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CSPPartial-YOLO: A Lightweight YOLO-Based
Method for Typical Objects Detection in
Remote Sensing Images

Siyu Xie"”, Mei Zhou

Abstract—Detecting and recognizing objects are crucial steps
in interpreting remote sensing images. At present, deep learn-
ing methods are predominantly employed for detecting objects
in remote sensing images, necessitating a significant number of
floating-point computations. However, low computing power and
small storage in computing devices are hard to afford the large
model parameter quantity and high computing complexity. To ad-
dress these constraints, this article presents a lightweight detection
model called CSPPartial-YOLO. This model introduces the partial
hybrid dilated convolution (PHDC) Block module that combines
hybrid dilated convolutions and partial convolutions to increase
the receptive field at a low computational cost. By using the PHDC
Block within the model design framework of cross-stage partial
connection, we construct CSPPartialStage that reduces compu-
tational burden without compromising accuracy. Coordinate at-
tention module is also employed in CSPPartialStage to aggregate
position information and improve the detection of small objects
with complex distributions in remote sensing images. A backbone
and neck are developed with CSPPartialStage, and the rotation
head of the PPYOLOE-R model adapts to objects of multiple
orientations in remote sensing images. Empirical experiments using
the dataset for object deTection in aerial images (DOTA) dataset
and a large-scale small object detection dAtaset (SODA-A) dataset
indicate that our method is faster and resource efficient than the
baseline model (PPYOLOE-R), while achieving higher accuracy.
Furthermore, comparisons with current state-of-the-art YOLO
series detectors show our proposed model’s competitiveness in
terms of speed and accuracy. Moreover, compared to mainstream
lightweight networks, our model exhibits better hardware adapt-
ability, with lower inference latency and higher detection accuracy.

Index Terms—Deep learning, detection,

convolution, remote sensing image.

object partial

I. INTRODUCTION

EMOTE sensing images possess a broad range of applica-
R tions, including Traffic Monitoring [1], Maritime Rescue
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[2], and Aviation Control [3]. The development of deep learning
technology has resulted in more intelligent and efficient analysis
of remote sensing images, decreasing the reliance on manual
work. Object recognition and detection are fundamental tasks
in computer vision and are core components of the analysis of
remote sensing images.

Deep learning-based object detectors can be categorized into
two groups: 2-stage detectors, including R-CNN [4], Mask
R-CNN [5], Faster-RCNN [6], and others. In 2014, Ross et al.
proposed R-CNN as the first two-stage object detection algo-
rithm. This method first utilizes selective search to extract can-
didate frames, then feeds them through a convolutional neural
network to extract target characteristics, and performs support
vector machine classification and frame calibration on the tar-
get characteristics. On the other hand, single-stage detectors,
including YOLO [7] and SSD [8], treat the detection process
as regression, eschewing the region proposal stage to reduce
computation time, thus achieving faster detection. Joseph et al.
introduced YOLO in 2015, dividing the image into a grid and
providing predicted bounding boxes in each division. Finally, re-
dundant predicted boxes were removed using the nonmaximum
suppression (NMS) method. YOLOV2 [9] expands the detection
dataset through joint training, YOLOvV3 [10] uses Darknet53
as a backbone network to boost detection performance, and
YOLOV4 [11] utilizes CIoU loss for predictive frame filtering
to improve the model’s convergence. YOLOvVS [12] uses the
feature pyramid network (FPN) and pixel aggregation network
(PAN) structure in the neck network, achieving superior speed
with equivalent precision to YOLOv4 due to its lighter model
size. YOLO-X[13] reintroduced the anchor-free technique to the
YOLO series, proposing the SimOTA label assignment method
and decoupled detection head to separate classification and loca-
tion issues, thereby producing higher quality predicted bounding
boxes. PPYOLOe [14] introduced advanced technologies such
as reparameterization, redesigns the backbone network, and
achieves a good balance between speed and accuracy on the
MS COCO dataset. In addition, the PPYOLOE-R [15] model is
more suitable for multidirectional object distribution in remote
sensing images by designing a detection head for rotating boxes
and angle loss.

In spite of achieving good results on general datasets, object
detectors face challenges including large parameter volume and
high computational limits and limited storage space required for
the surveillance applications in real time. Although the use of
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deep and wide pruning can decrease the model size as seen
with YOLOvVS model versions like L, M, S, and N, simple
pruning of the model depth and feature map channel numbers
can weaken model representation ability, which results in per-
formance degradation. While objects in remote sensing aerial
perspective have small size, the model can easily lose important
features during the process of downsampling, therefore extract-
ing adequate features for accurate detection becomes difficult.

In order to address the real-time processing issue of object
detection in remote sensing image interpretation, many scholars
have designed lightweight object detection models based on the
characteristics of remote sensing images. Guo et al. [16] used
depthwise separable convolution to replace standard convolu-
tion, reducing the model’s parameter volume. They also pro-
posed the ACON activation function, which effectively avoids
neuronal death in large gradient propagation. In addition, they
introduced the DSASFF module, which effectively aggregates
the target properties at different scales that are neglected during
feature fusion. Cui et al. [17] introduced prior knowledge of the
Laplacian operator into the Bottleneck and added a sharp value
transition based on the original tensor to enhance the low-level
feature tensor that contains small target contours. They con-
currently decreased the parameter volume and computational
complexity of the model by employing multiple small convolu-
tional kernels in place of larger ones. Zhang et al. [18] used the
ShuffleV2 module to construct a lightweight FPN network that
fully fuses shallow and deep features to generate an abundant
fused feature map with rich object position information, thereby
improving the ability to locate targets of the original model.
Lyu et al. [19] took inspiration from Liu’s [20] utilization of
large kernel convolution to enhance the detector’s performance.
However, in order to balance efficiency, they employed depth-
wise separable convolution. The RTMDet model they designed
achieved a good balance between parameters and accuracy.

In comparison with the aforementioned methods, this arti-
cle focuses on the redundant feature maps in the process of
model inference. Inspired by [21], this article uses pointwise
convolution and partially connected layers to construct module
stages and improve the PP'YOLOE-R model, thereby proposing
a lightweight and efficient object detector called CSPPartial-
YOLO. Specifically, the primary contributions of this research
are as follows:

1) We present the partial hybrid dilated convolution (PHDC)
Block module, which combines partial convolution and
pointwise convolution to fully utilize the redundancy of
the feature map and reduce the model’s parameters and
burden on computation. In addition, hybrid dilated con-
volutions are used in the partial convolution to reduce the
computational burden on large sized convolution kernels
as well as to enlarge the receptive field to accurately
extract small targets in complex background of remote
sensing images and improve the problem of long-range
dependency.

2) The CSPPartialStage is constructed by integrating the
PHDC Block with partial convolution and CSPNet to
decrease computing complexity while simultaneously
preserving comparable precision. At the end of the
CSPPartialStage, a coordinate attention (CA) module

is appended to enhance the module’s object represen-
tation capability. A new backbone and neck were es-
tablished using the CSPPartialStage, and a lightweight
and efficient remote sensing image rotation box detector
named CSPPartial-YOLO was developed based on the
PPYOLOE-R detection head.

3) Undertaken experimental studies on typical objects in
remote sensing images in the dataset for object deTection
in aerial images (DOTA) dataset and a large-scale small
object detection dAtaset (SODA-A) dataset. In terms of
accuracy, the proposed model was compared with com-
mon YOLO models YOLOvVS YOLO X and RTMDet. The
proposed model demonstrates superior results in terms of
both volume and speed. In addition, the backbone of the
proposed method exhibits dual advantages of both accu-
racy and speed when compared with common lightweight
backbones such as MobileNet v3, ShuffleNet v2, and
GhostNet.

The rest of this article is organized as follows. Section II
provides a review of relevant research on lightweight backbone
networks and mechanisms of attention. Section III presents a
detailed description of the proposed model. Section IV presents
the experimental details, including the findings and discussions
from both ablation experiments and comparative experiments.
Finally, Section V of this article summarizes the key findings
and presents the conclusion of the study.

II. RELATED WORK
A. Llightweight Backbone Networks

In recent years, deep neural networks have been advancing
toward deeper and larger models, achieving continuous accuracy
improvement across multiple benchmark datasets. However, a
high number of parameters and computations pose a challenge
for model applications. Researchers have explored lightweight
backbone networks in an attempt to reduce the number of model
parameters and computations, while still maintaining similar
accuracy. In 2017, Howard et al. [22] introduced depthwise
separable convolution (DSC) in MobileNet V1, decomposing
standard convolution into depthwise convolution and pointwise
convolution to effectively reduce the number of parameters and
computations in convolutional layers. That same year, Shuf-
fleNet V1 [23] used group convolutions to reduce computation
and employed the ChannelShuffle operation to enhance the
interchannel information flow, resulting in better performance
compared to MobileNet V1. In 2018, ShuffieNet V2 [24] pro-
posed four guidelines to optimize the model, further increas-
ing the inference speed. In 2020, Han et al. [25] discovered
the redundancy in feature maps via experiments and proposed
GhostNet, which employed cheap operations to replace standard
convolutional layers, generating additional feature maps while
reducing the calculation cost. In 2023, Chen et al. [21] proposed
the Partial Convolutional Module, which employs a combination
of partial convolution and point convolution to reduce the com-
putational cost while addressing feature redundancy. Building
on the partial convolutional module, this study employs hybrid
dilated convolution to expand the receptive field and enhance
the module’s feature extraction ability for small objects.
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B. Attention Mechanism

Attention is a cognitive mechanism that imitates human ability
to selectively focus on specific information and amplify key
details to grasp the essence of data. Deep learning models
employ attention mechanisms to improve their performance.
Visual attention mechanisms in deep learning are classified into
channel attention mechanisms and spatial attention mechanisms.
The squeeze-and-excitation (SE) [26] block is a well-known
module that performs dynamic attention on channel features. It
utilizes global average pooling to compress the channels into a
single value, which is then subject to nonlinear transformations
via a fully connected network before being multiplied with the
input channel vector as weights. ECA [27] reduces model redun-
dancy and captures channel interactions by removing the fully
connected layer and leveraging 1-D convolutional layers. Both
SE and ECA apply attention mechanisms in the channel domain
while ignoring the spatial one. CBAM [28] combines channel
and spatial attention by exploiting large kernel size convolutions
to aggregate positional information within a certain range. Nev-
ertheless, this design choice leads to increased computational
costs, making it less suitable for developing lightweight models.
In addition, a single layer with a large convolutional kernel can
only capture local position information instead of global position
information. Coordinate attention (CA) [29] captures precise
positional dependencies by embedding positional information
into channel attention. This approach offers benefits for dense
prediction tasks in lightweight networks. Incorporating the CA
module into the CSPPartialStage results in an improvement in
detection accuracy of typical targets in remote sensing images,
at an acceptable computational cost.

III. PROPOSED METHOD

The CSPPartial-YOLO framework is based on the
PPYOLOE-R model, but replaces the computationally resource-
intensive RepVGG Block with the PHDC Block in the CSP-
Stage. Furthermore, it embeds the coordinate attention module
(CA) in the CSPStage and proposes the lightweight CSPSPar-
tialStage feature extraction module. The model optimizes the
depth ratio of different stages to construct the CSPSPartialNet
backbone network. In addition, it employs the CSPPartialStage
and SPP module to construct a bidirectional feature pyramid for
enhancing the fusion of multiscale features. Fig. 2 shows the
main structure of the proposed model comprising the backbone,
neck, and detection head. The input is an image with three
channels of 1024 x 1024 pixels. The backbone comprises four
CSPSPartialStages with a Stem Block preceding them. The
output of the last three CSPSPartialStages serves as both the
output of the backbone and the input of the fusion module,
with feature map sizes of 128 x 128, 64 x 64, and 32 x 32,
respectively. Then, the lightweight bidirectional feature pyramid
produces uniform feature maps to the detection head. Finally,
the model employs the PPYOLOE-R rotation detection head
to obtain target position, direction, and category information
at multiple scales. The PHDC block is the cornerstone of the
model construction. It combines hybrid dilated convolutions
with partial convolutions efficiently to extract information at
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Fig. 1. Comparison of feature maps after the first few layers of convolution in
a well-trained neural network. The last image represents the input image, and
the circles with the same color indicate the parts with similar features.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Backbone:
CSPPartialNet

Prediction:
Multiclass Rotated Bounding Box

DpaN

Nddlereddsd

:peaH

peaH pajejoy

21504 predictions
* -

Post Process [

Fig. 2. Flowchart of the proposed method.

low computational cost, thereby enabling our model to achieve
advantages in both speed and accuracy.

A. PHDC Block

Typical convolutional operations usually generate multichan-
nel feature maps. Many studies [25], [30] have shown redundan-
cies among these feature maps. Fig. 1 shows the redundancy of
the feature maps.

Partial convolution is a lightweight convolutional operator
that efficiently uses redundancies in feature maps, thereby re-
ducing computational costs. Fig. 7(a) illustrates the workflow
of partial convolution, which selectively applies convolution
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Fig. 5. Details of rotated detection head.

operations to a portion of the input channels for spatial feature
extraction while keeping the remaining channels unchanged.
For sequential memory access, we consider the first or last
consecutive C), channels as representatives for the entire feature
map to perform computations. The number of computations for
a single forward propagation can be calculated as follows:

FLOPs =h xw x C} x k. (1)

Here h and w represent the height and width of the output
feature map, C), represents the number of channels involved in
the convolution operation for partial convolution, and k repre-
sents the size of the convolution kernel. It can be seen that the

computational cost of partial convolution is (%) of that of

standard convolution.

Partial convolution has a limited capacity to capture long-
distance dependencies, which can impede small target detection
in remote sensing images. Expanding the receptive field by
utilizing a large convolution kernel such as 5 x5 or 7 x 7
introduces more contextual correlation features to the model.
Nevertheless, convolutional layers using large kernels result in
an exponential increase in computational burden, challenging
our aim of designing a lightweight model. To address this
limitation, we use a hybrid dilated convolution (HDC) to replace
the regular convolution operation in partial convolution, inspired
by [31]. An affordable increase in computational complexity
allows us to achieve a wider receptive field. Fig. 6 illustrates
the size of the receptive field of three consecutive convolution
layers using different dilation rates.

To ensure that the hole convolution group adequately covers
the space range while avoiding the sampling loss caused by
continuous hole convolutions on the input feature map, it is
crucial to carefully select the combination of dilation rates used
in HDC. Fig. 6(b) illustrates the adverse effects of improper hole
rate combinations, which can cause HDCs to miss adjacent pixel
points and result in incomplete feature sampling. In contrast, the
[1, 2, 5] dilation rate combination in HDC, as used in this study,
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Fig. 6. Heatmap color, ranging from light to dark, indicates the number of
times a single pixel involved in computation, among which (a) represents a
traditional 3 x 3 convolution. As seen from the figure, dilated convolutions with
hybrid dilation rates have a more comprehensive range of semantic understand-
ing than the standard 3 x 3 convolution, and can capture more distant and highly
related features. Other combinations of dilation rates are shown in subfigures
(b), (), and (d). (a) [1, 1, 1]. (b) [2,2,2]. (¢) [1, 2, 3]. (d) [1, 2, 5].

improves this situation by encompassing a larger receptive field
range and providing comprehensive information on all related
pixel points in adjacent areas, as compared with the [1, 2, 3]
dilation rate combination shown in Fig. 6(c). Moreover, when
combined with partially convolutional module, as displayed in
Fig. 2, the HDC with [1, 2, 5] dilation rate combination further
enhances the performance of the proposed network.

Partial convolution leads to an inevitable loss of channel
information due to its inability to involve all channel features in
convolutional operations. Nonetheless, this channel information
loss can be mitigated by utilizing pointwise convolution after
partial convolution. To achieve this, we apply pointwise convo-
lution to the output of partial convolution, then follow up with
a BatchNorm layer and a rectified linear unit (ReLU) activation
function, before finally restoring channel dimensionality using
pointwise convolution, as shown in Fig. 8(b). To help avert
gradient vanish and explosion issues caused by excessively deep
convolutional layers, we adopt residual connections as part of
our PHDC Block module, which is consistent with the ResNet
method [32]. The comparison in Fig. 8 reveals the main building
blocks utilized in constructing the stage of the PPYOLOE-R
model and the PHDC block that forms our model stage. Despite
the implementation of a reparameterization hierarchy in the
PPYOLOE-R model, its building blocks exhibit high compu-
tational complexity. In contrast, the PHDC block in our model
features a simple and efficient structure.

Compared to the inverted residual module used in Mo-
bileNetV2 [33], the PHDC Block employs only BatchNorm
layer and ReLU activation without performing depthwise convo-
lution after channel expansion with pointwise convolution. This
approach effectively avoids the frequent memory access caused
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Fig. 7. Improve the PartialConv with HDC [1, 2, 5]. (a) Partial convolution
with a single 3 x 3 convolutional layer. (b) Partial convolution with HDC ([1,
2, 5] dilation rates combination).
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Fig. 8. Comparison of the basic block in PPYOLOE-R and the PHDC block
in our model. (a) Basic block in PP'YOLOE-R. (b) PHDC block.

by multiple groups of depthwise convolution, thereby increasing
the operation efficiency of the module. Moreover, after training
is completed, the BatchNorm layer can be easily merged into
adjacent convolutional layers, further simplifying the network.

B. CSPPartialStage

1) CSP structure with PHDC Block: Deep convolutional
neural networks often involve dense convolution operations as
the channel numbers expand, which can exponentially increase
the computational cost of the model. This, coupled with a single
feature propagation path, can cause repeated usage of gradient
information, resulting in redundancy and inefficient network
training. To address this issue, CSPNet [34] separates the gradi-
ent flow to propagate through different network paths, ensuring
that the gradient information obtained has greater correlation
differences. Both YOLOvVS [12] and YOLOX [13] utilize a
CSPNet-like structure to reduce computational burden without
compromising accuracy. In our research, we implemented this
method to design the main module.

Fig. 3 illustrates the structure of CSPPartialStage, where CBN
refers to the concatenation of convolutional layer, BatchNorm
layer, and nonlinear activation layer. Our CSPPartialStage incor-
porates the PHDC block mentioned earlier as a crucial module
into consecutive CSPNet-based feature extraction layers. After
the input feature map is processed by the first CBN, the number
of its channels is halved, and then it is routed into two parallel
branching structures. One of the branches executes only simple
CBN operations, while the other goes through a single CBN
before being sent to the feature extraction module made up of
N PHDC Blocks arranged in series to perform deeper feature
extraction. The outputs of both branches are concatenated in the
channel dimension and given coordinate attention through the
CA attention module. Finally, CBN is used for channel matching
to obtain the correct number of channels. It is worth noting that
all the CBNs in CSPPartialStage use 1 x 1 convolution, merely
changing the number of feature map channels or performing sim-
ple feature mapping, without introducing a noticeable increase
in computational burden.

2) Coordinate Attention: The general attention mechanism,
such as Squeeze-and-Excitation, accounts for the correlation
between channels and recalibrates the channel information for
effective aggregation, leading to a better model representation.
While this approach proves useful for detecting natural images,
small object detection in remote sensing images with com-
plex spatial distributions requires more prominent focus on the
target’s localization features. As such, we utilize the Channel
Attention (CA) module [29] to augment the model’s ability to
extract location-based features. A schematic of the CA module’s
workflow is illustrated in Fig. 9.

The input feature map is initially encoded for each channel
independently by performing global average pooling separately
in both the horizontal and vertical directions. Specifically, for the
cth channel, the output in the vertical and horizontal directions
of dimensions h and w is denoted by the following equation:

1
zp(h)=— 3 we(h,i) 2)
0<i<w
1
i (w) =5 Y weljw) 3)
0<j<h

Following the transformations in the two spatial directions
as stated earlier, a pair of direction-sensitive feature maps is
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generated. The resulting aggregated feature map is then con-
catenated and fed into a 1 x 1 convolution for the purpose of
channel reduction.

One direction is transposed and appended to the encoding
vector of the other to create a lengthy vector with a spatial
dimension of H + W. The resulting vector is then subject to
a shared 1 x 1 convolution transform, detailed as follows:

f=06(F [z 2"]) 4)

In the above equation, [., .] denotes the concatenation oper-
ation, J represents the batch normalization layer and the non-
linear activation function. Fj represents a 1 x 1 convolution
used for channel reduction. f is an intermediate feature map
with dimensions RC/7*(H +W), where r indicates the channel
reduction ratio. Subsequently, f is spatially split into two feature
maps, f, € RE/™H and f, € RY/™*W_ These feature maps
are used to recover the number of channels through a 1 x 1
convolution and then normalized using the Sigmoid function to
create attention maps in both spatial directions as follows:

g" =a(Fn(f") (5)
9" = o(Fu(f*)) (6)
Where o represents the Sigmoid function. Finally, multiply

the input feature map with the obtained attention and get the
final output of the CA module as follows:
ye(i, j) = we(i, 5) x g (i) x g2 (j) (7
The design process of the channel attention (CA) module
avoids standard three-by-three convolutions and reduces com-
putational complexity through channel dimension reduction,
making the CA module highly suitable for integration into
lightweight networks. In the experiments, the accuracy of the
model was improved with minimal changes to inference latency.

Details of these experiments are discussed in the following
section.

C. CSPPartialNet and CSPPartialFPN

In a single-stage object detection model, the Backbone Net-
work is composed of multiple stages, each of which produces an
output feature map with a different resolution. The distribution
ratio of the computation module in each stage is often determined
through heuristics. In CSPDarknet [10], the distribution ratio of
the computation module is 1:3:3:1, while the distribution ratio
of the computation module in the backbone network based on
CSPRepResNet in PPYOLOE-R [15] is 1:2:2:1. Inspired by the
performance of recent Swin-T [35] models in the field of vision,
the authors of ConvNeXt [20] suggest a distribution ratio of
1:1:3:1. Following this suggestion, the number of PHDC blocks
in the CSPPartialStage is set to [1, 1, 3,1].

For the neck of model, we also use modules similar to the
CSPPartialStage, with the difference being the absence of the
CA module. The highest level feature map is processed using
SPP [36] to achieve feature map-level fusion between local and
global features. The workflow of the FPNStage in the neck part
can be seen in Fig. 4.

D. Rotation Detection Head

Remote sensing images frequently employ overhead view-
ing angles (e.g., satellite or airborne imagery), resulting in
diverse angle distributions of targets, including vehicles, ships,
airplanes, and other modes of transportation. Consequently,
we implement the detection head from PPYOLOE-R, utilizing
three independent branches for predicting the targets’ position,
direction, and category.The loss function incorporates Varifocal
Loss, ProbloU Loss, and Distributed Focal Loss to calculate the
losses for target classification, bounding box localization, and
angle estimation, respectively.The overall loss is calculated by
weighting and summing the aforementioned losses with weights
of 1.0, 2.5, and 0.05, respectively.These settings align with the
PPYOLOE-R model. Fig. 5 shows the details of the rotation
detection head.

IV. EXPERIMENTS AND RESULTS
A. Experiments Settings

Our study involves two stages: Training and validation. We
utilized PaddlePaddle 2.4 deep learning framework to train on
the Intel(R) Xeon(R) Gold 5218 CPU, NVIDIA Tesla V100, and
Debian10 stable platforms during the training phase. The SGD
optimizer was selected, with the momentum set at 0.9 and batch
size at 6 for the training process, while a cosine learning rate
decay strategy was employed. The learning rate was initially set
at 0.006, and the total number of epochs trained was 300. While
ensuring training convergence, we selected the weight results
from the best performance on the test set among 300 epochs as
the final weights. Based on our experimental observations, all
models achieve convergence within 300 training epochs. For the
first 10 epochs of training, linear warm-up was applied. During
the entire training process, randomized image rotation was used
by using four angles 0°, 90°, 180°, and 270°, together with a
50% probability of random rotations at 30°and 60°.

During the validation phase, we assessed the trained model’s
performance on AMD 5800H, NVIDIA RTX3070 laptop, and
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TABLE I
NUMBER OF INSTANCES FOR EACH CATEGORY IN THE TRAINING SET
AND TEST SET

Training Set Test Set
Category

DOTA SODA-A DOTA SODA-A

Plane 14989 22817 4658 20586
Small-vehicle 48889 366461 10689 340321

Large-vehicle 34959 14818 8971 8082
Ship 58738 38893 18867 41623
Tota 157575 442989 43179 410612

Windows 10 platforms based on two primary evaluation criteria:
mAP on the test set and model forward inference latency.

B. Dataset

To evaluate the effectiveness of our proposed model, we per-
formed experiments on the DOTA [37] dataset and SODA-A [38]
dataset showcasing images primarily sourced from Google
Earth. The majority of the imagery in the datasets exhibits a
spatial resolution under 0.5 m and consists of fifteen(DOTA)
and nine(SODA-A )categories of objects annotated using rotated
rectangular boxes. For the data preprocessing phase, we selected
four typical targets of remote sensing imagery, namely, planes,
large vehicles, small vehicles, and ships. The remaining cate-
gories were removed. Afterward, the images were cropped into
1024 x 1024 pixels, with an overlap of 200 pixels being main-
tained to ensure continuity and consistency between different
cropped images. The resulting datasets comprise 6049(DOTA)
and 8811(SODA-A) images in the training set and 1718(DOTA)
and 5268(SODA-A) images in the testing set. Table I presents a
statistical summary of the number of annotated images for each
classification in both datasets.

According to the standards of the MS COCO dataset, targets
with pixel numbers that are smaller than 1024 pixels as “small,”
targets with pixel numbers falling between 1024 and 9216 are
noted as “medium,” while targets with pixel numbers larger than
9216 are designated as “large.” By counting the number of pixels
annotated within the bounding boxes, it is observed that “small”
objects account for 64.7%(DOTA) and 94.5%(SODA-A) of the
total number of objects in our datasets. This feature is a vital
characteristic that sets remote sensing images apart from natural
images.

C. Experimental Evaluation Metrics

To evaluate the model accuracy, we adopted the evaluation
methodology of PASCAL VOC [39]. Initially, we computed the
precision and recall by using the below representations, where
TP corresponds to true positive, FP references false positive, and
FN refers to false negative:

TP

precision = W (8)
TP

Il = —— 9

e = TP Y FN ©)

During the computation process, the N predicted boxes are
sorted in descending order according to their confidence scores.

Subsequently, by progressively adding them, N sets of precision-
recall pairs are obtained. Using this approach, the precision-
recall curve can be plotted on a 2-D coordinate system. Average
precision (AP) is defined as the area enclosed between the
precision-recall curve and the x-axis, and is defined by the
following formula:

1

AP= [ P(R)dR. (10)

0

For multiclass objectives, mAP is frequently used as an eval-
uation metric. mAP is the average of each class’s AP and is
defined as mAP = % ij:l AP,,. mAP serves as our primary
metric for evaluating the precision of the model.

In addition to prioritizing the accuracy of the model, equal
consideration is given to its cost. To determine the number of
learnable parameters in the model, we employ M Params, while
G FLOPs are used to calculate the total number of multiply
and accumulate operations performed during the model’s in-
ference process. However, these two metrics frequently only
depict the theoretical inference speed of the model. As we are
more concerned with the model’s overall performance on actual
hardware, we also regard inference latency (ms) as a crucial
assessment metric. Inference latency is computed by averaging
the propagation time of the model in 1000 forward passes, which
diminishes the impact of stochastic errors on the experiment.

D. Ablation Study

We used the PPYOLOE-R-S model as the baseline model to
conduct ablation experiments on the DOTA dataset, examining
the effectiveness of the PHDC and CA modules. The outcomes
of the experiment are shown in Table II. It is worth noting that
in addition to prioritizing model accuracy, we emphasize its
efficiency.

In Experiment 2, we investigated the performance of a model
built using the Partial Hybrid Dilated Convolution (PHDC)
module, which omitted the Channel Attention (CA) Block. Our
aim was to evaluate the efficiency of the PHDC module in
terms of inference speed, computational complexity, and model
accuracy compared to the baseline model. Our results show that
the PHDC module performed well in terms of inference speed.
Specifically, it reduced the inference latency by approximately
32.2%, which is a notable improvement over the baseline model.
Furthermore, the PHDC module achieved a 0.3% mean average
precision (mAP) increase, indicating that it has potential to
improve the model efficiency without compromising its accu-
racy. In addition to its promising results in both inference speed
and accuracy, the PHDC module also demonstrated a reduction
in the number of parameters and computational complexity.
Specifically, it decreased the number of parameters by 17.8% and
the computational complexity by 27.0%. These findings suggest
that the PHDC module is not only efficient, but also requires
fewer resources to achieve the same level of performance as the
baseline model.

In Experiment 3, we introduced the Channel Attention (CA)
Block to coordinate the network without hybrid dilated convo-
lution in the PHDC Block. The purpose of this experiment was
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TABLE II
EXPERIMENTAL RESULTS OF ABLATION OF THE ALGORITHM MODULE

Number Baseline HDC 125 CA Block mAP Params(M) FLOPs(G) Latency(ms)
1 v 87.85% 11.8 21.8 31
2 v v 88.15% 9.7 159 21
3 v v 88.74% 9.6 16.2 23
4(ours) v v v 89.75% 9.6 16.2 23

The bold values are the best in the current column.

TABLE III
EXPERIMENTAL RESULTS OF DIFFERENT NUMBERS OF BLOCKS IN EACH STAGE

numbers mAP Params(M) FLOPs(G) Latency(ms)
1,2,2,1 89.23% 9.5 16.11 12
3,1,1,1 88.88% 9.5 16.13 13
1,1,3,1 89.75% 9.6 16.11 11

to investigate the impact of the CA Block on the model’s perfor-
mance and efficiency. In Experiment 4, we utilized both hybrid
dilated convolution and the CA Block to evaluate their combined
effect on model accuracy and complexity. Our results show that
Experiment 4 outperformed Experiment 2 and Experiment 3 in
terms of accuracy. Specifically, Experiment 4 achieved a 1.06%
increase in mean Average Precision (mAP) while maintaining
comparable parameter (Params) and computational (FLOPs)
complexity. This improvement in accuracy is attributed to the
larger reception field generated by hybrid dilated convolution,
which better captures small remote sensing targets. Although
the CA block slightly contributed to the increase in inference
latency, the improvement in accuracy justifies its use in the
model.

Fig. 10 displays partial results from the DOTA dataset of our
CSPPartial-YOLO and PPYOLOE-R models. As observed, our
model exhibits fewer missed and false detections compared to
the baseline model in scenarios such as detecting ships near or
far away the shore, detecting dense vehicles, and distinguish-
ing between confusing object classes. This improvement can
be attributed to the use of hybrid dilated convolution and the
improved visual attention module, which allow for a larger
receptive field and richer semantic information. Specifically,
hybrid dilated convolution expands the field of view of each con-
volutional layer, allowing the network to capture more contex-
tual information and improve object recognition accuracy. The
coordinate attention module enhances the network’s ability to
focus on relevant features by adaptively weighting feature maps.
Our proposed models achieved a 1.9% increase in accuracy
compared to the baseline model, while also reducing inference
latency by 25.8%. These results demonstrate the efficacy of our
proposed models in improving object detection performance
while maintaining a reasonable inference speed.

Table III presents the experimental results of allocating dif-
ferent ratios of PHDC blocks in CSPPartialStage. The results
suggest that employing the suggested [1:1:3:1] ratios in Con-
vNext [20] yields higher validation accuracy and inference speed
with comparable parameter and computational costs.

E. Comparison With Other YOLO Models

To ascertain the competitiveness of the model introduced
in this article in both speed and accuracy, we conducted a

comparison with the modern YOLO series models of the identi-
cal model size. The resulting comparison on the DOTA dataset
and SODA-A dataset is illustrated in Table I'V.

In object detection benchmarks, it is vital to ensure that the
models are evaluated on a level playing field. To this end,
we employed the same rotation detection head, namely the
PPYOLOE-R detection head, across all models for predicting
bounding boxes with rotation angles. The results of our ex-
periments indicate that while the YOLOX model achieved the
highest mAP score in both DOTA dataset and SODA-A dataset
among all models, it also incurred the highest inference delay
due to suboptimal inference speed optimization in the CSPDark-
Net backbone network used by YOLOX. On the other hand,
PPYOLOE-R utilizes reparameterization techniques to enhance
the model’s inference speed, leading to a better tradeoff between
accuracy and speed. In contrast to YOLOX and PPYOLOE-R,
YOLOVS replaces the C3 module of the CSPDarkNet with the
C2F module, which maximizes gradient flow information while
maintaining a lightweight architecture. This design choice en-
ables YOLOVS to achieve high accuracy while also maintaining
reasonable inference speed. The RTMDet model utilizes a design
approach comparable to ours, whereby the receptive field is
expanded via an increase in the kernel size of convolution layers,
thereby improving the model’s capability for feature extraction.
However, RTMDet differs in that it directly enlarges the convo-
lution kernel size and employs depthwise separable convolution
to achieve a balance between efficiency and effectiveness.

In our proposed CSPPartial-YOLO, we also aimed to achieve
amore efficient and lightweight network by utilizing partial con-
volution in constructing the network. Furthermore, our approach
combines typical characteristics of targets in remote sensing
images, such as small object sizes and complex backgrounds,
with advanced techniques in computer vision. Specifically, we
employ hybrid dilated convolutions to establish long-distance
dependency relationships, broaden the receptive field, and im-
plement coordinate attention modules to enhance the position
information. These design choices result in improved represen-
tation ability for small targets in remote sensing images, which
are often challenging to detect.

Our model incurred only a 0.19%(DOTA) and 2.21%(SODA-
A) loss in mAP score when compared to YOLOX, yet registered
declines of 22.0%, 42.6%, and 32.3% in terms of parameter
count, computational cost, and inference delay, respectively.
Our model also showed a 14.8% speed advantage over the
fastest YOLOV8 model, requiring only 67.1% of the parameters
and 74.3% of the computational cost, while maintaining some
advantages in precision. Overall, taking into consideration both
speed and precision, our model maintains competitiveness with
current state-of-the-art YOLO models in typical target detection
in remote sensing.
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Fig. 10.  Prediction results of the baseline model and our CSPPartial-YOLO in some scenes of the DOTA dataset. The green circle indicates false detection, and
the red circle indicates missed detection. (a) Ground truth. (b) PPYOLOE-R. (c) Ours.
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TABLE IV
EXPERIMENTAL RESULTS OF COMPARISON WITH MODERN YOLO SERIES MODELS

Model mAP Params(M) FLOPs(G) Latency(ms)
DOTA SODA-A
PPYOLOE-R [15] 87.85% 75.36% 11.8 21.8 31
YOLOX(R) [13] 89.94 % 79.99 % 12.3 28.2 34
YOLOVS(R) [40] 88.77% 73.38% 14.3 21.8 27
RTMDet(R) [19] 89.01% 73.40% 13.8 29.1 33
CSPPartial-YOLO(Ours) 89.75% 77.78% 9.6 16.2 23

The bold values are the best in the current column.

TABLE V
EXPERIMENTAL RESULTS OF COMPARATION WITH ADVANCED LIGHTWEIGHT BACKBONE NETWORKS

Model mAP Params(M) FLOPs(G) Latency(ms)
DOTA SODA-A
MobileNetV3 [41] 87.46% 71.82% 2.7 4.2 19
ShuffleNetV2 [23] 88.36% 76.96% 32 9.5 26
GhostNet [25] 88.10% 68.56% 10.0 10.9 30
CSPPartialNet(Ours) 89.75% 77.78% 2.0 7.8 11

The bold values are the best in the current column.
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Fig. 11.  First three rows show the output feature maps of the last three stages of the backbone network, with sizes of 128 x 128,64 x 64, and 32 x 32, respectively.
The last row displays the prediction results of the model, with the missed detection highlighted by a red circle. (a) MobileNetV3. (b) ShuffleNetV2. (c) GhostNet.
(d) Ours.
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E. Comparison With Lightweight Backbones

To validate the performance of the proposed backbone net-
work, namely CSPPartialNet, we conducted comparative exper-
iments against several lightweight backbone networks. Table V
showcases the experimental results obtained for the DOTA and
SODA-A dataset.

In this set of experiments, we solely evaluated the perfor-
mance of the backbone network by using the same Neck and
Head, and solely replacing the backbone network. As such, the
metrics “Params,” “FLOPs,” and “Latency” in the table were
exclusively calculated for the backbone network section.

MobileNetV3 is the latest addition to the MobileNet series of
networks. It mainly employs depthwise separable convolutions
to decrease the number of trainable parameters and computa-
tional complexity of the network. In addition, it integrates SE
channel attention, and utilizes neural architecture search (NAS)
techniques to obtain the optimal parameters. Nevertheless, it
is noteworthy that despite having the lowest FLOPs in this
set of experiments, MobileNetV3 still has considerable latency.
This is because its architecture is more suited for CPU device
computation, while GPU computation is more crucial in the
experimental environment. Thus, it indicates that FLOPs cannot
accurately reflect the model’s inference time and one should fo-
cus more on latency. Moreover, MobileNetV 3 has been observed
to exhibit lower sensitivity to small targets and less attention
to intricate details, which may lead to reduced effectiveness in
typical targets of remote sensing images. Hence, when employ-
ing MobileNetV3 for remote sensing image classification, one
should exercise caution.

ShuffleNetV2 is a lightweight backbone network that con-
siders the impact of memory access count (MAC) on inference
latency. Nonetheless, similar to MobileNetV3, it is better suited
for CPUs on mobile devices than for GPUs. Moreover, Shuf-
fleNetV2 exhibits lower capability to concentrate on long-range
dependency information, making it difficult to derive essential
information from images containing large objects with signif-
icant aspect ratios. Consequently, this may yield inadequate
results in intricate and uncertain remote sensing object detection
scenarios.

GhostNet is among the very first models that concentrate
on redundant feature maps in convolutional neural networks.
By replacing conventional convolutions with a cheap operation,
it facilitates the acquisition of feature maps. Nonetheless, the
application of depthwise convolution in the cheap operation
can raise the MAC, which negates the previously reduced
FLOPs. Consequently, despite having fewer FLOPs, GhostNet
still demonstrates high latency.

Fig. 11 indicates the output feature maps of the final three
stages and the prediction results for each lightweight backbone
network. Our CSPPartialNet provides a clearer representation of
the target position at all three scales, especially in the 32 x 32
feature map output. Our model accurately captures the infor-
mation about the vehicle parking position and displays it with
higher values in the heat map due to our use of the channel
attention module (CA), which enhances the target position fea-
ture. Compared in the prediction results, our model has the least
missed detections.

Based on experimental results, CSPPartialNet achieved the
highest mAP compared to the aforementioned three lightweight
backbone networks. It also achieved the best inference time
on real hardware, lower by 42.1%, 57.7%, and 63.3% than
MobileNetV3, ShuffleNetV2, and GhostNet, respectively. In
addition, CSPPartialNet has the lowest parameter amount, which
makes the model suitable for devices with low storage.

V. DISCUSSION AND CONCLUSION

The detection of objects in remote sensing images has been
challenging due to the limited computing and storage resources
of remote sensing platforms. Current object detectors struggle to
achieve fast and accurate predictions. In this article, we improved
the baseline model to achieve a better balance between speed
and accuracy, and we refer to the improved model as CSPPartial-
YOLO. The new model is specifically designed for the detection
of typical targets in remote sensing images.

To improve the model’s inference speed and reduce param-
eters and calculations, we utilized redundant feature maps in
the model inference process and introduced the PHDC module,
which is a combination of partial convolution with hybrid dilated
convolution, with specific dilation rates. Furthermore, we incor-
porated the CA module to increase the model’s sensitivity to
target location information considering the multidirectionality,
dense distribution, and small size of typical targets in remote
sensing images. Finally, we designed the CSPPartialStage to ex-
plore the appropriate computational depth ratio for the backbone
network, constructed the backbone, and the Neck network.

In this article, we conducted ablative experiments to demon-
strate the advantages of the proposed model compared to the
baseline model. Furthermore, we evaluated the effectiveness of
the main improvement methods through comparative experi-
ments with state-of-the-art YOLO series models and lightweight
backbone networks. The proposed model and methods achieved
competitive advantages in terms of both accuracy and speed.
Our experiments show that the lightweight detector introduced
in this article has potential for real-time detection of typical
targets in remote sensing images. Our future research endeavors
will involve exploration of advanced lightweight network design
methods, like neural network pruning and neural architecture
search (NAS), in order to further decrease model redundancy
and enhance detection efficiency.
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