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How Does Super-Resolution for Satellite Imagery
Affect Different Types of Land Cover?

Sentinel-2 Case
Anna Malczewska and Maciej Wielgosz

Abstract—In the dynamic field of satellite imagery, the signifi-
cance of super-resolution (SR) techniques, grounded on advanced
deep learning methods, is paramount. A thorough understanding
and remediation of the distinct challenges posed by various land
cover types for image resolution enhancement form the essence
of this research. This work diligently employs two unique neural
networks, SRCNN and SwinIR Transformer, to scrutinize their
varying impacts on a range of land cover types, ensuring a detailed
and comprehensive exploration. This study transcends the mere
enhancement of the Sentinel-2 dataset’s resolution from 20 m/pix
to 10 m/pix. It ambitiously seeks to excavate the intricate trends
inherent to different land cover types and their corresponding
interactions with SR processes. The application of neural networks
on 255 × 254 pixel patches, covering six dominant types—forests,
large fields, small fields, urban, sub-urban, and mixed—highlights
substantial variations in metrics, underlining the individual inter-
actions of each land cover type with SR techniques. A compre-
hensive accuracy assessment is meticulously conducted, employing
an array of metrics and frequency domains to shed light on the
nuanced differences and provide vital insights for optimizing each
land cover type’s SR approaches. Notably, the PSNR metric reveals
significant disparities, particularly in the “forest” and “urban”
categories for both SRCNN and SwinIR. According to the PSNR
metric, the “forest” class yielded the best results with 66.06 for
SRCNN and 67.00 for SwinIR, while the “urban” class marked the
lowest with 55.09 and 57.02, respectively, reinforcing the critical
nature of this study.

Index Terms—Image enhancement, image super-resolution (SR),
optical image processing, quality control, remote sensing.
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AMFFN Adaptive multiscale feature fusion network.
BOA Bottom-of-atmosphere.
CNN Convolutional neural network.
DMCN Deep memory connected network.
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DMOS Differential average subjective score.
EDSR Enhanced deep super-resolution network.
ERGAS Erreur Relative Globale Adimensionnelle de Syn-

these.
ESA European Space Agency.
HR High resolution.
IBP Iteration back projection.
LPIPS Learned perceptual image patch similarity.
LR Low-resolution.
MOS Mean opinion score.
NASA National Aeronautics and Space Administration.
NIQE Natural image quality evaluator.
OA Overall accuracy.
PNN Pansharpening convolutional neural network.
PCA Principal component analysis.
POCS Projection onto convex sets.
PPV Positive predictive value.
PSNR Peak signal-to-noise ratio.
QNR Quality no-reference.
RMSE Root-mean-square error.
SAM Spectral Angle Mapper.
SCC Spatial correlation coefficient.
SR Super-resolution.
SRCNN Super-resolution convolutional neural network.
SSIM Structural Similarity Index.
SVD Singular Value decomposition.
SVR Support vector regression.
SwinIR Image restoration using Swin Transformer.
TOA Top-of-atmosphere.
TPR True positive rate.
TTSR Texture transformer network for image super-

resolution.
UIQI Universal Image Quality Index.
USGS United States Geological Survey.
VDSR Very deep super-resolution network.

I. INTRODUCTION

MULTISPECTRAL satellite images are widely used in
many issues related to land and coastal environment

monitoring, such as determining the level of afforestation and
built-up area or in emergencies by detecting fires as well deter-
mining the effects of floods. Several sensors can provide global
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acquisition of multispectral images with high revisit frequency.
Satellite data can be divided due to spatial resolution into three
groups: low/medium (over 60 m/pix), high (60–10 m/pix), and
very high (less than 10 m/pix) resolution. The two largest
sources of free-of-charge images referred to high-resolution
(HR) are Copernicus Program provided by European Space
Agency (ESA) and Landsat Program led by NASA and USGS.

Sentinel-2 (ESA) images, which are used in this experiment
having pixel size from 60 to 10 m depend on the band. For
many purposes, this range is enough but for some analysis, it
is very appreciated to have a higher resolution. Data fusion,
pan-sharpening, and image super-resolution (SR) aims to recon-
struct low-resolution (LR) image to HR image. Machine learning
(ML) and deep learning (DL) methods achieve better results
in almost every performance metric than previous “classical”
methods based on pansharpening algorithms [1].

Due to the specificity of satellite images, it is necessary to
adjust the methods. It is not obvious that DL models creating
and learning on standard images can directly translate to remote
sensing images. Compare to standard images, differences are
caused by data specifications and can be seen in many aspects,
such as the number of spectral channels, data recording type,
or even difficulties in obtaining datasets. Satellite images are
collected under different weather conditions, such as variable
lighting, clouds, and fog. One more difference between SR on
standard images compared to satellite images is the source of a
LR dataset. For the standard approach, it is very often to make
LR images by degradation of HR images. In that case, there is a
possibility that the neural network model learns how to enhance
image resolution by correcting the degradation methods [1].
Satellite images are collected with different resolutions so there
is no risk that the model learns how to correct the degradation
process. The challenging aspect is that very often LR images
are collected by different sensors than HR images. To ensure
accuracy, it is crucial that images should be recorded with the
closest possible time and cover identical geographic regions.
Moreover, satellite data after SR are very often a subject of
further processing, such as image segmentation, Land Use Land
Cover classification, or object detection. Considering that, the
SR process in the case of satellite images should not only im-
prove the visual impression of the image, but also keep spectral
and spatial information to prevent quality for further processing.
There are many different accuracy metrics that focus on checking
for similarities between images. In this article, we checked their
suitability for the specificity of satellite data.

The experiment presented in this article focuses mainly on
developing a comprehensive quality evaluation method for satel-
lite image SR, and assessing how different land cover types,
such as forests, large fields, small fields, urban, sub-urban, and
mixed areas, are affected by the process. The intention of this
research was not to compare a multitude of SR models, but
to deeply understand the impact of SR on different types of
land cover. We hope that this approach allows to understand
how SR neural networks can be used for actual problems with
specific land cover types. For SR, we chose two neural networks
with different levels of complexity and theoretical backgrounds:

Fig. 1. Simplify flowchart of the experiment.

SRCNN [2] and SwinIR [3]. SRCNN is one of the pioneering
convolutional neural network (CNN) models for SR and has
demonstrated its robustness in handling Sentinel-2 images [4].
On the other hand, SwinIR, with its more recent development and
cutting-edge approach, offered a new perspective in exploring
the SR of satellite images. The evaluation for both methods was
done by using selected metrics and approaches. The attention
was paid to the diversity of results in relation to different types
of land cover. In addition, we tested which of image similarity
comparison metrics can be helpful in unsupervised classification
of images.

The general workflow is presented on the flowchart in Fig. 1.
For this experiment, we used Sentinel-2 images, R, G, and

B channels (B2, B3, B4) and enhanced resolution by 2. These
channels are consistently distributed by the ESA at resolutions
of 10 and 20 m, therefore they provide a stable and standardized
base for our experiment. Moreover, we decided to limit the
number of channels and level of SR to ×2 in order to maintain
the compatibility and integrity of the model SwinIR, which was
fine-tuned. The ×2 upscaling case is also extensively studied
and used in literature and real world applications. We used this
basic dataset in order to focus on developing an approach, which
can be adopted to include different spectral bands and higher
resolution input from various sensors.

This research endeavors to unravel the following queries: How
does SR influence various land cover types? Does its impact
remain uniform across diverse methods? Can we leverage this
knowledge to enhance neural network architectures for specific
applications?

This article primarily contributes the following.
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1) Development of a technique utilizing DL models to indi-
vidually handle diverse land cover types, focusing partic-
ularly on the crucial, smaller sections of images.

2) An in-depth comparative analysis of the SR outcomes for
six different land cover types, thoroughly assessing the
influence of SR on each.

3) Introduction of a pioneering, unsupervised protocol for
the classification of different land cover types.

4) Customization of the DL models to work efficiently with
the provided dataset, with the source code made available
at the repository [5].

It is possible to improve quality of small selected patches in the
images by using the proposed method which is composed of set
of models, portfolio of metrics, and the interpretation schemes
of their values. The key notion is that the application of the
DL model should be done selectively (not globally) with and
appropriate set of interdependent metrics and their dedicated
angle of analyze which we propose in this work.

The rest of article is organized as follows. Section II summa-
rizes in general ML and DL methods used in remote sensing, as
well-detailed SR methods used on satellite images. Section III
presents our approach, dataset, metrics, and SR methods. Section
IV gives results, both SR and accuracy assessment connected to
land cover types, as well unsupervised classification. Section V
includes a discussion of the results. Finally, Section VI concludes
this article.

II. RELATED WORKS

A. ML and DL in Remote Sensing

ML and DL have revolutionized remote sensing by enabling
more accurate, efficient, and automated analysis of Earth Obser-
vation data. The capabilities of ML and DL models have demon-
strated their superiority in handling the complexity and scale of
remote sensing data, ultimately leading to more advanced appli-
cations in environmental monitoring. A comprehensive review,
progress of the methods, and the potential of the ML and DL
were widely discussed in [6], [7], [8], [9], and [10]. Frequently
developed topic in the field of ML and DL in Earth Observation
is image segmentation, which is very often called Land Use
Land Cover classification. Review articles and meta-analyses
have been provided in [11], [12], [13], and [14]. New methods
and highly advanced models for image segmentation have been
included in [15] and [16]. The application of satellite images for
monitoring urban areas are presented in papers [17] and [18], and
for agricultural area in [19], [20], and [21]. A big challenge and
area of research is also the classification based on hyperspectral
images due to their spectral feature representations. The using
of DL in the classification of hyperspectral data (HSI) is pre-
sented in [22] and [23]. Due to their complexity, hyperspectral
images are demanding to obtain. DL methods are also used to
prepare such data in the HSI reconstruction phase in snapshot-
hyperspectral compressive imaging (SCI) systems. An example
of such a solution, also using remote sensing data, is presented
in [24]. Other applications of ML and DL models in remote
sensing are image registration [25], object detection [26], [27],

change detection [28], [29], [30], and SR, which is detailed
described in the next section.

B. Super-Resolution

The comprehensive review of application of SR models based
on DL to solve remote sensing task is presented by Wang
et al. [31] and Wang et al. [32]. Some of the multispectral
images consist of bands with different resolutions within one
product. For example, Sentinel-2 only has 2, 3, 4, and 8 chan-
nels in 10 m/pix, the rest is 20 m/pix or 60 m/pix. One of
the SR approach for satellite images has a goal to enhance
lower-resolution bands to the highest available in the product.
Several works are based on convolutional layers.

Pansharpening CNN method (PNN) trained on GeoEye-1,
WorldView-2, and Ikonos data was present in [33]. Two more
versions of improved PNN were presented in [34] and [35].
Another pansharpening network (PanNet) [36] was created
based on ResNet [37]. Modifications in network architecture
added by authors could capture spectral and spatial preservation.
CNN-based fusion method on Sentinel-2 data was presented and
developed in [38], [39], and [40]. A more global approach was
presented by Lanaras et al. [41]. In this work, not only 20 m
Sentinel-2 bands were enhanced to 10 m, but also 60 m. Network
architecture was inspired by enhanced deep super-resolution
(EDSR) [42] and ResNet [37]. VDSR [43] was adapted to the
remote sensing purpose [44] and uses residual factors, which
stabilize learning and predict only high-frequency components,
while low-frequency components are transferred directly from
the input.

Researchers also focused on solutions which could super-
resolve, e.g., Sentinel-2 bands to more than 10 m. To use ground
truth data from the different sensors, it is necessary to take into
account some specific characterization of images. First, very
important is to find registrations which are temporarily close
to each other to minimize changes that could appear. Second,
the spectral bands of each data source should be as similar as
it is possible. Also, prepossessing such a histogram matching
could be relevant. The EDSR-based model and its combinations
are widely used [45], [46]. RapidEye and PlantScope satellite
images were used to obtain Senitnel-2 RGB and Nir bands in 5
and 2.5 m pixel resolution, respectively. A solution based on a
residual convolutional network was also done [47]. One more
paper present model based on residual network with spectral
attention mechanism [48]. The model was trained on Senitnel-2
and PlanetScope images.

In DMCN, authors proposed different memory connections
to combine residual information with output: local and global
memory connection [49]. This solution was tested on three
remote sensing HR datasets. Authors of adaptive multiscale fea-
ture fusion network (AMFFN) used several adaptive multiscale
feature extraction modules to obtain a SR network, which is more
independent of scale, pixel size, and source of the photo. Cur-
rently, one of the most promising methods used in DL is based
on transformers. An example of texture transformer network for
image super-resolution (TTSR) shows that the network learns to
search for relevant textures from reference images for a target
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region on the LR image [50]. Some of the solutions connect CNN
and transformer components to obtain higher results and keep the
advantages of these two methods [51], [3]. HyperTransformer
was designed for pansharpening so used PAN as HR channel
and hyperspectral channels as LR [52].

Hyperspectral images are an interesting area where SR meth-
ods are developed. As in the case of multispectral images, three
resolution enhancement methods are specified: pansharpening-
based approaches, DL-based approaches, and factorization-
based approaches. HSI are often characterized by high spectral
resolution but lower spatial resolution. Obtaining pairs of HR
and LR hyperspectral images is often difficult, so researchers
are focused on fusing HR multispectral data (MSI) with lower-
resolution hyperspectral data (LR-HSI). Examples of such DL-
based studies are: [53], [54]. For the fusion of HR-MSI and
LR-HSI pairs, factorization-based approaches have been widely
used. In this group of methods, the decomposition aspect is
important, which allows to remove redundant information and
translate high-dimensional data into low-dimensional. Chen
et al. [55] presented factor-smoothed tensor ring (TR) decompo-
sition method, which allow to explore the high spatial-spectral
correlation of HR-HSI. This method is effective to reconstruct an
HR-HSI from a pair of LR-HSI and HR-MSI of the same scene.

C. Quality Evaluation

Assessing the quality of super-resolved images plays an
important role in understanding outputs and developing effective
methods. Especially in cases when super-resolved images are
used in analysis such as segmentation, LULC classification
or object detection. Images quality could be assessed in two
ways: subjective and objective. The subjective evaluation is
highly connected to human perception and impression. The
criteria can be a natural-looking and realistic image, easily
recognizable details, and no artefacts and distortions. In remote
sensing, it is very important in cases when images will be used
in photointerpretation making by a human. An example of
the subjective method is MOS [56] or DMOS. The objective
evaluation methods focus on a numerical calculation using
mathematical, statistical, and more often neural networks
algorithm. In most cases, objective methods are based on a
similarity comparison between a super-resolved image and a
ground true HR image. Examples of widely used objective
methods are: peak signal-to-noise ratio (PNSR) [57], structural
similarity (SSIM) [57], and NIQE [58]. For remote sensing data
commonly used are: Erreur Relative Globale Adimensionnelle
de Synthese (ERGAS) [59], Spectral Angle Mapper (SAM) [60],
Spatial Correlation Coefficient (SCC) [61], and UIQI [62]. A
relatively new metric based on the DL approach is learned
perceptual image patch similarity (LPIPS) [63]. There are also
some metrics to assess the quality in case of the absence of
ground truth. In remote sensing metric QNR [63] is used, but
to calculate it HR panchromatic band is needed.

D. Application of Super-Resolved Satellite Images

Research on the SR impact on LULC classification or object
detection of satellite images are less undertaken than the

development of SR methods themselves. Nevertheless, there
are articles that describe such results. Effects of atmospheric
correction and pansharpening on LULC classification were
tested on WorldView-2 data [64]. Successfully found that
classification accuracy increased after using pansharpening
PCI-PanSharp algorithm. Two classification methods were
used: object-based support vector machine(OB-SVM) and
pixel-based maximum likelihood classifier (PB-MLC). Studies
based on the classical pan-sharpening approach have also been
performed on Landsat-8 images [65]. Authors shown that
improving spatial resolution is highly beneficial for crop type
differentiation using both object- and pixel-based approach of
LULC classification. Similar conclusions were obtained by
checking the neural SRCNN on Landsat-7 images [66]. The
enhancement of resolution of image reduce the number of mis-
classified pixels compare to results obtained on original images.

III. MATERIALS AND METHODS

A. Data Specification and Preparation

The Copernicus program run by ESA provides free-of-charge
access to the earth observation data. Among many missions,
Sentinel-2 is mainly focused on monitoring land, seaside, and
islands area, except Antarctica. Data are collected by two iden-
tical satellites with the same sun-synchronise, quasi-circular,
near-polar, low-earth orbit but with a phase difference of 180◦.
The time to revisit the same place for each one is 10 days
so both give images up to 5 days. Each scene contains 13
multispectral channels presenting an electromagnetic spectrum
from visible to short-wave infrared. Images are acquired with
a radiometric resolution of 12 b/pix, encoded and distributed
in 16 b/pix JPEG2000 format. Each scene covers an area of
100 km × 100 km with an image size of 10 980 × 10 980 pixels.
Data provided by ESA are available in spatial resolutions of
10 m, 20 m, and 60 m with the highest resolution different for
each set of bands. There are 4 bands (visible and near-infrared)
in 10 m, 6 bands (near-infrared and short-wave infrared) in
20 m and 3 bands in 60 m. Data are available in two types
of correction: TOA (Level-C1) and BOA (Level-A2), which is
now called “surface reflectance.” We used Level-2 A data that
are orthorectified and BOA-calibrated reflectance. Level-2 A
products for R, G, and B channels are distributed by ESA
in all resolutions: 10, 20, and 60 m. For this experiment, we
used channels, which represent red, green, and blue colors
(B2, B3, and B4) with 20 m spatial resolution as LR images
and 10 m spatial resolution as HR images. Since both 10 and
20 m resolutions are available, there was no need to perform
data degradation to obtain LR images. The dataset was cre-
ated with different types of land cover from different parts of
the world. The arrangement of the scenes is shown in Fig. 2.
The list of tiles of scenes used for this experiment is shown in
the Appendix in Table XIV.

Basic preparation for dataset was as follows: we divided each
scene into smaller patches of size of 2040 × 1524 pix for HR
images and 1020 × 762 pix for LR images. As we want to keep
parts of every scene in each training, validation, and testing set so
each one was randomly split into each set. The detailed number
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Fig. 2. Location of the Sentinel-2 images used in the experiment. Image
source: OpenStreetMap.

TABLE I
TRAINING, VALIDATION, AND TESTING NUMBER OF IMAGES (2040 × 1524 HR,

1020 × 762 LR)

of images for both networks are shown in the Table I and describe
in Sections SRCNN III-B1 and SwinIR III-B2.

B. SR Neural Networks Used for Experiment

For this experiment, two SR models of neural network were
used: SRCNN [2] with modifications and the model based on
Swin Transformer (SwinIR) [3]. Both methods differ in the level
of complexity, number of parameters, and in the general way of
upsampling images. For this experiment, we upscale images by
factor 2.

1) SRCNN: SRCNN was one of the first DL architectures
created for SR. It consist of convolutional layers with relatively
large filter sizes to account for bigger perception field. We
based on publicly available Python repository implemented in
PyTorch [2].

We have introduced modifications, which allowed to adopt
the model to the data of our use. Consequently, the model
was adapted to the three channels of satellite images with a
radiometric resolution of 16-bit. We skip conversion to YCbCr
color space in favor of working on each of the three channels.
Most DL networks for image processing are designed to work
on 8-bit images, but we keep the original for our dataset’s 16-bit
radiometric resolution. We also do not need to create LR dataset
by degradation because we used 20 m bands as LR. We slightly
change the architecture by adding residual connection after
convolutional layers. The architecture of the modified SRCNN
network is shown in Fig. 3.

Originally, the network was trained on a 91-image dataset
broken down into smaller patches. The benchmark dataset con-
tains 24 800 patches in size 33 × 33 pix created with stride 14.
In our case, we used for training 950 images in size 2040 ×
1524 pix for HR images and 1020 × 762 pix for LR images,
which were divided into 299 250 patches in size 96 × 96 of

Fig. 3. Scheme of the SRCNN network architecture with changes.

TABLE II
TRAINING PARAMETERS OF SRCNN

Fig. 4. Scheme of the SwinIR network architecture with Residual Swin
Transformer Block (RSTB).

HR and 48 × 48 for LR. For validation, we used 90 images
in size 2040 × 1524 pix for HR images and 1020 × 762 pix
for LR images and of testing ten images in the same size. The
parameters of the model were as follows: three convolutional
layers with kernel size (9-5-5), number of filters 64 and 32, and
the activation function was ReLU.

The training parameters of the model are given in Table II.
2) SwinIR: The second model which we adapt to our experi-

ment was SwinIR, the network for image restoration using Swin
Transformer [3]. The network consists of three parts: shallow
feature extraction, deep feature extraction, and high-quality
image reconstruction. Shallow feature extraction focus on low-
frequencies parts and consists of 3 × 3 convolutional layers.
The deep feature extraction model focus on recovering lost high
frequencies and is composed of several residual Swin Trans-
former layers block (RSTB). High-quality image reconstruction
part aggregates feature extraction models and use a subpixel
convolutional layer to upsample the feature. The architecture of
the network we used is shown in Fig. 4.

For our purpose, we fine-tune the network which is available
in the publicly Python repository on GitHub [3], implemented
in PyTorch. We did not change the architecture of the model.
We used the parameters, which are described below. The patch
size of the training dataset was 96 × 96 pix for HR and 48 ×
48 pix for LR. The training parameters of the model are give in
Table III.

C. Data Preparation for Detailed Quality Assessment

Data for detailed quality assessment of the different types of
land cover were prepared by selection from validation and test



MALCZEWSKA AND WIELGOSZ: HOW DOES SR FOR SATELLITE IMAGERY AFFECT DIFFERENT TYPES OF LAND COVER? 345

TABLE III
TRAINING PARAMETERS OF SWINIR

Fig. 5. Examples of six classes with different land cover.

images. Each patch was divided into small subpatch in size 255×
254 pix so we obtained 4800 subpatches. The concept involved
creating patches of a size small enough to represent a single
land cover type. Some of the patches represent homogeneous
nature objects like deserts or steppes. We are not taken into
account this type of class in detailed quality assessment. From
this huge dataset, we selected around 65–100 images for each
class: forest, large fields, small fields, urban, sub-urban, and
class, which represent a mix of types in one image (forest, fields,
buildings, roads, and rivers). Examples of every type of land
cover class are shown in Fig. 5.

D. Quality Assessment Approach

We basically wanted to determine the impact of SR for
different types of land cover using known methods of quality
evaluation. We used an approach based primarily on numerical
calculation, histogram comparison as well other methods based
on neural network and discrete Fourier transform. To compare
super-resolved images to the original one we choose metrics
as follows. HR is an HR ground truth image and SR is super-
resolved image, which we want to compare to HR.

Root mean square error

RMSE =

√
1

mn

∑m−1

i=0

∑n−1

j=0
[HR(i, j)− SR(i, j)]2 (1)

with m, and n being the size of the image.
Peak signal to noise ratio (PSNR) [57] is the ratio between

the maximum possible power and the power of corrupting noise

and is based on mean squared error (mse)

PSNR = 10 ∗ log10
(

MAX2

mse

)
(2)

with MAX being the maximum possible pixel value of the image,
for this case is 216.

SSIM [57] takes into account the influence of three compo-
nents: structural information, illumination, and contrast

SSIM =
(2μHRμSR + c1)(2σHRSR + c2)

(μ2
HR + μ2

SR + c1)(σ2
HR + σ2

SR + c2)
(3)

with μHR being the pixel sample mean of HR; μSR being the
pixel sample mean of SR; σ2

HR being the variance of HR; σ2
SR

being the variance of SR; σHRSR being the covariance of HR
and SR. c1 = (k1L)

2 and c2 = (k2L)
2, where L is the dynamic

range of pixel value (in this case is 216 − 1), and k1 = 0.01 and
k2 = 0.03 by default.

Less used in general but more common in assessing the quality
of reconstructing satellite images are SAM [60], which shows the
deviation between true and estimated spectral signatures and
was calculated for each pixel and then averaged over the whole
image. The metric ignores absolute brigantines and measures
how faithful the spectral distribution of a pixel is reconstructed

SAM = cos−1

( ∑nb
i=1 HRiSRi∑nb

i=1 HR2
i

∑nb
i=1 SR2

i

)
(4)

with nb is number of bands in compared image.
SCC [61] is a correlation coefficient between a high-pass

filtered SR image and a high-pass filtered HR original image.
This metric is especially for images or part of the images con-
centrated in the high-frequency domain. The mask of high-pass
filter, which was used, is given as follows:⎡

⎢⎣−1 −1 −1

−1 8 −1

−1 −1 −1

⎤
⎥⎦ . (5)

Erreur Relative Globale Adimensionnelle de Synthese (ER-
GAS) [59] shows the overall error of the product, which is
independent of the units and instruments, independent of the
number of spectral bands under consideration, and independent
of the ratio of the scales

ERGAS = 100
h

l

√
1

nb

∑nb

i=1

(
RMSE(HRSRi)2

HRmean2
i

)
(6)

with nb being number of bands in compared image, and h/l is a
ratio between sizes of the images (in that case 1/2, because we
super-resolved images by 2).

LPIPS [63] is a deep network-based solution to assess the
similarity of the super-resolved image to the original HR image
suchlike human perception.

For each class, we made a visual interpretation for color
composition that is easier to interpret [67]. We also compare
histograms for original and super-resolved images for each band
for selected images. The shape of both expects to be close to
each other. In order to obtain an unambiguous measure that will
allow to compare the discrepancies between the histograms, we
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calculated Jensen–Shannon distance (JS) as a square root of
the JS divergence. JS is a method of measuring the similar-
ity between two probability distributions and is based on the
Kullback–Leibler divergence. The JS divergence is symmetric
and has a finite value

a =
1

2

∑
x∈X

HHR(x) log2
HHR(x)

1
2 (HHR(x) +HSR(x))

,

b =
1

2

∑
x∈X

HSR(x) log2
HSR(x)

1
2 (HHR(x) +HSR(x))

,

JS(HHR, HSR) =
√
a+ b (7)

where HHR and HSR are histograms of HR and SR, respectively.
Moreover, we made a Discrete Fourier Transform comparison

that is well represented by graphs. We calculate DFT over each
image, which represent the energy distribution for each ones.
Graphs show how the difference between images change from
the low to the high-frequency domain. Most methods of SR do
well with low frequencies but high frequencies are something
that need to be improve.

E. Clustering Image Patches Based on SR Results

The additional experiment in this study focused on checking
the reliability of clustering of image patches representing land
cover types based on SR results. We prepared the classification
of images into six classes (forest, large fields, small fields,
urban, sub-urban, and mix), as described in Section III-C, and
calculated metrics for SwinIR SR result, as described in Section
III-D. After those processes, we clustered data into six clusters
based on the metrics results using the k-means method. We made
two variants, the first was based on all metrics (RMSE, PSNR,
SSIM, ERGAS, SCC, SAM, and LPIPS), and the second based
on PSNR and SCC. In both variants, metrics scores were stan-
darized. For ablation studies, clustering was performed also on
RGB HR images. For this purpose we used first 16 components
of singular value decomposition (SVD) and k-means classifier.
Steps of the process are illustrated in Fig. 6.

To evaluate clustering results, we used a confusion matrix and
parameters as follows.

Purity—the sum of the highest score for each cluster to the
total number of samples

1

N

k∑
i=1

maxj |ci ∩ tj |. (8)

OA—the number of correctly classified samples to the total
number of samples. ∑n

i=1 TPi∑k
i=1(TPi + TNi + FPi + FNi)

. (9)

True positive rate (TPR)—the number of correctly classified
samples in one class to the total number of samples in this class.

TP
TP + FN

. (10)

Fig. 6. Images clustering procedure.

TABLE IV
PSNR METRIC SCORE FOR SWINIR FINE-TUNING AND TRAINING FROM

SCRATCH, TESTING, AND VALIDATION DATASET

PPV—the number of correctly classified samples in one class to
the total number of samples in one cluster.

TP
TP + FP

. (11)

with k—number of clusters, N—number of samples, ci—cluster
i, tj class j, TP—true positive, TN—true negative, FP—false
positive, FN—false negative.

IV. EXPERIMENTS

In this section, we present the results of the image SR based on
selected methods, image reconstruction performance and quality
assessment, results of SR for each of the selected classes, and
results for unsupervised classification.

A. Results for SR Methods

In order to assess training results for the SwinIR model,
we tested different training settings. At first, we used shared
weights and without training use it with validation and testing
sets to calculate metric scores. Then, based on shared weights,
we fine-tune the model up to 90 000 iterations. We also trained
from scratch up to 140 000 iterations. We choose weights for the
model after fine-tuning up to 60 000 iterations. The results were
stable, higher, and less time-consuming compared to training
from scratch. The scores of PSNR of training options for the
testing and validation dataset are presented in Table IV.

In the case of the SRCNN model, we used training parameters
described in Section III-B1. Table V shows general quality



MALCZEWSKA AND WIELGOSZ: HOW DOES SR FOR SATELLITE IMAGERY AFFECT DIFFERENT TYPES OF LAND COVER? 347

TABLE V
METRICS SCORE FOR VALIDATION AND TESTING SETS FOR SWINIR AND

SRCNN WITH BICUBIC INTERPOLATION BASELINE

TABLE VI
AVERAGE JS DISTANCE BETWEEN HISTOGRAMS OF HR AND SR FOR SIX

DIFFERENT LAND COVER TYPES FOR BICUBIC INTERPOLATION, SRCNN AND

SWINIR

assessment results for model options, we used in the further
analysis: SRCNN and SwinIR with fine-tuning up to 60 000
iterations and for baseline, we used bicubic interpolation. Table
V presents average metrics scores (PSNR, SSIM, ERGAS, and
SCC) for validation and testing sets.

B. Quality Assessment for Different Land Cover Types

The visual effects of image SR for selected images for each
land cover class and for the three used methods are shown in
Fig. 7. From these figures, we can observe that compare to
bicubic interpolation, both DL methods give more sharpen ele-
ments boundaries. For SwinIR, it is possible to see some thin and
small elements such as dirt roads. Also, the texture for example
on the fields are better preserved in SwinIR results. Absolute
differences between the HR image and SR results for each class
and method for large fields are presented in Fig. 8 and the rest of
land type are presented on the figures in the Appendix: forest (see
Fig. 11), small fields (see Fig. 12), urban (see Fig. 13), sub-urban
(see Fig. 14), and mix (see Fig. 15). The results are presented for
each channel and with the same scale. The absolute differences
decrease with the level of complexity of the neural network,
which is not surprising such that the stronger the network, the
better the results. The largest differences occur for the edges of
objects; therefore, the more differentiated the terrain, the more
higher results appear like in “urban” or “sub-urban” examples.
Moreover, the higher values of differences are for RED channel
in every land cover types.

Histogram comparisons was done for each classes and meth-
ods. The results of sample for each classes are shown in figures
in the Appendix: forest (see Fig. 16), large fields (see Fig. 17),
small fields (see Fig. 18), urban (see Fig. 19), sub-urban (see
Fig. 20), and mix area (see Fig. 21). In order to measure the
similarity of HR histogram to SR histogram, the JS divergence
was used. Histograms for each samples in each land cover class
was calculated, and then, the average for each class has been
determined. The results are shown on Table VI.

For each land cover class, we calculate metrics: RMSE,
PSNR, SSIM, ERGAS, SCC, SAM, and LPIPS. The results of
average for each class are presented for bicubic interpolation,
SRCNN and SwinIR, respectively, in Tables VII–IX. In each
of the methods, the highest results for almost all metrics were
obtained by areas that are represented by homogeneous land
cover type within one image, i.e., forests and large fields. The
lowest values for almost all metrics were recorded in fragments
showing urban areas. These regions present higher complexity
exhibiting exceptionally diverse and intricate features. These
are often the target areas for SR, as enhancing resolution in
such regions allows for better differentiation of finer details. The
exception is the SCC metric, where the best scores were achieved
by small fields. This metric shows the correlation between two
images after applying high-pass filters, so it focuses on the areas
contained in the high-frequency domain. Small fields as well
as buildings and most part of the mix area are images in the
high-frequency domain. The SCC metric and its impact and
application are described in more detail in Section V.

Correlation charts for metrics were created to visualize and
compare the results. The whole pair plots comparing accu-
racy assessment metrics for bicubic interpolation, SRCNN, and
SwinIR method are in Figs. 22–24 of the Appendix. This type
of representation of SR metric scores is easy to interpret and
understand the relationship between metrics. Some of the pairs
of metrics are very well correlated, such as PSNR to RMSE and
PSNR to SSIM or ERGAS to SAM. The general tendency is
similar for each method. The distinction of land cover classes
is most visible for the scatter plot of SCC to PSNR and SCC
to ERGAS. Both examples for bicubic, SRCNN, and SwinIR
are shown in Fig. 9. For PSNR and SCC, higher score is better,
and for ERGAS, the lower score is better. For each land cover
type, the characteristics of the metrics are slightly different.
For areas more homogeneous within one class, such as forests
and large fields, the variability of the results is smaller. Classes
representing more differential land cover have a much larger
variability. The distribution of classes on the charts for each
method looks similar, but the lowest result for SCC differs by
about 0.1 and the best by more than 0.15.

Fig. 10 shows plots of the results of Discrete Fourier Trans-
form for bicubic, SRCNN, and SwinIR SR compare to HR
images. The plots are made for the samples of each land cover
class shown in Fig. 7. Fourier transform converts a signal
from the time domain to the frequency domain. In the case of
images, the higher the frequency, the more diverse the area are
shown in the images. DFT-based graphs allow to visualize the
difficulty of the terrain and the amount of detail. It can be said
that if the outcome of the SR method closely resembles the
HR image, it indicates a similar level of detail is present in the
super-resolved image. The frequency distribution is significantly
different for each of the land cover examples. “Urban” and
“sub-urban” area have higher values in general and especially in
high-frequency parts. For bicubic interpolation, the scores starts
to be different from HR reference around the frequency 10–15.
For SRCNN and SwinIR, this score is between 20 and 30, and for
SwinIR, the amplitude is much more similar to HR than SRCNN.
The SRCNN DFT results for 15–25 frequency sometimes are
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Fig. 7. Visual comparison between results from three used methods.

TABLE VII
AVERAGE METRICS SCORES FOR SIX DIFFERENT LAND COVER TYPES FOR BICUBIC INTERPOLATION
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Fig. 8. Absolute difference between ground truth (HR) and super-resolved images for sample of large fields. The image shows absolute distance for each method
(bicubic, SRCNN, SwinIR) for R, G, and B channels.

TABLE VIII
AVERAGE METRICS SCORES FOR SIX DIFFERENT LAND COVER TYPES FOR SRCNN METHOD

TABLE IX
AVERAGE METRICS SCORES FOR SIX DIFFERENT LAND COVER TYPES FOR SWINIR METHOD

higher than HR reference, which is not desirable because having
a one type of terrain more detailed than in fact it is, is not desire.

C. Result of Clustering

After clustering data samples by all metrics scores, we as-
signed predicted clusters to actual classes. While for the classes:
“forest,” “large fields,” “small fields,” and “urban,” it is quite
possible to select a class, for classes “sub-urban” and “mix,” it
is not unambiguous. The clustering results based on all quality

assessment metrics are shown on the confusion matrix in Table
X. Each row of the matrix represents the instances in a predicted
cluster, while each column represents the instances in an actual
class. SCC metric is sensitive to the type of land cover, as it
has been shown in Fig. 9; therefore, we decided to use it with
PSNR as the basis for the clustering. The results are shown on
the confusion matrix IN Table XI. In this variant, the above-
mentioned clusters could easily be matched to actual classes but
for “sub-urban” and “mix” it was slightly more straightforward.
The TPR for each classes is similar or higher, especially for
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TABLE X
CONFUSION MATRIX FOR CLUSTERING RESULTS BASED ON ALL METRICS

TABLE XI
CONFUSION MATRIX FOR CLUSTERING RESULTS BASED ON PSNR AND SCC

Fig. 9. PSNR and ERGAS to SCC for bicubic interpolation, SRCNN and
SwinIR.

Fig. 10. Discrete Fourier Transform for bicubic, SRCNN and SwinIR SR
compare to HR images. Plots presented for samples with each land cover classes.
X-axis is a frequency, Y-axis is an amplitude.

the two worst-performing classes. Only the “forest” perform
worse. Moreover, the number of samples in clusters is more
consistent with the number within real classes. In the case of
clustering based on RGB HR images, the results are presented
on the confusion matrix in Table XII. Apart from classes “forest,”
“large fields,” and “small fields,” it was hard to assign clusters
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TABLE XII
CONFUSION MATRIX FOR CLUSTERING RESULTS BASED RGB HR IMAGES, 16 COMPONENTS OF SVD

TABLE XIII
PURITY AND OA FOR TWO VARIANTS OF CLUSTERING: BASED ON ALL

METRICS AND PSNR WITH SCC AND THE ABLATION STUDY BASED ON RGB
HR IMAGE, 16 COMPONENTS OF SVD

representation. Table XIII shows purity for clustering for both
variants based on SR results representing by metrics and for
reference clustering on RGB HR images based on SVD com-
ponents. Table XIII presents also OA score for each variant and
reference clustering. Clustering scores are higher for variants
based on SR metrics than on SVD components. Moreover, the
variant based on PSRN and SCC performs better than the option
based on all SR metrics.

V. DISCUSSION

In the conducted research, the application of SRDL meth-
ods was explored for the enhancement of satellite images,
particularly Sentinel-2. The underlying motivation of the
experiment was to rigorously analyze the outcomes attained
using SR methods across diverse land cover types and critically
assess the uniformity of these results over various SR techniques.

This investigation prominently centered around the R, G, and
B channels, enhancing the resolution from 20 to 10 m/pix. This
strategic choice was made in light of the availability of these
channels in both 10 and 20 m resolutions, thereby allowing
the harnessing of a substantial dataset for rigorous analysis.
Furthermore, the utilization of data from the same satellite
eliminated potential discrepancies related to acquisition times,
sensor specifications, and camera calibration, ensuring the re-
liability and consistency of the results obtained. This careful
approach assured that the discerned differences in results across
diverse land cover types were unequivocally attributed to terrain
specifics, eliminating the influence of external factors.

The focal point of the experiment was not merely the
enhancement of the Sentinel-2 images’ resolution. Rather,
the research concentrated predominantly on delineating a

robust methodology for assessing image quality post-SR. This
meticulous approach allowed for a comprehensive insight into
the utility of the results in the broader context of developing or
fine-tuning neural networks for specialized requirements.

A. Discussion on the SR Results

The general results for the validation and testing datasets,
as displayed in Table V, exhibit enhanced performance with
more complex network architectures. The PSNR scores for
bicubic, SRCNN, and SwinIR for the test dataset are sequentially
60.8751, 61.8816, and 63.3443, with higher values indicating su-
perior performance. Concurrently, the ERGAS scores register at
3.1801, 2.7885, and 2.2551, where lower scores denote superior
results. This trend in metric scores is evidently dependent on the
complexity level of the DL methods.

Compared to bicubic interpolation, advanced methods such
as SwinIR offer significant enhancements, especially in high-
frequency regions. A detailed visual analysis reveals that SwinIR
efficiently identifies diminutive elements, such as field paths
or building boundaries in urban landscapes, surpassing other
methods in performance.

Inspection of SR results across diverse land cover classes
showcases a consistent trend: more homogeneous areas yield
superior scores, regardless of the neural network model uti-
lized. For instance, PSNR scores for the SwinIR method range
from 57.0150 in urban areas to 67.0068 in forest regions. A
corresponding pattern is observed for the ERGAS metric, em-
phasizing the significance of considering these variations for
terrain-specific tasks.

Examining histogram comparisons and JS distance reveals
a distinct ranking for land cover types, listed in decreasing
order: large fields, forest, small fields, mix, sub-urban, and
urban. Most discrepancies between post-SR and original HR
images are located at object edges, as evident in absolute
differences representations (see Figs. 11–15). Despite these
observations, the SwinIR metric results consistently outper-
form bicubic interpolation and SRCNN, particularly in forest
regions.

Interestingly, small-field areas, despite their variability, attain
high scores, likely attributed to their organized patterns con-
ducive for model training.

In contrast, the SCC metric for diverse land cover classes
presents a unique scenario. Average SCC scores remain
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consistent with other metrics, with the most complex method,
SwinIR, achieving the highest score. Despite its effectiveness
in comparing entire populations and distinguishing land cover
types, SCC’s sensitivity to terrain variance renders it less ob-
jective compared to other metrics. It should thus be employed
cautiously, ensuring alignment with the specific aspect under
evaluation. Preliminary tests indicate an overall clustering ac-
curacy of 0.5616 based on SCC and PSNR, reinforcing the
necessity of thoughtful metric selection for varied analyses and
evaluations.

B. Discussion on Clustering Methods

The examination of the distribution of SR results concluded
that, to a certain extent, metrics scores align with land cover
types. It was observed that the combination of the PSNR and
SCC metrics is adept at distinguishing various land cover types
based on their corresponding values. Guided by this observation,
an inquiry was made to determine the aptness of these metrics
for unsupervised classification, aiming to initially discern the
prevailing types of land cover in a dataset. This strategy proves
invaluable when encountering datasets with unknown land cover
types, enabling their characterization.

An ablation study was conducted, comparing the clustering
results on the chosen metrics with the results of clustering HR
images based on SVD components. Both purity and overall
accuracy metrics reached their zenith when classifications were
based on PSNR and SCC metrics. This affirms the effective
reflection of land cover types by these metrics, demonstrating
the potential of the presented approach especially when there is
an imperative to characterize datasets for which SR is conducted
with respect to land cover types [68], [69], [70].

The ensuing results from the abovementioned clustering pro-
cess possess the potential for enhancement through the em-
ployment of kernel methods. These methods, by transitioning
nonlinearly separable data into a dimensionally higher space,
possibly refine the definition and thereby the assignment of
predicted clusters to actual classes. The employment of Kernel k-
means [71], Kernel spectral clustering [72], or Kernel PCA [73]
could further augment the clustering process, fostering increased
accuracy and robustness.

C. Discussion on Spectral Variability

The influence of spectral variability on the performance of our
SR method was may be an important factor. Spectral variability
pertains to the variations in spectral data due to factors, such
as atmospheric conditions, sensor noise, and intrinsic variations
in the earth’s surface. While our primary focus in this study
was the enhancement of spatial resolution, it is important to
consider the potential impact of spectral variability on our SR
results.

While our SR model is designed to be robust in the face of
spatial variability across different land cover types, it assumes
that the spectral characteristics of these types remain relatively
constant. Any substantial variability in these characteristics
could potentially influence the overall performance of our SR
method.

Notably, the integration of concepts to address spectral vari-
ability, as seen in the study [74], could potentially bolster our
SR framework’s robustness to such variabilities. However, such
an integration would entail a shift in our problem formulation
and is considered a promising direction for future work.

In light of this, we acknowledge that a thorough exploration of
the impact of spectral variability on our SR results is an important
avenue for future research. Understanding and accounting for
spectral variability could bring about more accurate and robust
SR results, contributing significantly to the field of remote
sensing image analysis.

VI. CONCLUSION

This article presented a robust methodology for evaluat-
ing the quality of super-resolved satellite images across di-
verse land cover types. Utilizing SRCNN and SwinIR meth-
ods for SR, our comprehensive quality assessment approach
encompasses multiple metrics, histogram comparison, visual
interpretation, and distinct Fourier transform analysis. This re-
search’s novelty lies in discerning the differential impact of SR
across varied land cover types, such as forest, large and small
fields, urban, sub-urban, and mixed terrains. Uniform terrains,
such as forests or large fields, consistently exhibited superior
SR results across all metrics. Interestingly, the SCC metric
showcased unique behavior, performing better with increased
terrain variation, offering potential utility in land cover type
clustering.

The insights gleaned from this study advocate for the tailored
application of SR neural networks to enhance results for specific
land cover types. For instance, networks trained on abundant
examples of specific land covers, such as small fields in a
particular country, may yield improved outcomes for tasks, such
as semantic segmentation, field border detection, or precise plant
species identification, even though their applicability might be
limited to similar terrains.

Our future work aims to extend this research by conducting
experiments with high- and LR images from diverse sensors,
thereby validating our proposed method’s generalizability and
robustness across various sensing technologies. An ambitious
goal includes augmenting the resolution of Sentinel-2 images
from 10 m/pixel to a staggering 2.5 m/pixel, utilizing Plan-
etScope data as the HR benchmark. Our exploration will also en-
compass the inclusion of infrared channels to further enrich land
cover classification and potentially enhance SR performance.

Further endeavors include fine-tuning networks for specific
land covers, such as urban or small field images. This tar-
geted approach will investigate potential improvements in metric
scores for these specific types, possibly leading to heightened
SR efficacy for such categories. The experiments conducted
suggest the potential for enhanced SR applications, such as
border detection for small fields, by fine-tuning networks using
selected land cover type datasets. In future work, these hypothe-
ses will be rigorously tested and validated, and the adaptation
of neural network architectures for specific land cover types
will be explored to further optimize SR outcomes for diverse
terrains.
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APPENDIX

TABLE XIV
LIST OF SENTINEL-2 SCENES USED IN THE TRAINING, VALIDATION, AND TESTING PROCESS WITH REGIONS AND THEIR CHARACTERISTICS

Fig. 11. Absolute difference between ground truth (HR) and super-resolved images for sample of forest. The image shows absolute distance for each method
(bicubic, SRCNN, and SwinIR) for R, G, and B channels.
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Fig. 12. Absolute difference between ground truth (HR) and super-resolved images for sample of small fields. The image shows absolute distance for each
method (bicubic, SRCNN, and SwinIR) for R, G, and B channels.

Fig. 13. Absolute difference between ground truth (HR) and super-resolved images for sample of urban area. The image shows absolute distance for each method
(bicubic, SRCNN, and SwinIR) for R, G, and B channels.
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Fig. 14. Absolute difference between ground truth (HR) and super-resolved images for sample of sub-urban area. The image shows absolute distance for each
method (bicubic, SRCNN, and SwinIR) for R, G, and B channels.

Fig. 15. Absolute difference between ground truth (HR) and super-resolved images for sample of mix area. The image shows absolute distance for each method
(bicubic, SRCNN, and SwinIR) for R, G, and B channels.
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Fig. 16. Comparisons of histograms between ground truth (HR) and super-resolved images for sample of forest. The image shows histograms for each method
(bicubic, SRCNN, and SwinIR) for R, G, and B channels and JS divergence score in the legend.

Fig. 17. Comparisons of histograms between ground truth (HR) and super-resolved images for sample of large fields. The image shows histograms for each
method (bicubic, SRCNN, and SwinIR) for R, G, and B channels and JS divergence score in the legend.
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Fig. 18. Comparisons of histograms between ground truth (HR) and super-resolved images for sample of small fields. The image shows histograms for each
method (bicubic, SRCNN, and SwinIR) for R, G, and B channels and JS divergence score in the legend.

Fig. 19. Comparisons of histograms between ground truth (HR) and super-resolved images for sample of urban area. The image shows histograms for each
method (bicubic, SRCNN, and SwinIR) for R, G, and B channels and JS divergence score in the legend.
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Fig. 20. Comparisons of histograms between ground truth (HR) and super-resolved images for sample of sub-urban area. The image shows histograms for each
method (bicubic, SRCNN, and SwinIR) for R, G, and B channels and JS divergence score in the legend.

Fig. 21. Comparisons of histograms between ground truth (HR) and super-resolved images for sample of mix area. The image shows histograms for each method
(bicubic, SRCNN, and SwinIR) for R, G, and B channels and JS divergence score in the legend.
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Fig. 22. Pair plot for metrics for bicubic interpolation.
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Fig. 23. Pair plot for metrics for SRCNN.
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Fig. 24. Pair plot for metrics for SwinIR.
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