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Abstract—Remote-sensing ship monitoring is a crucial area of
research with key applications in military and civilian fields. The
ability to extract information, such as ship length, width, and head-
ing from remote-sensing data, particularly from synthetic aper-
ture radar (SAR) images, is of paramount importance. Current
state-of-the-art SAR image ship monitoring focuses primarily on
ship detection. Assessing the direction of ships usually relies on the
observability of wake features. However, the observability of these
wake features is often affected by factors, such as the SAR system
parameters, ship attributes, and dynamic marine environments.
This can make accurate direction assessments a challenging task.
Inresponse to these challenges, this study has presented a novel and
effective algorithm for ship monitoring from SAR images based
on an anchor-free framework and the powerful feature extrac-
tion capabilities of convolutional neural networks. The proposed
method learned the scattering and morphological information of a
ship’s bow and stern from high-resolution SAR images to determine
the ship’s direction with a high level of accuracy using a rotating
bounding box. The algorithm was tested on a dataset, achieving
an average precision of 90.8% and bow classification accuracy of
92.5%, demonstrating its potential contributing to the advance-
ment of remote sensing.

Index Terms—Convolutional neural network (CNN), keypoint,
ship detection, ship head classification, synthetic aperture radar
(SAR).
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I. INTRODUCTION

ONITORING ships is of considerable importance in

military and civilian fields [1], including maintaining
national marine security, supervising water traffic, maritime
fishery management, and maritime rescue [2]. Optical remote-
sensing images have clear details and textures, which have the
key advantages for identifying ship types. However, this process
is easily impeded by weather conditions, including clouds, rain,
and fog, and can only be conducted during daylight hours. In
contrast, synthetic aperture radar (SAR) can be used at night and
has fewer limitations imposed by weather conditions. Therefore,
it is widely used in ship detection [3]. With the development of
high-resolution SAR satellites, finer scale ship information [4],
such as the length, width [5], and direction, can be extracted
from high-resolution SAR images.

Traditional SAR image detection algorithms first need to per-
form sea and land segmentation to remove land interference, and
then perform ship detection. The ship detection results are often
affected by the accuracy of land and sea segmentation [6]. The
classic algorithm used in this context is the constant false alarm
rate (CFAR) algorithm, such as the cell average CFAR detector
[7], two-parameter CFAR detector [8], and order statistics CFAR
detector [9]. The CFAR-based detection algorithm adaptively se-
lects an appropriate detection threshold for ship detection based
on the background clutter statistical distribution model (such as
the K distribution [10] and gamma distribution [11]) [12]. This
method works well when the sea surface clutter estimation model
is consistent with the detection image distribution. However,
this algorithm type requires manual analysis of the target and
background. The parameter design is complex, lacks versatility,
and makes it difficult to deal with complex sea conditions and
ship motion blur, sidelobe effects, and interference generated by
near-shore ships [12]. It is also difficult to extract the accurate
length, width, and bow information using the CFAR method.

Recently, target detection algorithms based on deep con-
volutional neural networks (DCNN) have made considerable
progress, and their powerful feature extraction and learning
capabilities have strongly surpassed those of the traditional
methods in terms of accuracy and robustness, and have re-
ceived considerable attention from researchers. Depending on
whether an anchor exists, this method can be anchor-based
or anchor-free. Anchor-based methods predominantly include
R-CNN [13], fast R-CNN [14], faster R-CNN [15], R-FCN [16],
SSD [17], YOLOV2 [18], YOLOV3 [19], and YOLOv4 [20].
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The anchor-based method needs to manually set many anchor
boxes and introduce an excess number of hyperparameters,
such as the scale, ratio, and quantity of anchors. A relatively
small number of anchor boxes can match the target, causing
an imbalance between the target and background that affects the
convergence speed. The anchor-free method does not need to set
the anchor box parameters. It is simple to use and its accuracy is
comparable with that of the anchor-based algorithm and is now
being used by an increasing number of researchers. CornerNet
[21], ExtremeNet [22], and CenterNet [23] are representative
anchor-free methods based on keypoints. CornerNet uses two
keypoint in the upper left and lower right corners to locate the
upper left and lower right corners of the object bounding box.
It then uses the embedding vector to determine whether the
two keypoints belong to the same object. ExtremeNet detects
objects by predicting extreme and center points and grouping
keypoints according to the geometric structure. CenterNet only
uses the central keypoint to locate the target. The width and
height parameters of the target are obtained through regression,
which substantially improves the detection speed.

Based on a DCNN, the current SAR ship detection algorithm
omits the sea—land segmentation strategy of the traditional al-
gorithm and uses an end-to-end method to send SAR images
to the DCNN for detection. It then directly outputs ship de-
tection results, which improves the efficiency and accuracy of
detection [24]. Based on CenterNet, Guo et al. [25] proposed
CenterNet++, which introduced a feature refinement module to
extract contextual information for detecting small ships. Consid-
ering the multiscale and multiangle characteristics of SAR image
scenes and ship targets, Hu et al. [6] proposed a BANet-based
anchor-free method for multiscale ship detection in SAR images.
By introducing a deformable convolution, local ship features can
be extracted effectively. Deng et al. [26] proposed a novel and
effective method for learning deep ship detection from scratch,
which achieved a high level of detection performance using
Sentinel-1 data.

The aforementioned algorithms all employ horizontal bound-
ing boxes (HBBs) for object detection. However, in the case
of remote-sensing images captured from an aerial perspective,
objects in the image can have arbitrary orientations, and the use
of HBBs can result in poor detection performance for densely
arranged, arbitrarily oriented, and variably scaled objects. This
is partly due to the inclusion of a significant amount of irrelevant
background information within the HBBs, which results in
imprecise object representations, as well as the nonmaximum
suppression (NMS) algorithm’s tendency to remove highly over-
lapping ships, resulting in missed detections.

Recently, detection methods based on an oriented bounding
box (OBB) have been proposed to solve these problems. Xia
et al. [27] used a method of returning four vertex coordinates to
generate an OBB based on a faster R-CNN algorithm. Gliding
vertex [28] works on the assumption that the order of coordinates
generated by this method of returning four vertices is easy to
confuse. Therefore, they choose to return four ratios, which
represent the relative sliding offsets on each side of the HBB.
Yang and Yan [29] represented the OBB as a center point, length,
width, and angle, and the angle was predicted by classification
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Fig. 1.  Shipdirection detection method. (a) Rotating box detection. (b) Vessel-
wake detection. (c) Rotating box detection 4+ Head point extraction.

rather than regression. He et al. [30] proposed a keypoint-based
anchor-free algorithm to generate SAR ship OBBs by learn-
ing polar coordinate encoding. Although the OBB algorithm
obtained a compact bounding box and had certain direction
information, it had 180° ambiguity and could not be used to
obtain the precise direction of each ship [see Fig. 1(a)].

Estimating the direction of motion of a ship from SAR images
is usually performed indirectly using the ship-wake method
[see Fig. 1(b)]. Ship wakes typically occur in many forms. The
most common are turbulent wakes, Kelvin wakes, and narrow
V-wakes [31]. Turbulent wakes occurring as dark lines along
the longitudinal axis of a ship are the most commonly observed
wakes in SAR images [32]. A narrow V-tail typically appears
as a bright edge next to a darker trail [33]. The Kelvin wake is
composed of shear, divergent, and sharp waves, and its V-shaped
angle is approximately 39° [34], which is usually smaller than
the angle in SAR images. Ship wakes are predominantly shown
as linear structures in the image [35]. The most common method
is to use the Radon or Hough transform to detect lines [36]. The
lines and ships detected are combined to obtain the ship’s naviga-
tion direction [37]. However, the visibility of wake information
in SAR images is affected by radar parameters, ship parameters,
and background sea conditions [38] and is difficult to observe
in many cases. We proposed a keypoint-based OBB detection
algorithm that could automatically extract high-resolution SAR
position and bow information using DCNN and keypoints with-
out wakes [see Fig. 1(c)]. The proposed dataset reflected a strong
performance. The contributions of this study were given as
follows.

1) We proposed an end-to-end ship detection method based
on three keypoints for arbitrary direction SAR. The ro-
tation angle-prediction problem was transformed into an
estimation and matching problem for keypoints, which
avoided the angle periodicity problem based on the re-
gression method.

2) Aiming to address the problem of 180° ambiguity in
the current OBB detection method for determining ship
direction, we automatically obtained the shape and scat-
tering information of the SAR bow and stern through
two keypoints. We then assessed whether the two key-
points were the bow and obtained the accurate bow
classification.

3) We exploited the difference in information extracted from
two keypoints to construct a simple and practical analytical
model to evaluate the bow classification results.



366 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Feature extraction and fusion

Detection head | Prediction

Fusion layer %D :
L ,. I! o 2% psampeD Conv 1x1;
; Ly _’]; . Conv 3x3 i

Fig. 2.

Heatmaps Offset

Keypoints generation

Key point
©  Head point
Error circle

Rotated bounding box

— Vector

Overall architecture of our method. The network structure can be divided into three parts, that is, feature extraction and fusion module, detection head

module, and prediction part. After the data had passed through the feature extraction and fusion module, the feature map, offset, size parameter, vector, and ship
head layers had five parameter parts. The feature map and the offset were combined to generate keypoint coordinates. The size parameters and vectors were used
to match the keypoint coordinates to generate OBB, and the ship head layers were used to determine which keypoint the bow was on.

The rest of this article is organized as follows. In Sec-
tion II, the proposed method is described in detail. Section III
presents the experimental datasets and comparisons. Section IV
discusses the limitations of our method. Finally, Section V
concludes this article.

II. PROPOSED METHOD

Our proposed method is shown in Fig. 2 and has been divided
into three main parts, that is, feature extraction and fusion, target
detection head, and prediction module. The feature extraction
and fusion module was used to extract the features of multiscale
ships. The target detection head module was used to generate
keypoint heatmaps, keypoint offsets, two side lengths of OBB
boxes, direction vectors, and bow classification results. The
prediction module combines the information from the detection
head module to form the OBB and the head point position.

A. Feature Extraction and Fusion Module

The feature extraction and fusion modules comprised two
parts. The first part used the classic ResNet50 [39] structure
for feature extraction. The second part used feature maps from
different scales of the ResNet residual module for layer-by-layer
fusion. We employ skip connections to fuse multiscale features
at different layers, aiming to capture both fine-grained details
and high-level contextual information. Unlike feature pyramid
network [40], our method does not adopt the multibranch pre-
diction head because the multibranch prediction head is more
computationally intensive. The resolution of the feature map of
the last layer of the ResNet was 32 times lower than that of the
original image. For small-scale objects, the loss of information
after repeated downsampling is relatively high, and small objects
are easily missed. The semantic information was combined with
shallow, high-resolution morphological information. As shown
in Fig. 3, C4 was fused with C5 to obtain P4; P4 and C3 were
fused to obtain P3; and P3 and C2 were fused to obtain P2.
Taking the fusion of C4 and C5 as an example, assuming that

c4

P4 P3 P2

. cs
1 2 ReNerso [ Fusion layer'
2xUp\ampIc|:[ Cony 1x1

- i M conv3xs

Fig. 3. Feature extraction and fusion module.

the input image size is 512 x 512 x 3, the size of the C5
feature map is 16 x 16 x 2048, and the size of the feature map
obtained by double upsampling through bilinear interpolation
was 32 x 32 x 2048. Then, 3 x 3 convolution became 32 X
32 x 1024, spliced with C4 to 32 x 32 x 2048, and finally,
1 x 1 convolution becomes 32 x 32 x 1024. P4, C3, P3, and
C2 exhibited similar fusion processes. The detailed structural
parameters of the feature extraction and fusion modules are listed
in Table I.

B. Detection Head

1) Keypoints Estimation: Heatmaps are often used to locate
keypoints in human bones. We use the same keypoint extraction
method as CenterNet and CornerNet. In order to avoid the
problem of close proximity of multiple keypoints, we set the
parameters of the Gaussian function according to the size of each
ship, and the maximum Gaussian kernel scale set does not exceed
the width of the ship. Here, we use the center Keypoint C, upper
Keypoint 7, and lower Keypoint B to locate the key positions of
the ship. The keypoints were divided, as shown in Fig. 4. The
coordinate axis was established with the center Keypoint C as
the origin. When the coordinates of keypoints B and T are on the
X-axis, the left side of the Y-axis is Keypoint B, and the right side
is Keypoint 7. When Keypoints B and T are not on the X-axis,
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TABLE I
FEATURE EXTRACTION AND FUSION MODULE STRUCTURE

Layer name layer output
Cl 7X764, stride 2 256%256
3%3, max pool, stride 2
1x1,64
c2 [3X3’64]X3 128x128
1x 1,256
1x1,128
c3 [3 X 3,128] X 4 64x64
1x1,512
1x 1,256
c4 [ 3 x 3,256 ] X 6 32%x32
1x1,1024
1x1,512
C5 [3><3,512]><3 16x16
1x1,2048
3 x3,1024
P4 1x1,1024 X1 32%32
3% 3,512
P3 1% 1512 X1 64x64
3 x 3,256.
P2 [1 x 1,256 X1 128%x128
y
T
X x
B C T
(a) (b)

Fig. 4.  Division of keypoints. (a) When the coordinates of keypoints B and T
are not on the X-axis, the keypoint above the X-axis is 7, and the keypoint below
the X-axis is B. (b) When the coordinates of points B and 7 are on the X-axis,
the left side of the Y-axis is keypoint B, and the right side is the keypoint 7.

the keypoints above the X-axis are T and the keypoints below the
X-axis are B. The heat map of the keypoint labels is generated

c +c
using a two-dimensional (2-D) Gaussian function e~ 202 . The

loss function uses a Gaussian focal loss [41], as shown in the
following equation:

o H w
R PIPY

(1—hmhw)alog (hmhw)
(1 fﬁﬂlhw)ﬂ(hmhw)alog (1 — hmy,,)
(1)

where N is the number of objects in the image, and H and W
are the height and width, respectively. After downsampling the
image four times, « and /3 are the hyperparameters (o« = 2 and

if hmy,, =1

otherwise

0 = = i

Feature map

Original image Original image

Fig. 5. Offset of the feature map to the original image.

B = 4), hmy,, is the predicted heatmap value, and Hﬁlhw is
the heatmap value of the real label. The coordinate position of
the original image to the coordinate position of the heatmap is
d times smaller than that of the original image and is rounded
down. Therefore, there is a deviation between the coordinates
of the keypoints extracted from the heatmap and those of the
original image. An offset parameter was used to quantify this
error, as shown in Fig. 5. The deviation at any keypoint is given

as follows:
_(T_|ElY_\|Y
O(d M’d M) @

where x and y are the real coordinates of the keypoint, and d is
the scaling factor.

The loss function uses the L1 smoothing loss function as
follows:

N
Logt = % Z SmoothL1Loss (o, 63, (3)
k=1
where oy, is the predicted bias and 0y is the true bias.

2) Scale Parameters Regression: The scale parameters of the
rotating box are represented by the long side / and the short side
s. The loss function uses a smooth L1 loss function, as shown in
the following equations:

N

1 N

L = N Eﬁ SmoothL1Loss (lk, lk) “)
LN

L, = ~ ,;:1 SmoothL1Loss (s, 51). o)

3) Keypoints Matching: When two or more keypoints are
used to locate the target, a keypoint matching problem occurs.
The proposed method uses a vector from the center point to the
endpoint, and the distance from the endpoint coordinates meets
a certain threshold to confirm whether they belong to the same
target, especially for the regression vector numerical stability.
We mapped the prediction vector % between 0 and 1. The loss
function of the vectors is given as follows:

N
1 Iy —
L=+ ;SmoothLlLoss <(217>k —1) 5’“ uk) (6)

4) Bow Classification: To facilitate the extraction of infor-
mation related to the bow and stern of the ship, we use two
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Fig. 6. Prediction in the test stage. (a) Keypoint heatmap. (b) Keypoint
matching. (c¢) Rotating box generation. (When two boxes are generated, then
a low score can be removed using NMS). (d) Bow classification.

independent classification branch modules in the architecture.
These classification modules are designed to extract information
from positions corresponding to the upper and lower keypoints.
The purpose of introducing these two independent classification
modules is to capture features specifically associated with the
ship’s bow and stern regions. The upper and lower keypoints
serve as reference points, allowing the classification modules to
focus on extracting relevant information in proximity to these
keypoints. There are two keypoints at the bow and stern of the
ship. We need to use the BCE loss function at these two endpoints
to determine the probability that the point is the bow. The L,
loss function was designed as follows:

Ly, = —% ZN: (h/c;log (hey) + (1 - ﬁk) log (1 — h/ck))

k=1
L (7
where hcy, is the predicted result and hcy, is the real label.

C. Prediction in Test Stage

We extracted the top-k coordinates from the predicted heat
maps and then added the corresponding offset, as shown in
(8), to obtain the k keypoint coordinates. We utilize a relatively
large value of k, such as 500, to perform an initial selection
in each patch. This ensures a comprehensive coverage of ship
candidates, even in scenarios where the number of ships may be
high. Next, we refine the selection process by considering the
confidence scores associated with the detected ships. As shown
in Fig. 6(a), the keypoint heatmap is superimposed on the orig-
inal image. The position of the keypoint heatmap corresponds

closely to the position of the ship
{(l‘i—‘r$i0n‘,y’i+yiorr) |Z = 1,2,37...714}}. ®)

An image contains multiple targets, and many keypoints are
generated simultaneously. It is necessary to confirm the key-
points belonging to the same target. Taking the center keypoint
as a reference, the coordinates of the center point and vector
predicted were added to obtain the coordinates of the two
endpoints. We then compared them with the coordinates of the
two endpoints extracted from the heat map. If the Euclidean
distance between them was less than a certain threshold, the
same goal was considered, as in (9)—(11), the coordinates of
the central keypoint C (C'z, Cy), the coordinates of the upper
Keypoint T (T'z, Ty), and the coordinates of the lower keypoint
B (Bx, By). The vector from the central keypoint to the upper
endpoint is V ct, that from the lower endpoint is V'¢b, and sy, is
the threshold. The keypoint matching is shown in Fig. 6(b)

Vet = (2uy — 1)% 9)
Uy

Veb = (v —1)5 (10)

d(C‘FVCt,T)SSk (]1)

We only required the coordinates of the center point and
any endpoint, plus the length of the short side of the ship, to
obtain the coordinates of the OBB. If a center point matches the
upper and lower keypoints simultaneously, two OBBs appear
simultaneously. The OBB box score is the average of the center
point and endpoint scores. Finally, NMS was used to remove
the box with an excessive overlap rate. Fig. 6(c) shows the OBB
calculated using the keypoint coordinates and the length of the
short side.

The upper and lower keypoints set by this algorithm were
only related to the spatial position of the center point and did
not contain category information. This method decoupled the
target detection and bow classification. The two keypoints T and
B matched the spatial positions of the bow and stern. This was
beneficial for extracting the features of the head and tail. Two
classifiers were used at the two endpoints to predict whether a
pointis a bow. When the center point only matched one endpoint
and the classification threshold of this point was greater than 0.5,
it was the bow. Otherwise, it was the stern. When two endpoints
were matched simultaneously, the scores of the two keypoints
were compared, and the classification threshold of the point
was used to calculate the position of the bow if the score was
relatively large. In Fig. 6(d), the yellow circle represents the
ship’s bow.

D. Bow Classification Analysis Model

We established a simple bow classification analysis model, as
shown in (12). h; represents the bow classification threshold at
point 7, hy, represents the bow classification threshold at point B,
h,, represents the uncertainty of bow classification, and a value
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Fig. 7.  Annotation example.

closer to zero indicates greater uncertainty

hy = |hy — hy|. (12)

III. EXPERIMENT
A. Data

The data used in this study were obtained from the RSDD-
SAR [42] and FUSAR-ship [43] datasets. RSDD-SAR, which
includes Gaofen-3 and TerraSAR-X satellite data, has multi-
ple imaging modes, polarization modes, and resolutions. The
FUSAR-ship high-resolution ship dataset contained 15 main
ship classes. The data slices were taken from 126 GF-3 remote-
sensing images. The polarization mode included HH and VYV,
the resolution was 1.124 m x 1.728 m, and the imaging
mode was the UFS mode, covering various sea, land, coast,
river, and island scenes. A total of 1237 data slices were
selected from the RSDD-SAR dataset, and 533 data slices
were selected from the FUSAR-ship dataset. We selected 80%
of the data from the two subsets as the training set and
20% as the test set. We relabeled the selected data using
four corner points and four head points for labeling purposes
(see Fig. 7).

In this study, the identification process of the SAR bow
and stern is shown in Fig. 8. For SAR ship slices with mar-
itime mobile service identification information, the bow and
stern are determined by comparing real photos. For the ex-
istence of an optical image matching the SAR, the bow and
stern of the ship can be determined by comparing the op-
tical image. For ship slices without additional auxiliary in-
formation, the discriminative knowledge accumulated through
a large number of comparisons is used for discrimination.
This is also the basis for the slice selection of the two
datasets.

There are three main bases for assessing the bow and stern of
a ship in high-resolution SAR images, that is, shape, scattering,
and wake information. The inclusion of wakes in our data was

RSDD-SAR

&
=
:4
&
<
Iz
g
T

Fig. 8. Process of determining the direction of the ship.

TABLE II
SIZE DISTRIBUTION OF TRAINING DATASET AND TEST DATASET

Ship Small Medium Large
Train size (area<625)  (625<=area<=7500) (area>7500)
dataset
Number 246 1327 16
Ratio 15.48% 83.51% 1%
Test Number 61 333 6
dataset Ratio 15.25% 83.25% 1.5%

sparse and predominantly relied on morphological and scatter-
ing information. Fig. 9 shows the key components needed for
identifying the bow and stern of a ship.

Table II presents the size distributions of the training and
test sets and the size division references [44]. The proportions
of large, medium, and small particles in the training and test
sets were relatively consistent (see Table II). The proportion of
medium objects was the largest, followed by small objects and
large objects. In Fig. 10, an interval of 10° was used to obtain
statistics on the distribution of the bow angle of the training and
test sets, and the heading of the bow in the dataset is distributed
in all directions. Fig. 11 shows the width and height distributions
of the OBB. The width and height distribution is uneven, and
the aspect ratio is relatively large.
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Fig.9. Key components needed for differentiating between the bow and stern.

Fig. 10.  Distribution of bow angles in the training set and test set. (a) Number
distribution of ships from different angles in the training set. (b) Number
distribution of ships from different angles in the test set.

B. Experimental Details

Our deep-learning framework was based on Pytorchl1.6, and
the GPU model was an NVIDIA GTX 1080Ti. The training
and testing image sizes were 512 x 512 pixels. The images
were randomly rotated and flipped during training. The initial
learning rate was set to 0.000125, the optimizer was Adam, the
learning rate decay strategy was exponential decay, and iterative
training was performed 200 epochs.

C. Comparison of OBB Ship Detection Algorithms

In this section, the OBB detection performances of our pro-
posed algorithm and five other algorithms (gliding vertex [28],
oriented RCNN [45], R3Det [46], YOLOv5 + CSL [29], and
faster R-CNN (OBB) [15]) were compared. For a fair compar-
ison, other algorithms, except for the YOLOvVS5 + CSL model,
including the algorithm proposed in this study, used ResNet50 as
the backbone network for feature extraction. The evaluation in-
dicators used were precision rate (Precision), recall rate (Recall),
F1-score (F1-score), transmission frames per second (FPS), and
average accuracy rate (AP), where AP50 means merge, and the
average accuracy rate when the intersection over union (IoU)
threshold was 0.5.

300 -

250 1

200 A

150 A

100 A

Height of bounding box (pixels)

50 A

10 20 30 40 50
Width of bounding box (pixels)

Fig. 11.  OBB width and height distribution.

As shown in Table III, the proposed algorithm obtained the
most successful results for the F1-score and AP, which were
0.979 and 0.908, respectively. The R3Det algorithm had the
highest recall rate and a lower precision rate, resulting in the low-
est Fl1-score. The AP values of the R3Det and oriented RCNN
algorithms were second only to those of the proposed algorithm,
and the fastest algorithm in terms of speed was the YOLOVS +
CSL algorithm, which reached S0FPS. The speeds of the other
algorithms did not differ significantly. The slowest algorithm
was R3Det because it uses multiple refinement schemes to
improve accuracy. This can be observed in Fig. 12 that the gliding
vertex, oriented RCNN, and faster R-CNN (OBB) algorithms
produced more false alarms near the shore, whereas R3Det and
YOLOVS + CSL produce more missed detections. Our proposed
method showed better performance results near the shore. In the
third row, the oriented RCNN algorithm missed small targets,
while other algorithms detected small targets. In the fourth row,
oriented RCNN and YOLOv5 + CSL missed the target. The
rotating box obtained using the gliding vertex algorithm did
not correctly surround the target. Although the faster R-CNN
(OBB) algorithm detected the correct target, it also detected the
noise generated by the ship’s motion. R3Det and the proposed
algorithm correctly detected objects, and the proposed algorithm
obtained bounding boxes that were more consistent with the
ground truth.

D. Bow Discriminant Analysis

Table IV compares the three methods relying on keypoints
for bow differentiation. The C + head method, such as CHPDet
[47], is an anchor-free method that uses the center point and
head point to determine the OBB and bow. C + T + B used
the center point and the up and down points to determine the
OBB. It then compared the thresholds of the upper and lower
keypoints. A point with a larger threshold uses the bow classifier
where the point is located to determine whether the point is the
bow. The 7'+ B method uses only the upper and lower endpoints
for detection. Its bow classification strategy is consistent with
that of C + T + B. In the C + T + B method, the accuracy
rate of bow differentiation was the highest, and the accuracy
rate of bow classification (accurate) was the ratio of the number
of objects correctly classified as bows to the total number of
objects. The T + B scheme was lower than the C + T + B
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COMPARISON OF DIFFERENT OBB ALGORITHMS

TABLE III

Method Precision Recall F1 APs FPS

Gliding vertex 0.874 0.902 0.887 0.898 19.9
Oriented RCNN 0.981 0.935 0.957 0.907 20

R3Det 0.787 0.980 0.873 0.907 16.6
YOLOv5+CSL 0.896 0.955 0.924 0.884 50

Faster R-CNN(OBB) 0.869 0.965 0.915 0.900 20.3
TKP-Net (Our) 0.982 0.977 0.979 0.908 18.1

i [ r R- Proposed
g CNN(OBB) Method

Fig. 12.  Visualization comparison of different methods.
TABLE IV
COMPARISON OF TwO KEYPOINTS AND THREE KEYPOINTS
Method Precision Recall Fl APso Accurate
C + head 0.994 0.937 0.964 0.908 0.910
T+B 0.905 0.882 0.893 0.788 0.725
C+T+B 0.982 0.977 0.979 0.908 0.925

scheme for each accuracy index. The C + head scheme had the
highest accuracy rate, but a low recall rate. The F'1-score was not
as high as that of the C + T + B scheme. The main defect of the
C + head scheme was that when the model could not identify
the bow of the ship, and the detection target was not recognized,

resulting in missed detection. The proposed method divided bow
differentiation and ship detection into two stages such that the
bow discrimination result does not affect the detection result.
Fig. 13 showed the OBB detection results of SAR ships with bow
marks.

Deep learning relies on a single categorical variable to
make decisions which may be a problem of overconfidence
[48]. In many remote-sensing applications, it is critical to
estimate prediction uncertainty. The proposed method could
simultaneously predict two bow classification results at the
same time in most cases, and 82% of the test samples could
simultaneously obtain two bow classification results at the same
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Fig. 13.

TKP-net detection results. The yellow circle represents the bow.

TABLE V
ANALYSIS OF BOW DIRECTION

. . Correctly clas-
Threshold MISCIaSSIﬁe.d sified sa?jnple
sample proportion .
proportion
<0.1 0.115 0.009
<0.2 0.153 0.016
<0.3 0.230 0.016
<0.4 0.230 0.016
<0.5 0.307 0.019
<0.6 0.384 0.019
<0.7 0.461 0.039
<0.8 0.538 0.043
<0.9 0.615 0.046

time. The two classification results were used to determine
whether the point was the bow of the ship. Owing to the
influence of accidental and perceptual uncertainties, there are
contradictions between the two classification results. Using this
contradiction can reduce the inconsistencies to a certain extent.
Table V presents the proportions of incorrectly and correctly
classified samples in the bow classification test samples under

different thresholds. As the threshold increases, the propor-
tion of misclassified samples far exceeds the proportion of
correctly classified samples. Assuming that we have higher
requirements for the reliability of the bow classification, we
can set a large threshold. With a threshold of 0.9, our method
can label 61.5% of the wrong samples as low confidence sam-
ples, and only 4.6% of the correctly classified samples are
affected. This approach provides an analytical tool for decision
reliability.

E. Ship Detection in Large-Scale SAR Images

Large-scale SAR image testing can be used to validate and
evaluate the performance of ship detection algorithms in real-
world scenarios. Utilizing large-scale SAR images for testing
enables a more accurate assessment of algorithm performance
in handling complex backgrounds, multiple targets, occlusions,
and other challenging situations.

We tested on two large-scale SAR images, as shown in
Fig. 14(a), and ship detection had some false alarms on land or
islands. As shownin Fig. 14(b), the detection result of large-scale
SAR ships on the sea surface was better when there was no inter-
ference from land or islands. We selected ships with wakes on the
image to verify the accuracy of our bow classification. As shown
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Fig. 14.  Results in large-scale SAR images. (a) Large-scale SAR image with
islands. (b) Sea surface SAR image without islands. (c) Bow extraction result
with wake verification. The red circle represents the wrong classification result.

in Fig. 14(c), the direction of most ships was consistent with the
direction verified by ship wakes. This can prove to a certain
extent that our method has good performance in extracting ship
direction from large-scale SAR images.

FE. Ship Detection and Bow Discrimination in Dense Ports

This study addresses the task of ship detection and bow
discrimination in dense port environments as one aspect of our
brder research focus. We conduct an experiment to evaluate
the proposed method and the obtained performance metrics are
listed in Table VI. It can be seen from Table VI that the perfor-
mance of ship detection and bow discrimination in dense ports
has declined. Ship detection in dense port areas faces challenges,

TABLE VI
DETECTION PERFORMANCE IN DENSE PORTS
Scene Precision Recall Fl APsg Accurate
Port 0.828 0.746 0.784 0.772 0.808

Fig. 15. Ship detection and bow extraction in dense port areas. (a) Ships
docked on the shore alone. (b) Ships are densely packed together.

such as high ship density, background interference, and ship
diversity. There are usually a large number of ships berthing
or passing through the port area, and the distance between the
ships is relatively close, which increases the overlapping and
occlusion of ships. In addition, various objects and structures
in the port area, such as docks, buildings, cranes, and stacked
cargo, will generate a lot of interference and occlusion, making
the detection of ships more difficult. In addition, the port area
frequently moors and passes the ships of various types and sizes,
including cargo ships, passenger ships, fishing boats, etc., which
adds to the complexity of ship classification and identification.
As shown in Fig. 15(a), there is no dense arrangement of ships,
and the detection effect is better when the ships are docked at
the port. As shown in Fig. 15(b), missed detection occurs when
ships are densely arranged.

Therefore, our proposed method suffers from some limita-
tions in dense port areas.

Our proposed method exhibits an average inference time
of 73.6 s for large-scale SAR images. The image dimensions
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TABLE VII
BOW EXTRACTION ACCURACY OF DIFFERENT TYPES OF SHIPS
Ship Cargo Container | Fishing Tanker
types ship ship boat
Accurate | 0.886 0.964 0.888 0.977
Cargo ship Container ship Fishing boat Tanker

Fig. 16. Bow extraction results of different types of ships. The green circle is
the ground truth label, and the yellow circle is the predicted bow coordinates.

in question are 15668 x 21725. These values represent the
computational time our model requires when processing such
large-scale SAR images.

G. Accuracy of Direction for Different Types of Ships

We selected data with class labels from the test set to test the
accuracy of bow classification. It can be seen from Table VII
that the classification accuracy of the bow is the highest for oil
tankers and the lowest for fishing boats. It can be seen from
Fig. 16 that the objects classified incorrectly by the bow are
basically relatively small. Because the scattering structure of
the small target is not clear enough, the amount of information
provided is also small.

IV. DISCUSSION

The method we proposed for ship detection and bow clas-
sification has numerous advantages and innovations in the
field. However, we also acknowledge certain limitations that
need to be considered and addressed in further research and
applications.

First, our algorithm requires high-resolution SAR data. Lower
resolution SAR data may result in decreased algorithm perfor-
mance, affecting the accuracy of ship detection and recognition.
Therefore, our algorithm may be constrained by data resolution
limitations in certain data sources or application scenarios. Sec-
ond, our algorithm has certain requirements regarding the clarity
of ship scattering structures. If the scattering structures of ships
are too blurry or indistinct, the accuracy of the algorithm may
be compromised. Polarization information provides valuable
insights into the scattering behavior of objects, including ships,
and helps enhance the detection and characterization of ships in
SAR images [49], [50]. In the future, we can consider incorpo-
rating polarization information into our method to improve its
performance.

In addition, our algorithm’s performance may decline when
dealing with densely packed port areas. This is due to poten-
tial occlusion, overlap, or interference between ships in such
congested port regions. In these cases, our algorithm may ex-
perience false detections or missed detections, requiring further
improvements to enhance its capability in handling dense port
areas.

To address the aforementioned limitations, we can explore the
following avenues for improvement.

1) Investigating techniques to adapt to low-resolution SAR
data, such as image enhancement or multiscale processing
methods, to enhance the algorithm’s robustness.

2) Conducting further research on feature extraction and
model design for ship scattering structures to address the
challenges posed by blurry scattering structures.

3) Explore the utilization of prior knowledge or other sensor
data to assist in ship detection and recognition tasks in
dense port areas.

It is important to emphasize that our algorithm demon-
strates good performance and robustness in most cases.
However, further research and improvements are required
to address the aforementioned limitations. An honest and
comprehensive description of these limitations is crucial for
readers to gain the accurate understanding of our research
work and to provide guidance and inspiration for future
studies.

In future research, we will strive to overcome these limita-
tions and propose the corresponding improvement strategies
to further enhance the performance and applicability of our
algorithm.

V. CONCLUSION

In this study, a method for obtaining various ship infor-
mation, including position, length, width, and direction from
high-resolution SAR images, was proposed. A ship detection
method for any direction based on three keypoints without an
anchor box has been proposed. In the first step of the method, the
angle-prediction problem of the rotating box was converted into
an estimation and matching problem for the keypoint position
to determine the rotating box. In the second step, bow discrimi-
nation was performed using classifiers placed at two keypoints.
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The experimental results show that our method achieves good
performance with an AP of 90.8, an F1-score of 97.9%, and
an accuracy of 92.5% for bow classification in nondense port
area ship detection. We also used the difference in information
extracted from the two keypoints to establish a simple and
effective uncertainty analysis method.
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