxauat@outlook.com; zongfangma@xauat.edu.cn;
zhangyi@xauat.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2023.3329771

internal structure and composition of target samples. These
distinct features make hyperspectral imaging technology appli-
cable in various fields, including mineral detection [1], disease
diagnosis [2], military reconnaissance [3], and environmental
detection [4].

Hyperspectral target detection (HTD) is the process of classi-
fying all image pixels in the HSI into either target or background
classes. However, the target areas in HSI are usually limited
to a small part of the region, with the remainder marked as
“background.” This means that the targets are sparse [5], and
detecting them is the key to successful HTD in the presence of
complex and diverse background categories in HSI.

HTD is achieved by utilizing the difference between the
spectral signature of the targets and that of other land covers.
For example, spectral angle mapper (SAM) [6]. Adaptive cosine
estimator (ACE) [7], and matched filter (MF) [8] define the target
detection task as a binary hypothesis test based on Gaussian
distributions. Constrained energy minimization (CEM) [9] is
used to design a linear filter that minimizes total energy while
keeping the target output constant at 1, therefore, suppress-
ing the background while detecting the target. Although many
studies have been conducted on CEM and its variants, such
as hCEM [9] and ECEM [10], their performance is limited
due to the redundancy of spectral information and the limi-
tations of imaging technology. In order to effectively tackle
the intricate contextual issues in HSIs, Chen and Chang [11]
adopted a comprehensive approach by integrating CEM and
OSP techniques. As a result, they proposed a novel method
called BKG-annihilated TCIMF method. In order to overcome
the challenge of distinguishing targets and backgrounds in HSIs,
which arises due to spectral variability and noise, researchers
have introduced a technique known as DCEM. This technique
transforms the linear solving process of CEM into a nonlinear
one by utilizing a fully connected neural network at a pixel-
level or a convolutional neural network at a cube-level. The
primary objective of this transformation is to enhance detection
performance [12].

The field of computer vision has experienced a surge in
interest in HSI processing, due to the success of machine
learning (ML) and deep learning (DL) algorithms. A range of
ML methods have been utilized in HSI, including kernel-based
learning, sparse and collaborative representation. Kernel OSP,
a semisupervised method, can effectively resolve the linear
inseparability problem by mapping the original space to the
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kernel space [13]. However, the challenge of designing an appro-
priate kernel remains unresolved. Sparse and collaborative rep-
resentation methods, such as combined sparse and collaborative
representation (CSCR) [14], require labeled target information
for dictionary construction and can have reduced performance
if insufficient prior target information is available [15].

DL-based methods provide data-driven, nonlinear, and deep
features to approximate complex functions, which has led to
extensive research interest in various applications. For instance,
within the domain of HSI classification, a network named
DFINet, designed for depthwise feature interaction, is intro-
duced in [16]. This network’s objective is to extract autocorrela-
tion and cross-correlation from pairs of features originating from
multiple sources, utilizing deep cross-attention modules. This
extraction process enhances significant complementary infor-
mation, contributing to the classification of both hyperspectral
and multispectral images. Gao et al. [17] introduced the concept
of a transformer-based model named CSMFormer (cross-scale
mixing attention transformer). This model is designed for the
fusion and classification of multisource remote sensing data, ex-
hibiting remarkable performance in both aspects. The FADCNN
framework, a spatial-spectral dense CNN framework with a
feedback attention mechanism, was proposed for HSI classifica-
tion in the work by Yu et al.[18]. The SLA-NET method performs
tree species classification by extracting fine-grained morpho-
logical structures from HSIs [19]. Yu et al. [20] introduced a
multiperspective calibration prototype learning framework that
enhances the robustness of prototypes in the embedding space
through calibration strategies. It also improves the accuracy of
HSI classification by transferring statistical knowledge to elim-
inate the local bias in the test phase. Typically, DL-based HTD
methods can be categorized into two major types: supervised
learning and unsupervised learning. In supervised learning, tar-
get samples are synthesized and expanded and an end-to-end
detector is then constructed by training on a large number of pixel
pairs [15]. However, synthesizing and expanding samples that
are not present in the data “exhausts” computing resources and
wastes time matching the real situation. Unsupervised networks,
as opposed to supervised networks, do not need to address the
challenge of inadequate training samples [21]. It is customary
to exploit unsupervised networks with specific constraints to
improve target recognition capabilities, subsequently employing
a straightforward matching strategy for target detection [15].

Although DL-based methods generally exhibit better detec-
tion performance compared to traditional methods, DL-based
approaches often have numerous trainable parameters and re-
quire a large amount of labeled data to achieve optimal detection
performance. In practice, it is challenging to obtain a large
number of accurately labeled hyperspectral samples.

Adversarial learning, which is an advanced deep learning
mechanism, has exhibited promising results in hyperspectral
tasks such as classification [22] and anomaly detection [23]. For
instance, Gao et al. [24] employed adversarial complementary
learning (ACL) strategies grounded in adversarial learning to
extract complementary information from various data sources.
The author further creates primary land cover representations

and supplementary representations for HSI classification in the
context of multisource remote sensing data.

Recently, adversarial learning has been incorporated into
two methods in the field of hyperspectral target detection
(HTD): the Spectral-Spatial Target Detector (SSTD) [25] and the
Background Learning Based on Target Suppression Constraint
(BLTSC) [26].

SSTD involves dimensionality reduction of high-dimensional
hyperspectral data by utilizing band selection through adver-
sarial learning. This is followed by spectral detection on the
reduced data and spatial detection on the selected data. The
results from both detections are then fused to obtain the final
detection outcome. However, it should be noted that SSTD
does not effectively differentiate between background and target
information. This limitation may introduce inaccuracies in the
dimensionality reduction process, subsequently affecting the
overall detection performance.

In BLTSC, an Adversarial Autoencoder (AAE) is employed
for extracting background information through adversarial
learning. This extracted background information is then recon-
structed. However, it is important to highlight that inaccurate ini-
tial screening in BLTSC may cause deviations from the original
background distribution, leading to imprecise detection results.

The scarcity of target samples in HSIs presents a challenge
as it hampers the model’s ability to understand the distribution
of target spectra effectively. In contrast, there is an abundance
of background samples that contain valuable latent information.
By extracting and leveraging this latent information, we can
effectively highlight the differences between the target and back-
ground, which facilitates background suppression and target
detection.

The process of extracting features from the background can
be considered as an unsupervised learning process. However,
it is crucial to address the challenge of relying on a dataset
constructed with limited prior target spectral information, which
can potentially result in inaccuracies.

To extract the underlying distribution information from HSI
with complex backgrounds and alleviate the impact of inaccu-
rately labeled samples, we propose an adaptive adversarial learn-
ing framework for HTD. This framework consists of following
three fundamental steps.

1) Sample Selection for Adaptive Adversarial Learning: In
this step, we employ simple detectors to identify high-
probability target and background instances. These se-
lected instances are used to create a pseudodataset for
adversarial learning. The objective is to achieve a more
accurate estimation of the background distribution.

2) Adaptive Adversarial Learning on the Background Latent
Space: This step involves conducting adversarial learning
on the latent space of the background. The goal is to assess
the distribution of the background and acquire its latent
spatial feature distribution. Adaptive distance constraints
are applied to improve the accuracy of background recon-
struction. These constraints ensure that the background
spectrum is reliably reconstructed while discouraging the
accurate reconstruction of target spectra. During training,
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the encoder is trained to align the latent space repre-
sentation of the background with the prior distribution.
This alignment enables the discriminator to distinguish
the background latent space from other latent spaces. The
residual difference between the original and reconstructed
spectra is then analyzed to determine the probability of
these spectra being targets.

3) Target Detection with a Combination Strategy: The fi-
nal step involves target detection using a combination
strategy. This strategy aims to effectively constrain the
background for precise target detection and minimize
false positives. It combines the differences between targets
and backgrounds in the latent space with the residual
difference between the reconstructed and original spec-
tra. This combination results in highly accurate target
detection.

In summary, our proposed method makes the following key
contributions.

1) Adaptive AAE Construction: We construct an AAE with
adaptive constraints to highlight the target and capture the
background distribution and reconstruction in the latent
space. To address the issue of limited training samples,
we selectively choose training data based on the results of
rough detection.

2) Accurate Background Information Extraction: By utiliz-
ing adaptive constraints, we extract precise background in-
formation. During the training process, we reconstruct the
background spectrum while incorporating prior target in-
formation and a constructed pseudotarget dataset to create
an average target spectrum. This average target spectrum,
along with adaptive constraints, guides the reconstruction
of the background spectrum to closely resemble the actual
background.

3) Utilizing Extracted Information for Precise Detection: We
leverage the extracted information to achieve accurate
detection results. By analyzing the information in the
latent space, we detect targets, while the reconstructed
spectra enable effective background suppression. The joint
operation of these two components leads to stable and
precise detection outcomes.

II. RELATED WORK

An HSI image is essentially a three-dimensional matrix, with
the first two dimensions representing spatial information and the
third dimension representing spectral information. The matrix is
of size M ×N × L, where M and N correspond to the dimen-
sions of the image along thex and y axes, respectively, andL cor-
responds to the number of spectral bands captured by the sensor.
Each pixel in the matrix, denoted by xij , represents the spectral
reflectance vector for a particular material or surface property at
that location. Spectral reflectance refers to the amount of light
reflected by a surface at each wavelength in the electromagnetic
spectrum. Thus, the HSI matrix contains valuable information
about the material composition and intrinsic properties of objects

in the scene.

X =

⎡
⎢⎢⎣
x1,1 x2,1 . . . xN,1

x1,2 x2,2 . . . xN,2

. . . . . . . . . . . .
x1,M x2,M . . . xN,M

⎤
⎥⎥⎦ . (1)

In HTD tasks, it is usually necessary to flatten the HSI into a
two-dimensional matrix form as follows:

X = [x1, x2, . . . , xM×N ] (2)

where xi represents the spectral vector of each pixel, in the
following form:

x1×L
i =

[
x1
i , x

2
i , . . . , x

L
i

]�
. (3)

The prior target spectral information d has the same shape
as xi.

A. CEM Detector

The goal of the CEM filter is to design a finite impulse
response (FIR) linear filter, denoted by w, with the intention of
minimizing the average output energy of the filter, represented
by E = w�Rw. The autocorrelation matrix of the data samples
is denoted by R. In addition it is desired to keep the output of
the target prior spectral information, denoted by d, constant.
Specifically, d�w = 1. By constructing such a filter, the optimal
filter vector w∗ can be obtained

w∗ =
R−1d

d�R−1d
(4)

where R represents the autocorrelation matrix

R =
1

M ×N

M×N∑
i=1

xix
�
i . (5)

The final detection result of CEM is

y = (w∗)� X. (6)

B. Adversarial Autoencoder

The AAE is a method that combines the structure of an
autoencoder (AE) with the adversarial concept from generative
adversarial networks (GAN) [27]. The AAE consists of follow-
ing three main components.

1) Encoder (z=E(x)): Similar to the generator (G) in GAN,
the encoder transforms the input (x) into a latent space
vector (z), and the distribution of z is denoted as q(z).

2) Decoder (x′ = De(z)): The decoder takes the latent vec-
tor (z) as input and reconstructs the original input (x). The
entire process from encoding to decoding is represented
as x′ = De(E(x))

3) Discriminator (y = Di(z)): The discriminator takes a
latent vector (z) as input and classifies it as belonging to
either the latent space or being sampled from the prior
distribution (p(z)). The discriminator’s output (y) is a
scalar value between 0 and 1, indicating the probability.

Considering q(z|x) as the encoding distribution and p(x|z)
as the decoding distribution, and assuming pd(x) represents the
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Fig. 1. Schematic of the proposed ABLAL-based HTD method.

true data distribution, the aggregated posterior distribution of
q(z) in the latent space can be expressed as follows:

q(z) =

∫
x

q(z|x)pd(x)dx. (7)

The AAE aims to minimize the Jensen–Shannon (JS) diver-
gence between the prior distribution p(z) and the aggregated
posterior distribution of q(z). During the training process, two
main errors are minimized: the reconstruction error and the
adversarial training error. Adversarial training consists of two
steps: Deceptive Step: In this step, the Encoder E (or Generator
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Fig. 2. Function curve with different values of γ.

Fig. 3. 30th band images, GT map of the targets of El Segundo and Cuprite.
(a) Band 30. (b) GT.

G) aims to deceive the Discriminator Di by generating samples
z from the distribution q(z). Discriminative Step: In this step,
the Discriminator Di learns to differentiate between samples z
from the aggregated posterior distribution q(z) and samples z
from the prior distribution p(z). By establishing an adversar-
ial relationship between the Encoder E and the Discriminator
Di, the AAE encourages the Encoder E to generate latent
representations z that can successfully fool the Discriminator
Di. The adversarial relationship between E and Di can be

Fig. 4. 30th band images, GT map of the targets of ABU-Airport. (a) Band
30. (b) GT.

Fig. 5. 30th band images, GT map of the targets of ABU-Beach. (a) Band 30.
(b) GT.

Fig. 6. 30th band images, GT map of the targets of ABU-Urban. (a) Band 30.
(b) GT.

represented as

min
E

max
Di

Ez∼p(z) [logDi(z)]

+ Ez∼q(z) [log (1−Di(z))] . (8)
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Fig. 7. Parameter sensitivity analysis of influence on different datasets. (a) Number of latent space nodes. (b) β. (c) γ. (d) τ1. (e) τ2.

Fig. 8. 3D-ROC and three corresponding 2D-ROC curves of different comparing methods on El Segundo HSI and Cuprite HSI. (Left to right) 3D-ROC curve,
2D-ROC curve of (Pd, Pf ), 2-D ROC curves of (Pd, τ), 2-D ROC curves of (Pf , τ). (a) El Segundo. (b) Cuprite.

This objective function drives the Encoder E to generate latent
vectors z that can maximize the Discriminator’s probability of
correctly distinguishing between samples from q(z) and samples
from p(z).

In this article, we focus on determining the background
distribution in HSIs using the AAE approach. In HSIs, the
background distribution typically exhibits characteristics of a
Gaussian distribution or can be approximated by a Gaussian
distribution. To facilitate convenient calculations and analysis,
we aim to ensure that the distribution in the latent space obtained
by inputting the background data into the EncoderE also follows
a Gaussian distribution. Consequently, we select the Gaussian
distribution as the prior distribution p(z) for our AAE model.

In our approach, we conduct joint training for the two com-
ponents of the AAE: the Discriminator Di and the Encoder E.
The Discriminator Di is responsible for discriminating whether
a given sample z originates from the samples generated by the
EncoderE or from pseudosamples sampled from the prior distri-
bution p(z). Simultaneously, the Encoder E aims to confuse the

TABLE I
DATASET INFO AND LOCATION OF THE PRIOR TARGET SPECTRAL D
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TABLE II
EVALUATE AUC SCORES OF THE MAIN COMPONENTS S1 AND S2 OF OUR

METHOD AND THE AUC SCORE OF THE FINAL OUTPUT RESULT

TABLE III
AUC VALUES DERIVED OF EL SEGUNDO AND CUPRITE HSIS FROM THE THREE

2-D ROC CURVES PRESENTED IN FIGS. 8 AND 9

TABLE IV
AUC VALUES DERIVED OF ABU-AIRPORT HSIS FROM THE THREE 2-D ROC

CURVES PRESENTED IN FIGS. 10 AND 11

Discriminator Di by encoding the background sample results.
The Encoder E minimizes the loss specified in (8), while the
discriminator Di aims to maximize it. Consequently, we define
the adversarial training objective as min

E
max
Di

Ladv, and it can be

expressed as follows:

Ladv = E [logDi(N(0, 1))] + E [log (1−Di(z))] (9)

TABLE V
AUC VALUES DERIVED OF ABU-BEACH HSIS FROM THE THREE 2-D ROC

CURVES PRESENTED IN FIGS. 12 AND 13

TABLE VI
AUC VALUES DERIVED OF ABU-URBAN HSIS FROM THE THREE 2-D ROC

CURVES PRESENTED IN FIGS. 14 AND 15

where z is the latent representation of the background sam-
ple x obtained by inputting Encoder E, N(0, 1) represents a
prior Gaussian distribution p(z). By minimizing the adversarial
loss Ladv, we aim to bring the distribution of the background
latent space closer to the desired Gaussian distribution. This
optimization process encourages the encoder E to output latent
representations that follow the Gaussian distribution, aligning
the latent space with the prior distribution.

To complement the adversarial training, we also incorporate
a reconstruction loss into the autoencoder part of the AAE. This
additional loss term ensures that the latent space vector obtained
by encoding the input data through the encoder can be decoded
by the decoder, resulting in the restoration of the original data.
The reconstruction loss LR aims to minimize the error between
the input data bi ∈ HB and its corresponding reconstructed data
b′i ∈ H ′

B . By minimizing this reconstruction loss, we encourage
the encoder–decoder pair to learn a representation in the latent
space that captures the essential information of the input data,
allowing for accurate reconstruction.

LR =
∑
i

‖bi − b′i‖2. (10)
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Fig. 9. Detection results of different comparing methods on El Segundo HSI and Cuprite HSI. (Left to right) OUR, CEM, ECEM, hCEM, CSCR, ACE, OSP,
SMF. (a) El Segundo. (b) Cuprite.

C. Spectral Similarity Measurement

In the context of HTD, dimensionality reduction techniques
are often employed as a preliminary step or during the HTD
process to handle the high dimensionality of HSIs. One such
technique is the use of autoencoders, which can serve as a
dimensionality reduction method. When the dimensionality of
the latent space in an autoencoder is smaller than the dimen-
sionality of the input data, the autoencoder effectively reduces
the dimensionality of the data. In this way, autoencoders can
be viewed as a form of dimensionality reduction technique
in the HTD process [28]. Furthermore, autoencoders have the
advantage of enabling nonlinear dimensionality reduction by
selecting appropriate activation functions. This contrasts with
classical techniques like Principal Component Analysis (PCA),
which only support linear dimensionality reduction.

In our model, we intentionally choose a lower dimensionality
for the latent features compared to the input data dimensionality.
As a result, the information obtained in the latent space can be
considered as a form of dimensionality reduction for the input
data. In the context of our approach, we employ the SAM [29]
to discriminate between targets and backgrounds specifically in
the latent space. SAM is a commonly used spectral matching
technique that compares the spectral angles between reference
spectra and the spectra of pixels or samples. By applying SAM
in the latent space, we leverage the reduced dimensionality and
the discriminative power of the spectral angles to identify and
differentiate between target and background samples

θ(x1, x2) = cos−1

(
x�
1 x2

‖x1‖ ‖x2‖
)

= cos−1

(
x�
1 x2√

x�
1 x1

√
x�
2 x2

)
. (11)

To ensure that the computed results are within the range of
[0, 1] and to facilitate subsequent calculations, we have applied
normalization to the SAM values

ds = 1− 1

π
cos−1

(
x�
1 x2√

x�
1 x1

√
x�
2 x2

)
. (12)

TABLE VII
AVERAGE COMPUTING TIME (IN SECONDS) OF THE COMPARED METHODS

In our model, we represent the latent space outputs of the input
data x and the target d as xL and dL, respectively. The similarity
between these two latent space representations can be expressed
using a value Lsim, which falls within the range of [0, 1]. A
higher value of Lsim suggests a greater similarity between the
two spectra

Lsim = ds〈xL, dL〉. (13)

III. PROPOSED METHOD

Our proposed method for HTD is composed of three stages. In
the first stage, we extract adaptive adversarial learning samples
by applying pseudotarget set and pseudobackground set thresh-
olds to the coarse detection results. In the second stage, we use
these samples to train an AAE with three types of constraints.
These constraints aim to improve the background reconstruction
performance of the AAE while maintaining the separation of
background and targets in the latent space. Finally, the trained
AAE is used for target detection. Fig. 1 depicts the general
scheme of our method.

A. Sample Selection for Adaptive Adversarial Learning

In this study, the Adaptive Adversarial Learning sample se-
lection process outlined in [30] is utilized to provide adequate
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Fig. 10. 3D-ROC and three corresponding 2D-ROC curves of different comparing methods on ABU-Airport HSIs. (Left to right) 3D-ROC curve, 2D-ROC curve
of (Pd, Pf ), 2-D ROC curves of (Pd, τ), 2-D ROC curves of (Pf , τ). (a) ABU-Airport-1. (b) ABU-Airport-2. (c) ABU-Airport-3. (d) ABU-Airport-4.

TABLE VIII
TIME COMPLEXITY FOR THE COMPARED METHODS

training samples for Adaptive Adversarial Learning (AAL). As
the coarse detector, CEM is employed to construct a pseudo-
dataset that comprises sufficient samples for training purposes.
It is worth noting that the coarse detector employed in this study
may be substituted with other commonly used detectors. By
using (6), the CEM detector can obtain a preliminary detection
outcome C, where each pixel value indicates the probability of
a particular spectrum becoming a target sample. In reference to
the distribution of real target and background pixels in the actual
HSI, we sort the pixels of X based on the corresponding values in
spatial map C, as shown in Fig. 1. Specifically, we select samples
with smaller values at the top τ1 to form a pseudobackground
dataset XB ∈ RB×L and select samples with the largest values
at the top τ2 to form a pseudotarget dataset XT ∈ RT×L. It is
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noteworthy that the ratio of selecting pseudobackground pixels
and pseudotarget pixels is not fixed, and for each specific dataset,
there exists a suitable ratio range.

Due to factors such as imaging equipment, targets in HSI
may possess spectra that differ. Moreover, the CEM algorithm
can only maintain the output of prior spectral information d,
which implies that targets that vary significantly from d cannot
be detected, while background spectra that are similar to d may
be detected as targets. In other words, the labels of the pseudo-
training dataset constructed by dividing the limited prior target
spectra d are incomplete and inaccurate. Therefore, the proposed
method can be categorized as an inaccurate supervision method,
which is a form of adaptive adversarial learning.

B. Adversarial Learning on the Latent Space of Background

As mentioned above, our goal is to learn the accurate distribu-
tion of background latent space and to separate the background
latent space vector from the target latent vector. To achieve
this goal, we use three methods to ensure that the extracted
background latent space information is accurate, complete, and
distinguishable from the target latent space. First, we use an
adversarial approach to make the distribution of the background
latent space conform to a prior Gaussian distribution. Second, we
use background reconstruction loss to measure the loss between
the input spectrum and the reconstructed spectrum, ensuring
that the background spectrum can be effectively reconstructed.
Finally, we use the pseudotarget set suppression constraint to
separate the latent targets from the pseudobackground data and
ensure good reconstruction performance of the real background
spectra.

1) Background Latent Space Adversarial Learning: AAE is
a variant of GAN that regularizes the model during training. We
assume that the latent space distribution of the real background
conforms to a Gaussian distribution p(z). We use the encoder E
to extract the latent space vector z of the background, making its
distribution q(z) conform to p(z), and making the latent space
vector z able to be well restored to the background spectrum
through the decoder De. The input of the discriminator Di either
comes from the latent space vector extracted by the encoder
or is a vector sampled from the prior distribution p(z). The
output of discriminator Di is a single scalar value, which can
be interpreted as the probability that the input vector comes
from the latent space vector encoded from the background data
or from a sampled vector of the prior background latent space
distribution. In the training process, minimizingLadv (9) ensures
that the latent space distribution of the background is accurately
extracted and conforms to the prior distribution.

2) Background Spectral Reconstruction: The background
spectrum bi sampled from the pseudobackground dataset is
encoded by the encoder to obtain its latent space vector zi,
which is then input to the decoder De to obtain the reconstructed
background spectrum b′i. In order to obtain an accurate recon-
structed spectrum, we measure the reconstruction loss between
the input sample x and De(E(bi)) by minimizing the MSE
(Mean Squared Error), i.e., LR(10). After training is completed,
the latent space zi is obtained from the trained encoder, and

then decoder reconstructs the background instances through the
latent space. At the same time, instances with large residuals
after reconstruction, that is, instances with high MSE values,
can be considered as detected targets.

3) Adaptive Inaccurate Sample Suppression Constraint
Based on Pseudotarget Set: As described above, the MSE be-
tween spectral vectors and their reconstructed versions can be
used as a similarity metric for identifying targets. However,
minimizing MSE alone can occasionally result in unrealistic
reconstructions. In addition, due to the limitations of the coarse
detector CEM, it is possible that target pixels may be misclas-
sified as background pixels in order to construct a pseudoback-
ground dataset XB . To improve the discrimination between
targets and backgrounds, we use an adaptive constraint based
on Euclidean distance. The constraint fully utilizes the limited
prior information d and the pseudotarget dataset XT ∈ RT×L.

The constraint maximizes the distance between the spectral
vector bi in the pseudobackground dataset Xb and the average
target vector t̄′ obtained from d and XT , which enhances the
discrimination of spectral reconstruction by optimizing the loss
function

LT = −
B∑
i=1

αi

∥∥bi − t̄′
∥∥2
2

(14)

where αi is the weight coefficient assigned to each training
sample. αi and t̄′ can be expressed as

αi = 1− exp
(
−γ
∥∥bi − t̄′

∥∥2) (15)

t̄′ = −1

2
(d+ t′) =

1

2

(
d+

(∑T
j=1 tj

T

))
. (16)

In the equation, γ is a tunable parameter and tj ∈ XT . The value
of γ affects the optimization strength of the model when there is
a change in the gap between bi and t̄′. The curves of the function
for different values of γ are shown in Fig. 2.

When the distance between an input spectral vector bi and the
target average vector t̄′ is small, we can infer that this inaccurate
sample bi is likely to be a target pixel rather than a background
pixel. At the same time, the weighting factor αi of the sample
tends to be 0, suppressing the latent interference of inaccurate
sample target spectra on background spectrum representation
and reconstruction. Conversely, when the distance is large, αi

tends to be 1, maintaining the normal optimization of the model.
Therefore, the final loss function of the training process can

be summarized as

L = Ladv + LR + βLT . (17)

The parameter β is used to balance the impact of the reconstruc-
tion authenticity and target distance constraints.

This objective ensures effective reconstruction of the back-
ground, while suppressing interference from targets during the
training process, alleviating the problem of ineffective separa-
tion between background and targets when the supervision is
weak.
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Fig. 11. Detection results of different comparing methods on ABU-Airport HSIs. (Left to right) OUR, CEM, ECEM, hCEM, CSCR, ACE, OSP, SMF.
(a) ABU-Airport-1. (b) ABU-Airport-2. (c) ABU-Airport-3. (d) ABU-Airport-4.

C. Target Detection

After the training is completed, as shown in Fig. 1(c), all
spectral vectors H ∈ RM×N×L and prior target information d
in the original HSI are input into the trained model to obtain the
similarity Lsim between the latent space HL and the target latent
space vector dL through (13), which represents the likelihood
of each pixel in HL becoming a target. In addition, the recon-
struction H ′ and the H obtained through (10) further illustrate
the difference between targets and background. Therefore, our
final detection result is

Output = Lsim ∗ (1− LR). (18)

We summarize the algorithm we proposed in Algorithm 1.

IV. EXPERIMENTS

In this section, we designed and executed experiments and
conducted an analysis of the impact of parameter changes on
the results. We utilized three publicly available hyperspectral
datasets to evaluate the performance of our proposed detection
method.

A. Datasets Description

1) The El Segundo Dataset: The first column of Fig. 3 show
the 30th band image and GT map in the El Segundo dataset.
This dataset was captured by the AVIRIS sensor, which has
224 spectral channels ranging from 366 to 2496 nm. This urban
scene covers the El Segundo area of California, USA, with a

Algorithm 1: Adaptive Background Latent Space Adversar-
ial Learning Algorithm for Hyperspectral Target Detection.

Input HSI X , prior known target spectrum d, threshold
of dividing the pseudo-target set τ1, threshold of
dividing the pseudo-background set τ2.

Step:
Obtain the pseudo-background set XB and the
pseudo-target set XT using (6) and thresholds τ1 and τ2;

Establish the background latent space learning model;
for each epoch do

minimize final loss LT in (17);
end
Reconstruct X ′ = De(E(d)), latent spase XL = E(X)
with the trained model;

Latent spase dL = E(d) with the trained model;
Calculate the latent spase similarity Lsim with (13);
Calculate the reconstruct distance LR with (10);
Detect target from Lsim and LR with (18);
Output final detection result Output.

spatial size of 250 × 191 × 300. The ground resolution of each
pixel is 7.1 m. The image dataset mainly consists of refinery
areas, several residential areas, parks, and a school area. The
building area of the refinery, such as oil tanks and towers, reaches
2048 pixels, and is therefore considered as attack targets.

2) Cuprite Dataset: The second column of Fig. 3 shows the
30th band image and GT map in the Cuprite dataset. This dataset
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Fig. 12. 3D-ROC and three corresponding 2D-ROC curves of different comparing methods on ABU-Beach HSIs. (Left to right) 3D-ROC curve, 2D-ROC curve
of (Pd, Pf ), 2-D ROC curves of (Pd, τ), 2-D ROC curves of (Pf , τ). (a) ABU-Beach-1. (b) ABU-Beach-2. (c) ABU-Beach-3. (d) ABU-Beach-4.

was collected by the AVIRIS sensor in the Cuprite mining area of
Nevada, USA, in 1997, and contains approximately 14 types of
minerals, including orthoclase, iron clay, kaolinite, and others.
Here, we use a subset of the Cuprite data for experimentation,
which consists of 250 × 191 pixels and 188 bands (excluding
low signal-to-noise and water absorption bands). In this dataset,
buddingtonite (orthoclase) is treated as the target to be detected.
The Cuprite database was made available online: http://aviris.
jpl.nasa.gov/html/aviris.freedata.html

3) The ABU(Airport-Beach-Urban) Database: The Figs. 4–
6 show the 30th band images and GT maps in the ABU dataset.
The database was obtained in detail in [31]. These sample images
contain 100 × 100 or 150 × 150 pixels, and have corresponding

references. The airplane and urban scenes were captured by the
AVIRIS sensor, and most of the beach scenes were also captured
by the AVIRIS sensor. One of the beach scenes was captured by
the Reflective Optics System Imaging Spectrometer (ROSSI-
03) sensor. The ABU database was made available online: http:
//xudongkang.weebly.com/

In the case of the ABU dataset, which is frequently utilized
for evaluating anomaly detection models [31], there is no readily
available prior target information d. To overcome this challenge
and provide prior information for HTD, target pixels were ran-
domly selected from the Ground Truth (GT) and designated as
the prior information d. To provide transparency and facilitate
further analysis, the coordinates of these selected target pixels

http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://xudongkang.weebly.com/
http://xudongkang.weebly.com/
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Fig. 13. Detection results of different comparing methods on ABU-Beach HSIs. (Left to right) OUR, CEM, ECEM, hCEM, CSCR, ACE, OSP, SMF.
(a) ABU-Beach-1. (b) ABU-Beach-2. (c) ABU-Beach-3. (d) ABU-Beach-4.

can be found in Table I. In addition, Table I provides additional
information such as the size of the targets and the number of
targets present in each dataset.

This section utilizes seven commonly used or performance-
leading HTD methods, as described in literature. These methods
include ACE [7], SMF [8], [32], hCEM [9], E-CEM [10],
OSP [13], [33], and CSCR [14]. ACE, OSP, and CEM are
traditional HTD algorithms. In contrast, hCEM, E-CEM, and
CSCR are popular extensions of CEM that have been widely
applied, with CSCR being a representative based on ML models.

Chang [34] demonstrated that the traditional 2-D ROC curve
obtained by PD and PF is inadequate or ineffective for com-
prehensive performance evaluation of detectors. This is because
both PD and PF are determined by the same threshold, which
can only be used to assess the effectiveness of detectors and not
target detectability (TD) and also not background suppressibility
(BS). Therefore, Chang introduced a three-dimensional ROC
curve and derived three 2-D ROC curves: the 2-D ROC curve
(PD, PF ), the 2-D ROC curve (PD, τ ), and the 2-D ROC curve
(PF , τ ) [34]. In this article, we will adopt this approach to
evaluate the performance of our detector.

It is worth noting that for the 2-D ROC curve (PD, PF ), a
larger value of AUC(D,F ) indicates a better detector. Similarly,
for the 2-D ROC curve (PD, τ ), a larger value of AUC(D,τ)

indicates a better detector. Conversely, for the 2-D ROC curve
(PF , τ ), a smaller value of AUC(F,τ) indicates a better detector.
Therefore, we will use the AUCOD from [34] as a comprehensive
measure to evaluate the performance of our detector.

AUCOD = AUC(D,F ) + AUC(D,τ) − AUC(F,τ). (19)

The code we used is provided by [34] and can be found at the
following online address: https://wiki.umbc.edu/display/rssipl/
10.+Download

B. Parameter Sensitivity Analysis

As mentioned earlier, the dimensionality of the latent space
refers to the number of nodes in the deepest encoding layer.
This parameter determines the quality of the learned background
spectral distribution features. Setting it too small would re-
sult in insufficient latent space information to reconstruct the
background spectra and accurately discriminate between the
backgrounds and targets in the latent space. On the other hand,
setting it too large would lead to inadequate dimensionality
reduction, potentially including irrelevant information that could
affect reconstruction and differentiation between targets and
backgrounds.

Fig. 7(a) illustrates the effect of varying latent node numbers
on different datasets. Except for Cuprite, where the detection
performance decreases as the number of latent nodes increases,
the remaining datasets generally exhibit an increasing-then-
decreasing trend. The best detection results are achieved when
the latent nodes are set to 10.

During the training process, the parameter β balances the in-
fluence of reconstruction fidelity and target distance constraints.
If it is set too large, the target constraint will affect the normal
reconstruction of background spectra, which is unfavorable for
detection. Conversely, if it is set too small, the target distance
constraint will not be effective, resulting in target reconstruction.

https://wiki.umbc.edu/display/rssipl/10.protect $
elax +$Download
https://wiki.umbc.edu/display/rssipl/10.protect $
elax +$Download
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Fig. 14. Detection results of different comparing methods on ABU-Urban HSIs. (Left to right) OUR, CEM, ECEM, hCEM, CSCR, ACE, OSP, SMF.
(a) ABU-Urban-1. (b) ABU-Urban-2. (c) ABU-Urban-3. (d) ABU-Urban-4. (e) ABU-Urban-5.

Fig. 7(b) illustrates the effects of different β values on various
datasets. Except for ABU-Beach, the remaining datasets exhibit
the best performance when β is set to 0.1. The anomaly observed
in ABU-Beach may be due to inaccurate prior target d selection,
which was confirmed by the subsequent experimental detection
results.

The parameter γ determines the distance constraint between
targets and backgrounds and is responsible for distinguishing
inaccurate samples in the pseudobackground dataset. If γ is set
too small, it will not effectively differentiate inaccurate samples
in the pseudobackground dataset. Conversely, if it is set too large,
accurate samples may be identified as inaccurate samples.

As shown in Fig. 7(c), the best detection results are achieved
when γ is set to 50.

Regarding the selection thresholds for the pseudobackground
dataset (τ1) and pseudotarget dataset (τ2), they determine
whether the background information is sufficiently selected and
whether the pseudotargets are accurate. If τ1 is set too small, it
may not include all the background information, while setting
it too large may result in including target information in the
pseudobackground dataset. The setting of τ2 depends on the
number of targets in the dataset. If the targets are sparse, τ2

should be set as large as possible to ensure the accuracy of the
pseudotarget dataset. Appropriately, setting these parameters
can yield good detection performance. Fig. 7 illustrates the
impact of these parameters on the detection AUC values. In
general, using 10 latent space nodes, a β value of 0.1, a γ value
of 50, a τ1 value of 0.5, and a τ2 value of 0.9994 perform well
on most datasets. However, the number of targets varies across
different datasets. For example, in datasets with fewer targets
like ABU Beach and Cuprite, better detection results can be
achieved when τ2 is set to a higher value.

C. Component Analysis

Table II displays the AUC values for the two components of
the final detection results and the overall detection performance.
In the first part of our method, we use (13) to calculate the dis-
similarity between targets and backgrounds in the latent space.
By reducing the dimensionality of the original spectral data, we
obtain discriminative information, which can be seen as target
detection. In the second part, the reconstruction information
from the AAE is utilized to determine whether the input data is
from the background, thus acting as a background suppression.
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Fig. 15. 3D-ROC and three corresponding 2D-ROC curves of different comparing methods on ABU-Urban HSIs. (Left to right) 3D-ROC curve, 2D-ROC curve of
(Pd, Pf ), 2-D ROC curves of (Pd, τ), 2-D ROC curves of (Pf , τ). (a) ABU-Urban-1. (b) ABU-Urban-2. (c) ABU-Urban-3. (d) ABU-Urban-4. (e) ABU-Urban-5.

While the two parts of the detection results may be superior
to the final detection result in specific cases, as demonstrated
above, they may be unstable. On the other hand, combining the
two results produces a more stable final output.

D. Detection Result

Tables III–VI present the AUC values and AUCOD of our
method and other comparison methods on different HSIs across

three different 2D-ROC curves. Figs. 8–14 display the corre-
sponding 3D-ROC curves, three corresponding 2D-ROC curves,
and detection results.

1) El Segundo and Cuprite: On El Segundo, although our
algorithm surpasses other algorithms in terms of AUC(D,F ), it
does not exhibit superior performance in terms of AUC(D,τ)

compared to OSP. Moreover, it does not outperform hCEM in
terms of AUC(F,τ) and AUCOD, as hCEM effectively sup-
presses the background through multiple detections, thereby
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highlighting the targets. In this complex background scenario,
our algorithm fails to effectively suppress the background, re-
sulting in inadequate detection results.

On Cuprite, our algorithm outperforms other algorithms in
terms of AUC(D,F ) and AUCOD. However, it does not per-
form as well as ECEM in terms of AUC(D,τ). Nonetheless,
from Fig. 9, we observe that its detection performance is not
satisfactory, as it exhibits the worst performance in terms of
AUC(F,τ).

2) Abu-Airport: On ABU-Airport, our algorithm outper-
forms other algorithms in terms of AUCOD. However, it does
not perform as well as OSP in terms of AUC(D,τ), whereas
ECEM performs better in terms of AUC(F,τ). Particularly, in
Fig. 11(a) and (c), although our initial algorithm CEM does
not perform well in delineating the pseudotarget set, we still
achieved good detection results.

3) Abu-Beach: Although our detection algorithm outper-
forms the best-performing algorithm CSCR on ABU-Beach-4,
it does not surpass CSCR’s performance on other datasets. Due
to the relatively simple background information of ABU Beach
1-3, the dictionary construction information obtained by CSCR
happens to have good target detection ability. It is worth noting
that in terms of overall performance, our algorithm is relatively
superior to other algorithms on this dataset, except for CSCR.

4) Abu-Urban: On ABU-Urban, our algorithm outperforms
other algorithms in terms of AUCOD. However, it does not
surpass ECEM in terms of AUC(F,τ). In terms of AUC(D,F ),
our algorithm is the best among other HSIs except for ABU-
Urban-1, where it does not surpass CSCR.

Although the proposed algorithm in this article does not
surpass ECEM and hCEM in terms of the evaluation metric
AUC(F,τ), these variants of the CEM algorithm exhibit high
capability in background suppression, especially in complex
background scenarios. However, compared to our methods on
other datasets, they lack stability.

CSCR performs better than other algorithms in small target
detection and inaccurate prior target spectra tasks, and it outper-
forms our proposed method on ABU-Beach-1, ABU-Beach-2,
ABU-Beach-3, and ABU-Urban-1. However, compared to these
methods, our proposed method shows robust detection perfor-
mance for targets of different scales in all scenarios. Addition-
ally, the AUC values of the three 2-DROC curves and the joint
result of the three AUC values obtained support the observation
on the El Segundo, Cuprite, and ABU datasets. Therefore, it
can be concluded that the proposed method achieves excellent
performance and high stability on most datasets.

In addition, the computation times of different methods are
shown in Table VII. All experiments were conducted on a
machine with an Intel Core(TM) i9-10850 K CPU and 32 GB
RAM. Our proposed method and ECEM were implemented
using Python 3.8.0 and TensorFlow 2.2, while the comparison
methods were implemented using MATLAB R2019a. The run-
time of detection was measured after the training phase and
recorded in seconds, as modeling the background latent space
takes several minutes due to the introduction of the network.
Table VII demonstrates that our model has lower complexity
compared to CSCR and ECEM. Although CEM has a shorter

runtime, its detection performance is inferior to our method. Our
proposed method achieves excellent detection performance with
a tolerable runtime. We have also computed the time complexity
of all the compared methods and summarized them in Table VIII.
The input image size for all methods is M ×N × L. In our
method, b denotes the number of nodes in the latent space,
while iter represents the number of layers in hCEM, which is
on average 10. For CSCR, (wout, win) form the sliding double
windows and are set to (11, 3). The values of ncem and nlayer
represent the number of CEM detectors used per layer and the
number of layers in ECEM, respectively, with values of 6 and
10. Our method, hCEM, ACE, OSP, and SMF have similar time
complexities, with hCEM achieving better performance than
CEM at the cost of higher computation time. CSCR, on the
other hand, has significantly higher time complexity compared
to our method, although it may outperform our method on certain
datasets. These results are consistent with the computation times
listed in Table VII.

V. CONCLUSION

In this article, we propose a novel approach for HTD by
leveraging adaptive adversarial learning techniques in the back-
ground latent space. Our method incorporates an AAE to extract
the background data distribution from high spectral images
and capture essential spectral information in the latent space.
Through the process of acquiring the spectral distribution, we
utilize adversarial learning to align the latent space distribution
of the background spectra with a prior distribution. This adver-
sarial learning step helps bridge the gap between the background
latent space and the desired prior distribution. To enhance the
accuracy of target reconstruction and effectively suppress back-
ground spectra, we introduce a pseudotarget set that restricts the
framework’s ability to fully reconstruct targets. By constrain-
ing the reconstruction capabilities, our method achieves more
precise target reconstruction and better suppression of back-
ground spectra. Our experimental results demonstrate that our
proposed method outperforms existing approaches, especially
when dealing with smaller datasets. We conducted experiments
on three real hyperspectral datasets, and the results highlight the
effectiveness of our approach.
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