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Assimilation of Earth Observation Data for Crop
Yield Estimation in Smallholder Agricultural Systems

Biniam Sisheber , Michael Marshall , Daniel Mengistu , and Andrew Nelson

Abstract—Crop yield estimates are an important data output
of agricultural monitoring systems. In sub-Saharan Africa, large
input requirements of crop growth models, fragmented agricul-
tural systems, and small field sizes are substantial challenges to
accurately estimate crop yield. Multisensor data fusion can be a
valuable source of high spatial and temporal resolution data to meet
the requirements of crop growth models in Africa. In this study, we
estimated crop yield in smallholder agricultural systems of Ethiopia
by assimilating Landsat and MODIS fused data in the simple
algorithm for crop yield estimation (SAFY) model. Enhanced spa-
tial and temporal adaptive reflectance fusion model (ESTARFM)
adapted for fragmented agricultural landscapes was used for data
fusion. We assimilated LAI and phenology information derived
from Landsat–MODIS fusion, MODIS and field data for compari-
son. The model was validated with in situ LAI and yield measured in
rice and maize fields during the 2019 growing season. Data fusion
minimized the yield estimation error (rRMSE = 16% for maize
and rRMSE = 23% in rice) more than MODIS (rRMSE = 20%
for maize and rRMSE = 35% in rice) because of its higher LAI
and phenology estimation accuracy. Data fusion improved the cal-
ibration accuracy of the field and crop-specific model parameters
and better captured the spatial variability of yield, which is vital
for crop production monitoring and food security in smallholder
agricultural systems in Africa. Considering the promising results,
further investigation into the transferability of the approach to
other smallholder agricultural landscapes and hybridization with
machine learning is needed for large-area applications.

Index Terms—Agricultural production, crop modeling, data
fusion, phenology, remote sensing.
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I. INTRODUCTION

CROP production is the dominant means of livelihood and
food security in smallholder farming systems [1]. Climate

change, recurrent drought, land degradation, and soil infertility
contribute to high interannual variability in crop production and
the source of food insecurity for a growing population [2]. Field-
level crop yield estimation informs the status of crop production
and food insecurity in smallholder farming communities [3].
In sub-Saharan Africa, traditional crop yield estimation meth-
ods by national governments through fieldwork are laborious,
time-consuming, and inaccurate in capturing fragmented (≤1ha)
arable lands [4]. Earth observation (EO) satellite data can be
used for spatially explicit crop yield estimation in smallholder
agricultural systems.

EO data is increasingly used for yield estimation with the
emergence of open-access high spatiotemporal multispectral
data [5]. Higher spatial resolution (≤30 m) and frequent (daily to
8-day) EO data are necessary to capture the spatial heterogeneity
of croplands in fragmented and persistently cloudy environ-
ments [6]. The Moderate Resolution Imaging Spectroradiometer
(MODIS) data have been widely used for its daily temporal
coverage in relatively homogeneous agricultural regions [7].
However, with a spatial resolution of 250–500 m, it is difficult to
discern individual fields in most African agricultural landscapes
[4]. High spatial resolution sensors such as Landsat (30 m) and
Sentinel-2 (10–60 m) are inadequate for monitoring crop growth
and development because of persistent cloud cover during the
main crop-growing seasons [6]. Multisensor data fusion is one
option to obtain frequent cloud-free observations at high spatial
resolution in such environments.

Spatiotemporal data fusion provides enhanced information
for yield estimation by integrating low spatial/high temporal
with high spatial/low temporal resolution data [4], [8]. For
instance, Gao et al. [8] fused Landsat–MODIS and Landsat–
Sentinel-2-MODIS to capture the field scale crop yield vari-
ability in the United States Corn Belt. Combined use of LAI
derived from fused data and Landsat [9], harmonized Landsat-8
and Sentinel-2 [10] improved yield estimation in Canada. These
studies indicated that data fusion offers the high spatial and
temporal resolution of EO data to improve crop yield esti-
mation. However, in smallholder farming systems, addressing
the limitation of data fusion algorithms is important to detect
the spatial and temporal crop growth changes when frequent
Landsat observations are unavailable [8]. The enhanced spatial
and temporal adaptive reflectance fusion model (ESTARFM)
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[11] has been modified with knowledge-based input and similar
pixel selection criteria aimed to capture phenology change due
to infrequent Landsat input acquisitions [12]. The modified
ESTARFM uses crop calendar information to distribute input
images and a land cover map to select similar pixels from
homogenous land cover classes. The model has been evaluated in
fragmented agricultural landscapes with ground-measured LAI,
sowing and harvest date information, where it reduced the root
mean square error (RMSE) of emergence date from 17 days
with MODIS to 7 days [12]. Integrating data fusion in crop
growth model through data assimilation can be an opportunity
to estimate crop yield in smallholder agricultural systems.

EO data have been assimilated into various process-based
crop growth models for large-area crop yield estimations [10],
[13], [14], [15], [16]. Data assimilation remains challenging
because the models require field scale inputs and frequent high
spatial resolution EOs, often freely unavailable in smallholder
agricultural systems [17]. Data assimilation in semiempirical
models, designed based on Monteith [18] light use efficiency
(LUE), have been widely used due to their relatively low data
demands [19], [20]. In this regard, the simple algorithm for
yield estimates (SAFY) [21] overcomes the limitations arising
from complicated parameterization and translates EO-derived
biochemical properties of crops into total biomass and yield [22].
Studies showed that coupling SAFY with EO improved regional
and field-level yield estimation in various agroecosystems [10],
[16], [22], [23]. Nevertheless, there is a lack of reliable yield
estimation in most African agricultural landscapes because of
the difficulty of obtaining the frequent high spatial resolution
data requirements of crop models [4]. The few studies estimating
crop yield based on empirical relationships between EO data and
ground measurements usually unable to account for crops’ bio-
physical processes and are unsuitable for applying over dynamic
geographical regions and growing seasons [1], [2], [3]. These
studies also indicated the importance of obtaining high spatial
resolution EO data to capture the small field size in Africa. Cou-
pling simple crop models with Landsat–MODIS fusion can be
a feasible solution to obtain the frequent high spatial resolution
input requirements of the crop model to improve field-level yield
estimation, which needs investigation in smallholder agricultural
systems in Africa.

This study aims to estimate crop yield by assimilating data
fusion retrieved LAI and phenology to improve spatial variabil-
ity of yield estimation in a smallholders agricultural systems in
Ethiopia. Optimizing model parameters contributing to capture
the spatial variability of crop yield is important to improve
yield estimation in smallholder agricultural systems. Thus, we
evaluated the sensitivity of calibrating the SAFY crop model
with Landsat and MODIS data fusion and MODIS without
fusion. We first determined phenological parameters and LAI
from fused data and MODIS to optimize the SAFY crop model.
Second, we present a sensitivity analysis of model parameters
to prioritize the parameters during calibration, and validated
SAFY simulation outputs (LAI, and yield) to examine the perfor-
mance of the model. Finally, we analyzed the factors affecting
the spatial variability of estimated yield to highlight parame-
ters requiring attention when estimating yield in smallholder

Fig. 1. Map of the study area showing the distribution of maize (south of Lake
Tana) and rice (Fogera) samples and Land cover map of the study area for the
2019 growing season [12].

Fig. 2. Technical workflow.

agricultural systems. An improved crop yield model based on
data fusion in the smallholder agricultural systems in this study
is vital to assist crop production monitoring and food security
analysis.

II. MATERIALS

A. Study Area

The study was conducted in major crop-growing districts
in the Lake Tana sub-basin of the upper Blue Nile basin in
Ethiopia (see Fig. 1 ). The elevation ranges from 1700 to 3500
meters above sea level, the mean temperature ranges between
13 °C to 22 °C, and the mean annual precipitation ranges
between 970 and 1900 mm. The main rainy season (locally called
“Kiremt”) occurs between June and September. It supports the
main (“Meher”) crop production. The northward movement of
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the inter-tropical convergent zone (ITCZ) drives the main rainy
season (“Kiremt”). A short and highly variable rainfall period
also occurs between March and May (“ Belg”), while October
to January (“Bega”) is the dry season that also influences Meher
crop production. Crop production is mainly rainfed and stratified
by climatology and topography. The highlands are fragmented,
contain small fields (<1 ha), and receive the largest amount
of rainfall [24]. The central districts (Bahir Dar Zuria, Dera,
and Mecha) have plains and undulating topography supporting
maize cultivation. Rice is cultivated in the lowland floodplain
east of Lake Tana (Fogera).

B. Description of the Crop Growth Model

We used SAFY for biomass and yield estimation for its
low input requirements, but comparable performance to fully
process-based crop models and data-driven methods [16], [19],
[23], [25]. Unlike most general crop models such as World
Food Studies (WOFOST), SAFY does not require soil-water
and crop parameters [13], which are often unavailable or highly
uncertain in many agricultural landscapes in Africa. The few
data and parameter requirement of SAFY is vital to minimize
model simulation error due to data uncertainty in the study area.

SAFY has been designed to estimate daily LAI, dry above-
ground biomass (DAM) and grain yield from the date of emer-
gence to the end of senescence based on the Monteith [18]
LUE model and Maas [26] leaf partitioning theory. DAM is
driven by absorbed photosynthetically active radiation (APAR),
and effective LUE (ELUE) is constrained by the daily mean
temperature (Ta) and defined as (1). APAR, the fraction of
incoming shortwave radiation captured by green plants pigments
for photosynthesis, is determined as the product of incoming
shortwave radiation (Rg), climate efficiency coefficient, and
fAPAR [see (2)]. fAPAR is estimated using Beer’s law [see
(3)], where K defines the light interception coefficient of crops.
The temperature stress factor, which represents the effect of
temperature in the conversion of intercepted solar radiation into
plant biomass is determined as polynomial degree (β) of optimal
mean daily temperature (Topt) and two extreme temperatures
(Tmax, Tmin), beyond which crop stop growth [see (4)].

DAM = ELUE ∗APAR ∗ Ft (Ta) (1)

APAR = Rg ∗ εC ∗ fAPAR (2)

fAPAR = 1− exp (−k ∗LAI) (3)

FT (Ta)=1−
{

Topt−Ta
Topt−Tmin

}
β,

if Tmin

〈
Ta

〈
Topt;=1−

{
Topt−Ta

Topt−Tmax

}
β . . . , if Tmax

〉
Ta

〉

× Topt; 0 . . . if Ta 〈Tminor Ta〉Tmax. (4)

LAI simulation is divided into vegetative and senescence
stages. During the vegetative stage, LAI increases [ΔLAI+: (6)]
as the fraction of dailyΔDAM partitioned to leaf growth through
the partitioning function [Pl: (5)] modulated by the specific leaf
area of crops (SLA). Pla and Plb are the partitioning parameters

that determine the magnitude and shape of LAI and the daily sum
of temperature (SMT) [21]. LAI tends to decrease (ΔLAI-) (7)
when SMT reaches a certain threshold (STT: Sum of temperature
for senescence) controlled by the rate of senescence (Rs). Fig. 1
shows the yield estimation workflow of the study.

Pl
(∑

Ta
)
= 1− Pla × eplb×STM (5)

ΔLAI+ = ΔDAM× Pl
(∑

Ta
)

× SLA, Pl > 0

(6)

ΔLAI− = LAI × (SMT − STT) /Rs), SMT > STT.
(7)

C. Field Data

We collected LAI, fAPAR, biomass, and yield from maize
and rice fields during the 2019 growing season. We also obtained
crop growth information (sowing and harvest dates, crop height,
and crop density) to support our analysis (see supplementary
material, Table SI). The average maize sowing date was 20 June
to 10 July for rice and harvested from 27 November to 6 Decem-
ber; maize was sowed from 5–15 June and harvested between 18
November and 23 December during the 2019 growing season.

1) LAI and fAPAR acquisition: We collected LAI and fAPAR
from 33 farm fields randomly stratified by crop type (maize
and rice) (see Fig. 1). A total of 142 LAI and 84 fAPAR
samples were measured from July to December 2019 at the
green-up stage, heading, reproductive, and maturity stages
of maize and rice crops (see supplementary material,
Table SI). We used a Decagon AccuPAR ceptometer to ob-
tain LAI and fAPAR measurements. Standard procedures
for ceptometer deployment and calibration were followed
as outlined in the device manual and as recommended
by Marshall and Thenkabail [27]. LAI and fAPAR were
sampled over 60 m × 60 m elementary sampling units
(ESUs) to account for geo-location error between the field
measurements and Landsat ground sampling distance of
30 m. Larger 90 m× 90 m ESUs would have been ideal for
the study, but were not possible because of the small sizes
of the fields. Within each ESU, ten LAI readings (averaged
from multiple positions within the canopy) were recorded
in 1 m × 1 m quadrats. The results were averaged to one
LAI reading per ESU.

2) Biomass and Yield acquisition: We harvested the grain
and straw from 16 rice farm fields in two to three subplots
within a 0.25 m × 0.25 m (0.0625 m2) area. For maize, we
used the yield component method to harvest ears from 17
farm fields and counted the number of ears per 5-m2 area,
kernel rows per ear, kernels per row, and kernel weight
after oven drying. The rice straw, grain, and maize ear
samples were dried at a temperature of 80 °C for 72 h,
and the total yield was calculated in grams per square
meter. We acquired an additional 14 rice yield samples
from farmers’ reporting.

3) Metrological data: Daily solar radiation and mean daily
temperature are the two climate-forcing variables in
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Fig. 3. Landsat and MODIS acquisition dates. The back diamond shapes indicate inputs used for prediction, while the red was used for validation.

SAFY. The incoming short-wave radiation was obtained
from NASA’s Modern-Era Retrospective Analysis for
Research and Applications (MERRA-2) (https://disc.sci.
gsfc.nasa.gov), which is a reanalysis product with a spa-
tial resolution of 0.5° latitude by 0.67° longitude. We
acquired temperature records from the National Metro-
logical Agency of Ethiopia (NMA) and a ground weather
station installed in July 2019 within a 5–25 km radius of
maize sample fields. The station collects solar radiation
(W/m2) and PAR (W/m2) measured using light quantum
sensor and temperature ( °C) with 15-min timestamp. A
comparison of the MERRA-2 radiation and the ground
measurements showed an error of 2.9 MJ/m2/day, which
can be considered reasonably accurate in the study area.

4) Crop mask: Field-level crop yield simulation requires a
crop mask. In this study, we used a land cover map (see
Fig. 1) classified in 2019 from Landsat-8 [12] using a
support-vector machine model to filter rice and maize
fields from other land cover classes. The land cover map
discriminated maize and rice from other land cover units
with an overall accuracy of 82.9%, a kappa coefficient
of 0.80, a user’s accuracy of 79%, and a producer’s ac-
curacy of 78%. We used crop calendar information and
EVI empirical thresholds similar to Bolton and Friedl
[28] to minimize misclassification and exclude other crop
types from the analysis. Crop pixels with a green up in
late June and early July (EVI > 0.25) that reached a
peak value before the end of September (EVI> 0.6) were
classified as maize after comparison against the ground
sowing date information. Rice grows uniformly only in
the Fogera floodplain area and rice pixels outside the area
were excluded. We masked maize (2120 km2) and rice
(258 km2) fields for the final pixel-level yield simulation.

D. Satellite Image Data

Level-2 terrain corrected Landsat-8 data were acquired from
the United States Geological Survey (USGS) Earth Explorer
(https://earthexplorer.usgs.gov/) for path/row: 170/52 in 2019.
To get reliable surface reflectance data, the USGS applied atmo-
spheric correction using the Landsat-8 Surface Reflectance Code

(LaSRC), improved aerosol determination [29]. We obtained
five low cloud cover Landsat images with ≤30% for data fusion
input and two for validation from May to December to cover
the rice and maize crop-growing season after assessment of the
scene level cloud cover within the boundary of the study area.
Fig. 3 shows the distribution of Landsat inputs.

The MODIS surface reflectance data (MOD09A1: V006.1)
was acquired from NASA’s LP DAAC website (https://lpdaac.
usgs.gov/) for image tile: 21/7 horizontal/ vertical over the
study period. The product consists of atmospheric, and aerosol
corrected surface reflectance spectral bands at 500-m spatial
resolution and composited over 8-day intervals. We reampled
the MODIS data to WGS84 UTM zone 37 and 30 m with nearest
neighbor to match the Landsat projection and resolution.

We used six of the Landsat and MODIS bands (blue, green,
red, NIR, SWIR1, and SWIR2) for data fusion since more bands
improve feature separability during fusion. Landsat and MODIS
were used for data fusion for consistency of the sensors’ spectral
characteristics [29]. The Landsat pixel quality and MODIS state
flag bands were used to flag low-quality pixels.

III. METHODS

A. Landsat–MODIS Fusion

Higher spatial resolution EO data are crucial to determine
the phenological and agronomic parameters for field-level yield
estimation. We used ESTARFM [11], modified for fragmented
agricultural landscapes [12], to fuse Landsat-8 OLI and MODIS
(MOD09A1) in the 2019 growing season to obtain the frequent
high-resolution data requirement. We selected pairs of Landsat
and MODIS images at two base dates (t0) before (t1) and
after (t2) the prediction dates (tp) and MODIS images at every
prediction date for Landsat–MODIS data fusion. In the modified
ESTARFM, we distributed the Landsat inputs at the vegetative,
reproductive, and maturity stages based on the maize and rice
crop calendar (see Fig. 3) to minimize the effect of reflectance
change between t0 and tp during the model prediction. When
frequent cloud-free Landsat inputs were available, we selected
the Landsat and MODIS inputs with similar acquisition dates.
When available cloud-free Landsat inputs were at different phe-
nological stages of crops, we used the MODIS composite best

https://disc.sci.gsfc.nasa.gov
https://disc.sci.gsfc.nasa.gov
https://earthexplorer.usgs.gov/
https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
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correlated with MODIS input at tp and with Landsat at the base
dates (MODIS t0–tp correlation) to compensate for phenology
change. Then, similar pixels were flagged based on the intersec-
tion of Landsat reflectance at t1 and t2 in a moving window (w)
size of 50×50 Landsat pixels and homogeneous land cover class
(c). We used the land cover map (see Fig. 1) as input to select
similar pixels from the same land cover class. Due to the small
field size and variation of management practice, adequate similar
pixels (>20 pixels) for prediction were obtained when c = 6 for
vegetative growth stage prediction and c = 4 during the other
periods. Details of the modified input and similar pixel selection
workflow are provided in the supplementary material. Finally,
the spatial weighting function (wi) and conversion coefficient
(vi) were calculated based on the original ESTARFM.

The enhanced vegetation index (EVI) was calculated [30]
from the Landsat–MODIS fused and MODIS to determine crop
phenology and estimate LAI for its resistant to saturation than
NDVI common in high-canopy crops [31]. Validation of the
fused data with original Landsat input showed acceptable accu-
racy (see Fig. S1 supplementary material and [12]).

B. Crop Phenology Detection

Accurate phenology estimation is crucial for SAFY to capture
field-level yield variability [22]. The key phenological dates and
stages required are the start of season (SOS), representing the
emergence date; the peak of season (POS), used to determine
the day of senescence (DOS) and the end of season (EOS),
which is the termination of the model simulation. We used
the Savtizky–Golay (S-G) smoothing and seasonal amplitude
(dynamic threshold) method [32] to determine the phenological
parameters with the TIMESAT software package (see suple-
mentary matterial). The phenological parameters were forced
as input values in SAFY model to improve spatial variability of
yield estimates.

C. LAI and fAPAR Estimation

Pixel level LAI was estimated from Landsat–MODIS fusion
and MODIS-derived EVI time series to calibrate SAFY parame-
ters. EVI smoothed with an S–G filter was used for LAI estima-
tion to minimize distortion from cloud, data fusion uncertainty,
and mixed pixel problems. We fitted an empirical relationship
between in situ LAI and smoothed EVI to estimate LAI time
series. The exponential function best fitted in both maize and rice
(see supplementary material, Fig. S2), and the equations were
applied to the 8-day Landsat–MODIS fused (hereafter FLAI) and
MODIS (hereafter MLAI) in rice and maize pixels from SOS to
EOS dates. We estimated fAPAR based on the Beer–Lambert
law [see (3)] to determine the light interception efficiency of
crops (k) and evaluate the pixel level calibration of the ELUE,
as fAPAR is an effective estimator of the ELUE [17], [33]. The
coefficient of determination (R2), the root mean square error
(RMSE), and the relative root mean square error (rRMSE) were
used to assess the fitness and robustness of LAI and fAPAR
estimations.

D. Data Assimilation in the SAFY Model

We used the calibration approach to assimilate FLAI and MLAI

into SAFY because it can minimize the error of EO data [34]. In
previous studies, SAFY has been modified to include soil water
content parameters [35]. However, uncertainty in soil water
content and management practice data can lead to systematic
error [36] and increased model complexity [37]. Instead, the
pixel level LAI and ELUE account for agro-environmental stress
factors [19], [22], [23]. Therefore, we maintained the simplicity
of the original model with 15 parameters by introducing a few
modifications to detect the spatial variation of crop yield in the
smallholder agricultural landscapes. First, we used the pixel-
level phenology information (D0, STT, and EOS) determined
from phenology detection method as initial input variables to
reduce the systematic error that could occur due to calibration of
several sensitive parameters [22] and to capture field level yield
variation. Second, the remaining sensitive parameters of SAFY
were calibrated using continuous (8-days) LAI estimated from
Landsat–MODIS fused. Finally, we adjusted the values of the
fixed parameters and the range of calibrated parameters through
field measurements because a narrow fit of parameter ranges
increases the calibration accuracy. The ranges of calibrated
parameters of the SAFY model used in this study are presented
in Table I. We also run the model using LAI and phenology
information derived from MODIS and field data, for comparison.

1) Fixed and input parameter values: The prior parameters
are conservative and fixed throughout the growing season,
which was determined from literature and in situ observa-
tions. DAM0 was fixed according to previous studies after
comparing it to the local area with emergence date LAI,
and SLA. The three temperature values (Topt, Tmax, and
Tmin) for canopy development were obtained for maize
and rice from studies conducted in similar crop growing
environments. We calculated the climate efficiency as the
ratio of daily PAR and shortwave radiation measured using
light quantum sensors installed in our weather station.
The light extinction coefficient (k) was calculated from
measured peak season LAI and fAPAR using (3). Harvest
index (HI), the ratio of grain yield to the total amount of
DAM generated, was calculated for rice from ground data
and based on [40] for maize.

Pixel-level phenological information determined from the
phenology detection method was used as input variables. The
periods between SOS and EOS delimit the model simulation
range. The SOS replaced D0, which determined the time for
starting LAI development and biomass accumulation. The STT,
which constrains the value of LAI decrease during the senes-
cence phase, was determined from aggregates of the mean daily
temperature between D0 and DOS.

2) Calibration of parameters: We calibrated four sensitive
parameters of SAFY (Pla, Plb, Rs, and ELUE) [21], [37]
using FLAI, MLAI, and field-measured LAI. LAI time
series were assimilated from green up to reproductive
stages (DOY 201 to DOY 297 for maize and DOY 225
to DOY 321 for rice). We used the particle swarm opti-
mization (PSO) algorithm to run at the pixel level for its
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TABLE I
INITIAL AND CALIBRATED VALUES OF SAFY MODEL PARAMETERS

simplicity, precision, and computational efficiency [16].
PSO assumes a group of m particles (m = 30 in this
study based on the previous literature) with certain speeds
without quality and size in n d-dimensional space. The
particles modify their position and velocity based on the
best point in the current generation (“personal best”) and
the best point of all particles in the swarm (“global best”).
We applied a cost function (8) minimizing the RMSE of
simulated SAFY LAI and EO estimated LAI to optimize
SAFY.

The optimization involves calibrating crop-specific parame-
ters (Pla, Plb, and RS) in the first stage and the field-specific
ELUE in the second stage. The vegetative stage parameters (Pla
and Plb) describing the allocation of leaves to biomass during
growth and the Rs, which are crop-specific parameters [21],
were calibrated separately for rice and maize. We used the cross
relationship of Pla and Plb based on (5) and the relationship
between STT and SMT between D0 to EOS for RS to adjust
the initial range of the parameters. ELUE, which represents the
crop’s ability to convert intercepted radiation to biomass and
accounts for local stress factors [19], was calibrated for sample
fields and pixel-by-pixel with LAI estimated from data fusion
and MODIS. After calibration of the parameters, SAFY was run
to simulate LAI, DAM, and yield. The steps of calibration in
PSO were as follows.

1) The initial values (position) and velocity of each SAFY
parameter to be calibrated were determined from previous
studies.

2) SAFY was run using climate inputs and initial parameter
values to obtain simulated LAI (hereafter SLAI).

3) A cost function (c) was used to assess the discrepancy
between SLAI and FLAI and MLAI for every number (n)
of available inputs between the beginning and end of
simulation period (8).

C =

√∑N

i=1

(
(sLAI − FLAI)

FLAI
/N

)
. (8)

4) The best point of the ith particles and of all particles in the
swarm was searched.

5) The position and velocity of particles were updated using
the main model of the PSO.

6) Evaluate if the iteration target is reached, which was 30
based on [16]. If the iteration target reaches the final LAI,
biomass and yield are simulated using the newly calibrated
parameters.

E. Model Evaluation and Validation

We compared the performance of SAFY calibration using
Landsat–MODIS fused and MODIS-derived LAI and phenology
information with assimilation based on field data. The simulated
model outputs were evaluated against ground-measured LAI,
biomass, and yield in rice and maize sample fields. We evaluated
the difference in the assimilation of LAI derived at Landsat (30
m) and MODIS (500 m) spatial resolution in capturing crop
yield variability with the model calibrated using field data. We
randomly selected 5% of the predicted yield pixels to compare
the influence of MODIS and Landsat–MODIS fusion-derived
phenological information in detecting spatial variability. R2,
RMSE, rRMSE and bias were used to evaluate the model
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TABLE II
COMPARISON OF SAFY PARAMETERS CALIBRATION USING DATA FUSION AND

MODIS-DERIVED LAI IN RICE AND MAIZE SAMPLE FIELDS

performance. The influence of input and calibrated parameters
in SAFY simulation was evaluated using sensitivity analysis.
Sensitivity analysis was made after optimization of SAFY to
analyze the influence of the three inputs (Rg, Ta, and LAI) and six
sensitive parameters (Pla, Plb, STT, Rs, D0, and ELUE) that drive
SAFY outputs (LAI and yield) using a one-parameter at a time
approach following Haan [42] in maize and rice samples. The
inputs and parameters varied randomly 10 000 times between
±2σ of mean values, while the other inputs and parameters were
kept at their calibrated mean. After standardizing the variables
and model outputs, we regressed the model output against the
inputs. The slope of the relationship determines the weight of
inputs and parameters on the model outputs.

IV. RESULTS

A. Calibration and Sensitivity Analysis

Table II presents the calibration accuracy of SAFY using
field, fused, and MODIS data assimilation. The optimization
was robust because the model was optimized within the max-
imum number of iterations set in this study (30) with a small
calibration error. Field data assimilation provided the least error
and good consistency of LAI simulation in relation to the cal-
ibrated LAI (RMSE = 0.33m2/m2, rRMSE = 16% for maize
and RMSE = 0.40 m2/m2, rRMSE = 26% for rice) followed
by data fusion (RMSE = 0.44 m2/m2, rRMSE = 17% for
maize and RMSE = 0.54 m2/m2, rRMSE = 26% for rice) and
MODIS (RMSE = 0.49 m2/m2, rRMSE = 22% for maize and
RMSE= 0.38 m2/m2, rRMSE= 28% for rice). SAFY had better
optimization accuracy in maize than in rice.

The calibrated D0, STT, and ELUE had high standard devi-
ations reflecting the field level variability of these parameters,
while Pla, Plb, and Rs varied by crop type and were invariant
by the calibration input sources. The phenological parameters
ingested as inputs (D0 and STT) showed higher standard devia-
tions among sample fields and were influenced by the source of
calibration inputs. Data fusion D0 showed closer agreement with
field D0, and the MODIS determined D0 was earlier than the field
and the Landsat-MODIS fusion. Unlike data fusion, MODIS’s
short vegetative and growing season length resulted in smaller
STT and RS because the STT and RS depend on accumulated
Ta during the growing stages. Moreover, the source of calibra-
tion input influenced the value of ELUE, higher using fused
(2.75 g.MJ−1 for maize and 2.3 g.MJ−1 for rice), field (2.64
g.MJ−1 for maize and 2.3 g.MJ−1 for rice) than MODIS (2.62
g.MJ−1 for maize and 2.1 g.MJ−1 for rice) data assimilations.

Fig. 4. Relationship of maximum fAPAR and calibrated ELUE using (a) data
fusion and (b) MODIS assimilation.

TABLE III
SLOPE (B1), INTERCEPT (B0), AND COEFFICIENT OF DETERMINATION (R2) OF

A LINEAR FIT OF SAFY SIMULATED LAI AND YIELD VERSUS THE INPUTS AND

CALIBRATED PARAMETERS

We also obtained a strong exponential relation between fused
calibrated ELUE and ground fAPAR (see Fig. 4), reflecting data
fusion provided more accurate field and crop-specific ELUE.

Table III shows that the climate inputs and calibrated param-
eters had a major influence on SAFY. Rg, LAI, and ELUE were
the main factors influencing SAFY because they had the highest
slope to LAI and crop yield simulations. LAI simulation was
sensitive mainly to ELUE, Pla, Plb, and Rg, whereas Rg, ELUE,
and LAI were the main determinants of SAFY yield simulation.
SAFY showed sensitivity differences in rice and maize fields to
Rg and phenological parameters determining the dynamics of
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Fig. 5. Comparison between SAFY simulated LAI and field-measured LAI in (a) maize and (d) rice; data fusion LAI in (b) maize and (e) rice, and MODIS
estimated LAI in (c) maize and (f) rice sample fields.

LAI (D0, Pla, Plb, STT, and RS). For instance, the higher effect
of Rg in rice yield than maize coincides with the METRA-2
bias compared to the ground measured Rg. The variation in the
magnitude of maize and rice LAI during the growing season
contributed to sensitivity variation to phenological parameters.

The source of LAI also showed a higher slope and sensitivity
to SAFY yield simulation. However, as shown in Fig. 5, SAFY
achieved good LAI simulation accuracy with FLAI (b) and
(e), field LAI (a) and (d), and MLAI (c) and (f), indicating
good model optimization accuracy. SAFY simulated LAI and
the calibration LAI input correspondences when the model is
run using data fusion and field data than MODIS. In maize
fields, data fusion assimilation showed higher correspondence
(rRMSE = 17%, R2 = 0.93), followed by field data assimilation
(rRMSE = 20%, R2 = 0.91), and MODIS (rRMSE = 24%,
R2 = 0.79). MODIS retrieved LAI values were lower than the

data fused retrieved, which influenced the SAFY simulation.
Improved LAI simulation accuracy of data fusion over field
data assimilation could be due to the increased frequency of
LAI input. The three data sources did not show much difference
in rice sample fields. However, compared to ground observation,
MODIS underestimated rice LAI.

B. Biomass and Yield Estimation

1) Biomass estimation: Fig. 6 presents the progression of
simulated LAI and DAM during the growing season. LAI
and DAM capture the crops’ phenological development
well; showing SAFY could estimate crop productivity
after the assimilation of EO data. The maximum increase
in DAM is in accordance with the high photosynthetic
activity at maximum LAI between DOY 225 to DOY 265
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Fig. 6. Temporal evolution of the mean simulated LAI for (a) maize and (c) rice, and simulated DAM for (b) maize and (d) rice using fused, MODIS, and field
data assimilation.

in maize fields and DOY 240 to DOY 290 in rice fields.
After the greening period, the DAM growth rate increased
significantly, and at peak growth stage (about 80 days
after sowing (DAS) in maize and 95 DAS for rice), the
DAM growth rate peaked. Biomass growth ended after the
grain-filling stage (150 DAS for maize and 160 DAS for
rice). On average, the simulated maize DAM was higher
using data fusion (2000 g/m2) than field (1600 g/m2) and
MODIS (1400 g/m2) data assimilations. The lower value
of DAM by MODIS could be associated with the lower
amplitude of MLAI input used for calibration. The steep
slope in maize LAI coincides with higher DAM and the
shallow slope in rice exhibited lower leaf allocation to
DAM.

2) Crop yield estimation: Fig. 7 shows SAFY estimated
maize and rice yield using field, fused, and MODIS
data assimilations was comparable to in situ measured
yield. On average, data fusion estimated maize (778 ±
236 g/m2) and rice (392 ± 131 g/m2) yield compared
with the mean measured yield in maize (781 ± 129
g/m2) and rice (366 ± 141 g/m2) sample fields. SAFY
based on data fusion showed lower maize estimation error
(rRMSE = 16%) followed by field (rRMSE = 17%) and
MODIS (rRMSE = 20%) data assimilation. In rice, data
fusion showed lower estimation error (rRMSE = 23%)

than field (rRMSE = 25%) and MODIS (rRMSE = 35%)
assimilation. The 1:1 regression line between simulated
and measured yield also indicates that SAFY underesti-
mated crop yields and the scatter of points indicates that
data fusion captured field-level yield variability well. As
shown in Table III, Rg, LAI, and ELUE were the main
determinants of SAFY yield that contributed to yield esti-
mation performance variation by the source of calibration
inputs. High sensitivity of SAFY to the LAI input and the
more accurate LAI retrieval from data fusion (see supple-
mentary material, Fig. S2) improved the yield estimation
accuracy of data fusion than MODIS. SAFY performed
better in maize than rice fields, regardless of the sources of
assimilation. The higher LAI estimation error in rice fields
than in maize could contributed to accuracy variation.
Good model calibration accuracy (see Table II), unlike the
low yield estimation performance in rice, can be associated
with the error in the grain partitioning parameters and field
measurement uncertainty.

C. Spatial Distribution of Crop Yield Estimation

Fig. 8 shows that both Landsat–MODIS fusion (a) and
MODIS (b) data assimilations were able to map the spatial
variation of yield estimation. Data fusion estimated a higher
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Fig. 7. Comparison between measured and simulated yield in maize using (a) field, (b) data fusion, and (c) MODIS, and rice fields using (d) field, (e) data fusion
and (f) MODIS assimilations.

mean yield (683 ± 111 g/m2 for maize and 497 ± 134 g/m2 for
rice) than MODIS (566± 76 g/m2 for maize and 496± 170 g/m2

for rice), consistent with the validation result (see Fig. 7). The
spatial variation and the difference between data fusion and
MODIS coincide with the spatial distribution of crops and their
growing environment. For instance, the maize dominant (south
of Lake Tana) had the highest yield value (≥ 700 g/m2) than rice
(Fogera) site (400—600 g/m2). In the highlands, where fields are
small and crops are mixed (Dangla, South Mecha, and Bahir Dar
Zuriya), the estimated yield was lower than in the mechanized
farming site in Koga. The zoom windows show that data fusion
better captured pixel level crop yield variability than MODIS.

D. Factors Influencing Spatial Variability of Yield

Fig. 9 shows that the input LAI and ELUE were the most
important predictors of SAFY yield and the main factors for
field/pixel-level yield variability. SAFY estimated yield showed
a higher correlation with LAI and ELUE when the model was
run using fused data than MODIS. Thus, consistent with the
sensitivity analysis result, field-level calibration of ELUE using
data fusion-derived LAI contributed to better estimation of crop
yield. LAI-yield relation was also stronger with data fusion (a)
than MODIS (b) assimilations, possibly due to the high spatial
resolution capturing small crop fields. As shown in the subsets
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Fig. 8. Spatial distribution of crop yield map using (a) Landsat—MODIS fusion and (b) MODIS data assimilations

Fig. 9. Correlation of SAFY simulated yield with maximum LAI derived from (a) data fusion, (b) MODIS and with (c) data fusion and (d) MODIS calibrated
ELUE on maize and rice sample fields.

in Fig. 8, the footprint of sample fields’ mean LAI (60 m) is
represented by about two Landsat pixels, where MODIS could
not distinguish crop fields. Moreover, the 1:1 line using data
fusion [see Fig. 9(c) and (d)] suggests pixel-level calibration of
ELUE captures the management and environmental drivers of
crop growth variation among smallholder farmers.

Fig. 10 shows the effects of phenology information deter-
mined from data fusion and MODIS in crop yield estimates. An
earlier emergence (days before DOY 175) produced a higher
maize yield estimation than a late emergence date (days af-
ter DOY 180) when the model was run using fused data (a).
However, early emergence date detection with MODIS did not
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Fig. 10. Violin plot showing the distribution of crop yield to pixels showing early and late phenology detection from data fusion in (a) maize and (c) rice and
MODIS in (b) maize and (d) rice for 5% of the cropland pixels.

contribute to high maize yield estimation because the grain
filling occurred when the incoming radiation was lower (August
to early September), resulting in a lower yield estimate. The
late MODIS D0 contributed more to higher maize (b) and rice
(d) yields than early D0. Early D0 from data fusion in maize (a)
estimated a higher yield, possibly because of less moisture stress
during the grain filling period (September to October) caused
by the early end of the rainy season. Water stress was not an
issue for rice due to abundant soil moisture in the rice-growing
floodplain, and pixels with late D0 (after DOY 205) produced
a higher yield than pixels with early D0 (DOY before 195) in
both MODIS and data fusion assimilations. Late D0, after the
progress of the rainy season (mid-July), could also contribute
to an increase in the water volume in the early rice growth
stage.

V. DISCUSSION

Our study addressed a major obstacle in agricultural research:
the field-level data requirements of crop growth models and
the spatial and temporal mismatch of EO data. Assimilating
Landsat–MODIS fused data in a semiempirical model, meets
the high spatial resolution and temporal resolution input require-
ments to improve field-level yield estimation in smallholder agri-
cultural systems in Africa. We assimilated LAI and phenology
information derived from fused (30 m), MODIS (500 m), and

field data in SAFY for comparison. The main findings of the
study were as follows:

1) field and environment-specific parameters of SAFY (D0,
STT, and ELUE) were influenced by the source of calibra-
tion input, unlike the crop-specific parameters (Pla, Plb,
and RS);

2) improved LAI and phenology estimation accuracy through
data fusion increased calibration and yield estimation ac-
curacy of the model;

3) late end of season detection using data fusion was asso-
ciated with higher estimated yield, while an early start of
season detection with MODIS resulted in lower estimated
yield;

4) yield estimation performance showed variation by crop
type, and was higher in maize than rice and according to
the environment.

Our results revealed that calibration using Landsat–MODIS
fusion increased crop yield estimation accuracy and captured
spatial variability in yield in smallholder farm fields, which is
crucial for crop production and food security monitoring.

A. Assimilation of LAI and Phenology Information in SAFY

SAFY was sensitive to the Rg, LAI inputs and the parameters
determining the dynamics of LAI and yield (Pla, Plb, Rs, D0,
STT, and ELUE). The calibrated Pla, Plb, and Rs parameters
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varied by crop type (rice and maize) and did not vary at the field
level and by the source of LAI input for calibration. Our results
contradicted [20] and [22], who argued that all these parameters
are field-specific and their value changes when calibrated with
different EO data sources. We fixed the growing season length
using phenological dates detected from EO. The field-level
variation of the model outputs was controlled by field-to-field
calibration of the ELUE and the phenology parameters (D0 and
STT). Unlike the findings by [21], we found a higher standard
deviation of STT (133 °C), suggesting STT is a field-specific
parameter because of the large management (sowing date, fer-
tilizer application, and weed control) and environmental factors
(weather, soil fertility, and topography) variation in our area.
Moreover, the strong correlation of the most sensitive parameter
of SAFY (ELUE) with the maximum fAPAR indicates the
possibility of effectively estimating it from EO data, which
minimizes the computational cost during field-level calibration,
consistent with previous studies [10], [22]. Therefore, assimila-
tion of EO data in the crop growth model contributed to obtain
the field-level parameters, which is important for large area crop
yield estimation in data scarce regions in Africa.

B. Crop Yield Estimation

The overall yield estimation accuracy of SAFY increased
when the model was calibrated with data fusion and field data
rather than MODIS assimilation. Compared to the in situ mea-
surement, data fusion provided lower yield estimation error
(rRMSE = 16% for maize and rRMSE = 23% in rice) than
field data (rRMSE = 17% for maize and rRMSE = 25% in rice)
and MODIS (rRMSE = 20% for maize and rRMSE = 35%
in rice) assimilations. Our yield estimations using data fusion
assimilation for maize (7 t/ha) and rice (4.4 t/ha) agree with
observations by [2] in the study area. Assimilation of fused
data in SAFY model captured the large yield variability of
the smallholder farms in the study area, which is important
for large-area applications. The growth of multiple crops with
similar phenology and difficulties in obtaining field-level infor-
mation are the main challenges for the lack of reliable yield
estimation in most smallholder systems across Africa [4]. We
obtained frequent observation (8-days) through data fusion at
30-m spatial resolution to determine phenological parameters
and the continuous LAI improved the model yield estimation
accuracy. Calibrating the field and crop-specific parameters
at MODIS spatial resolution could lead to uncertainty due to
the mix of other vegetation classes in smallholder agricultural
systems [17], [43]. For instance, Gao et al. [8] reported that
even if MODIS (250 m) captures yield variability in relatively
homogeneous agricultural landscapes in Central Iowa, USA,
yield estimation still improved when MODIS was fused with
Landsat. It was also not feasible to obtain field-level information
using ground measurement for the important model variables
(LAI, D0, and ELUE), which limits the applicability of field data
assimilation. Yield estimation performance difference between
fused and field in our study was related to the number of
LAI observations n = 3—4 in field data and n = 14 for data
fusion assimilations. Precise determination of model parameters

such as ELUE was attained when the model was calibrated
using frequent data fusion observations, consistent with [10].
However, a recent study [14] indicated that a higher weight for
assimilation of jointing and anthesis stages LAI improved wheat
yield in the WOFSOT model and acceptable yield estimation has
been reported with observations between booting and heading
stages [15], which can be investigated and considered when
observations are limited.

The source of calibration LAI input influenced crop yield
prediction performance. The higher deviation of LAI, DAM,
and yield simulated based on MODIS compared to ground data
was associated with the empirical model to estimate LAI. This
finding is similar with [25] and [44], in which under and overes-
timation in SAFY is attributed to the accuracy of EO-estimated
LAI. Data fusion estimated higher LAI than MODIS in rice and
maize fields, which resulted in a higher estimated yield value
using data fusion. Data fusion’s ability to capture small crop
fields improved the LAI estimation accuracy more than MODIS.
For instance, the footprint of our ground LAI measurement at
the farm field scale (60 m × 60 m), which better coincides
with the LAI retrieved from Landsat than from MODIS, in-
fluenced the crop yield estimated. Yield estimation accuracy
generally decreased when the spatial resolution decreased from
30 to 500 m. In the small and irregular farm fields, however,
data fusion algorithms could result in the loss of spectral infor-
mation of the target crops [11]. In this regard, Dong et al. [9]
indicated that LAI estimated from fused data showed a slight
deviation from LAI derived from the actual image. Similar pixel
selection is the most important step in deriving the relationship
between the high-resolution and coarse-resolution inputs in data
fusion. We integrated a land cover map to improve similar
pixel selection to capture reflectance change in the fragmented
agricultural landscape. Therefore, the Landsat–MODIS fusion
maize and rice LAI estimates showed more consistency with
field measurements than MODIS [12]. Nevertheless, data fusion
uncertainties and cloud cover are still potential challenges to use
optical remote sensing in yield estimation in Africa. As a result,
there is a growing interest in integrating synthetic aperture radar
(SAR) and optical remote sensing for crop growth monitoring
and yield estimation [14], [20] that could be further investigated
in smallholder agricultural systems.

Phenological parameters derived from data fusion improved
the SAFY simulation. Phenology is an important parameter in
crop growth models, which are usually unavailable at the re-
quired spatial scale and accuracy in smallholder farms [22]. Rel-
atively accurate phenology parameters from Landsat–MODIS
fusion, consistent with ground sowing and harvest date infor-
mation [12], contributed to improved crop yield estimation.
Studies also reported that accurate crop phenology detection
from EO is important in crop modeling because phenology
controls crop biomass distribution [17], [25], [37]. Moreover,
optimizing SAFY using EO-derived phenology reduced yield
estimation uncertainty due to the use of generalized regional crop
calendar information. Hence, integrating EO-derived phenology
information minimized model uncertainty and contributed to
capturing the large management and environmental variation in
smallholder farms.
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The length of the growing season detected by data fusion and
MODIS contributed to yield estimation variation of fused and
MODIS data assimilations. Because the timing of phenological
parameters (D0, STT, and RS) determines the magnitude of
simulated LAI, the length of the season and the partitioning to
yield, consistent with the findings in [17]. The longer growing
season detected by data fusion means a more extended grain
filling period and a higher DAM and yield estimation, while
the short growing length season from MODIS means a short
grain filling period and quick senescence (small STT and RS),
resulting in lower yield. We also observed that pixels with
early D0 estimated low yield, probably because crops with short
growing season lengths absorb less PAR, as confirmed by [17].
The result agrees with Kang and Özdoğan [35], who found that
phenological shift causes a significant reduction in estimated
yield.

Biomass and yield prediction accuracy was higher in maize
than in rice, regardless of the source of data assimilations.
The first possible reason could be the uncertainty of the fixed
parameters. Unlike rice, we obtained various maize experiments
based on SAFY and other light efficiency-based models to
parameterize the fixed parameters [19], [22], [40]. Although the
calibration accuracy of rice was good, we found a higher DAM
and yield error, implying that the fixed parameters influencing
biomass and yield portioning (DAM0 and HI) contributed to the
error. It was also reported that SAFY performs poorly when yield
is greatly limited by stress due to weeds, pests, and diseases [45].
Although weeds are a common problem, the higher sensitivity of
rice to weeds than maize could be the second reason for SAFY’s
low performance in rice. The third reason for the high yield
estimation error using data fusion in rice could be the data fusion
error. Validation of the modified ESTARFM showed higher data
fusion error in rice fields because of the large spatial variation of
phenology during the vegetative stage, influencing similar pixel
selection when the Landsat input was far from the prediction date
[12]. The difficulty of obtaining pure and homogeneous pixels
in the small agricultural field and the lack of frequent cloud-free
Landsat input could result in data fusion uncertainty and yield
estimation error.

SAFY generally underestimated crop yield compared to
ground observation regardless of the inputs used for calibration,
and MODIS underestimation was larger than field and data
fusion assimilations. We found a strong correlation between
simulated crop yield and peak growth stage LAI, indicating
that yield estimation error was not due to calibration error
[35]. Moreover, we only calibrated four parameters of SAFY
(Pla, Plb, RS, and ELUE), and the errors were not due to the
calibration of several sensitive parameters [20]. Therefore, the
source of error could be associated with ground measurement
errors and model uncertainty. The higher DAM error in all three
sources of calibration inputs implies SAFY simulation error
could be due to field measurement error resulting from the high
within-field crop growth variability. Moreover, the simplicity
of SAFY to estimate DAM as a function of photosynthetically
active radiation could also be the source of uncertainty. Studies
pointed out that SAFY has a poor capability of correlating LAI
compared to complex crop models [25], [44]. Alternatively,

studies indicated that machine learning approaches effectively
estimate crop yield from EO data [5], [46]. Zhao et al. [23]
showed that machine learning approach (RMSE of 1.13 t ha−1

and R2 of 0.47) and SAFY (RMSE of 1.33 t ha−1 and R2 of 0.46)
provided similar results. The authors also showed that SAFY has
been integrated with machine learning methods to simulate the
large number of training sample input requirements of machine
learning approaches. Therefore, machine learning and a hybrid
method integrating learning methods with simple crop models
such as SAFY can be potential approaches to estimate crop yield
every growing season in smallholder systems in Africa, which
is an important research outlook.

C. Spatial Variability of Yield Estimation

Field-level calibration of ELUE and integration of pheno-
logical parameters determined from data fusion contributed to
detecting spatial variation of yield estimates. The spatial varia-
tion coincides with the crop type distribution, higher in maize
than rice; and with management practice, higher in mechanized
farming and lower in the mixed crop and fragmented locations.
The large spatial variation of D0 and STT, which correspond
to the large sowing date and management practice variations
of smallholder farmers, contributed to the spatial variation
of yield estimate. The strong correlation of ELUE with crop
yield (R2 = 0.95) implies that ELUE was the main factor for
spatial variability of crop yield because ELUE accounts for
yield-limiting factors such as water and nutrient stress in SAFY
[35]. Our result confirms that including water balance in the
SAFY model is unnecessary as long as ELUE is calibrated with
EO-derived LAI [19], [37]. However, stress factors during the
grain filling stage, such as high temperature, pests, and disease,
could also lead to discrepancies between calibration and yield
prediction accuracy [45]. Thus, joint assimilation of parameters
that determine yield (e.g., soil moisture) and integration of yield
in the calibration process could further improve yield prediction,
which is worth further investigation.

In general, the major contribution of our study is the as-
similation of LAI and phenology information determined from
Landsat–MODIS fusion to capture the spatial variation of crop
yield in smallholder agricultural systems, which could con-
tribute to crop production monitoring. Silvestro et al. [16]
showed that despite the smaller number of parameters, SAFY
provided more accurate yield estimation than the AquaCrop
model and estimated comparable results with the complex crop
models [23]. SAFY has been proven effective in yield estimation
for various crops in previous studies, but to our knowledge, this is
the first to test the model in rice and a highly fragmented tropical
agricultural landscape in Africa. In light of the promising results,
it is important to address the sources of model uncertainty
and test the transferability of the model in space and time for
large-area applications.

VI. CONCLUSION

The large input requirements of crop growth models and
the prevalence of fragmented landscapes are fundamental chal-
lenges of crop yield estimation in sub-Saharan Africa. The
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study calibrated a semiempirical model (SAFY) using EO data
to improve crop yield estimation in a smallholder agricultural
landscape in Ethiopia. We used a fusion of Landsat and MODIS
data to meet the high spatial and temporal resolution EO data re-
quirements of SAFY. LAI and phenology information estimated
from Landsat–MODIS fusion was assimilated, and the result
was compared to MODIS and field data assimilations. Validation
using ground data showed that data fusion assimilation provided
more accurate field-level yield estimation due to its phenology
and LAI estimation accuracy.

Among the sensitive parameters of SAFY, D0, STT, and
ELUE were crop and field-specific and influenced by the source
of calibration inputs. Data fusion contributed to the accurate
calibration of the crop and field-specific parameters, which
capture the spatial variability of crop yield. Moreover, we ob-
tained smaller LAI, DAM, and yield estimation errors compared
to ground measurement when using data fusion than using
MODIS because data fusion detected the small crop fields of
the study area. Although field data assimilation provided good
yield estimation, it is inapplicable for large-area estimates. The
improved yield estimation performance using data fusion in
fragmented agricultural landscapes could be a valuable input
for crop production monitoring and food security analysis.
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