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Parallel Computing Method of Commonly Used
Interpolation Algorithms for Remote Sensing Images

Minghu Fan , Xianyu Zuo , and Bing Zhou

Abstract—Parallel computing is a common method to accelerate
remote sensing image processing. This article briefly describes six
commonly used interpolation functions and studies three com-
monly used parallel computing methods of the corresponding nine
interpolation algorithms in remote sensing image processing. First,
two kinds of general parallel interpolation algorithms (for CPU and
GPU, respectively) are designed. Then, in two typical application
scenarios (data-intensive and computing-intensive), four comput-
ing methods (one serial method and three parallel methods) of these
interpolation algorithms are tested. Finally, the acceleration effects
of all parallel algorithms are compared and analyzed. On the whole,
the acceleration effect of the parallel interpolation algorithm is
better in computer-intensive scenario. In CPU-oriented methods,
the speedup of all parallel interpolation algorithms mainly depends
on the number of physical cores of CPU, whereas in GPU-oriented
methods, a speedup is greatly affected by the computation com-
plexity of an algorithm and the application scenario. GPU has
a better acceleration effect on the interpolation algorithms with
bigger computation complexity and has more advantages in the
computing-intensive scenarios. In most cases, GPU-based interpo-
lation is ideal for efficient interpolation.

Index Terms—Compute-intensive, data-intensive, interpolation,
parallel computing, remote sensing image.

I. INTRODUCTION

IN REMOTE sensing image processing, interpolation is an
important step in geometric processing and the basis of

image reconstruction. In most cases, the speed of interpolation
methods is also often an issue [1]. Early research works focus
on the simplification of the interpolation model in order to
make a tradeoff between the processing time and the quality
of interpolation [2]. With the rapid development of computing
power, subsequent research works focus on the application of
parallel computing methods [3], [4], [5].

Early interpolation algorithms were relatively simple and the
interpolation quality was average. After Shannon introduced
information theory, the sinc function was accepted as an ideal
interpolation function. However, interpolators based on this
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function have an infinite impulse response and are not suitable
for local interpolation with only a finite impulse response. The
solution to this problem is to approximate the sinc function.
The functions suggested successively are Taylor polynomials,
Lagrange polynomials, and different kinds of spline functions
[2]. Up to now, there have been several mature interpolation
methods. Among them, the most commonly used methods are
nearest neighbor, linear and cubic interpolation, which are im-
plemented by almost all image processing software. As for other
interpolation methods, different software has its own tradeoffs
and there are certain differences in implementation, such as
spline interpolation.

Some application fields of interpolation may have higher
requirements on processing speed, such as image processing and
computer vision. Early solutions were to accelerate interpolation
calculations by optimizing the interpolation model and using
special hardware (FPGA). The former effectively reduces the
computation of interpolation, and the latter provides a much
faster computing speed than that of the algorithms realized
by software. Lee et al. [6] proposed a multilevel B-splines in-
terpolation algorithm, which achieved substantial performance
improvement by refining a B-spline function into the sum of
multiple functions. Berthaud et al. [7] applied the B-spline
interpolation method to a real-time image rotation based on
FPGA’s board. Nuno-Maganda and Arias-Estrada [8] proposed
a real-time FPGA architecture for bicubic interpolation, which
is applied to digital image scaling. Serhat and Anıl [9] pre-
sented an FPGA implementation of a cubic spline interpolation
method for empirical mode decomposition, which is 900 times
faster than the software implementation. With the development
of parallel computing technology, various parallel paradigms
have been introduced into interpolation applications. Mei et al.
[10] proposed an improved GPU-based adaptive inverse dis-
tance weighting interpolation algorithm for k-nearest neighbors
search, with a speedup of 1000+. Mohanty et al. [11] proposed a
parallel interpolation component known as skeleton, which can
be implemented in several parallel paradigms, such as OpenMP,
MPI, and CUDA.

Due to the large computation, parallel computing technology
has been widely studied in remote sensing image processing
[12]. According to the hardware architecture adopted, parallel
computing methods can be roughly divided into three categories:
CPU-oriented (such as multicore and multiprocessor) methods,
special hardware-oriented (FPGA) methods, and GPU-oriented
methods. The first two kinds of methods have been introduced
into remote sensing image processing very early [13], whereas
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the third kind has been introduced in recent 10 years [14], [15].
Interpolation is one of the foundations of geometric processing
of remote sensing images, and there are many research works on
parallel computing related to it, such as resampling [16], [17],
geometric correction [18], [19], image registration [20], [21],
image mosaic [22], [23], image fusion [22], [24], and so on.
From the perspective of application scenarios, these studies can
be divided into two categories: data-intensive and computation-
intensive [25].

Generally speaking, the existing research works are all aimed
at the application and/or optimization of an interpolation algo-
rithm in a certain running environment. However, in practice,
we may need to have more options, considering efficiency and
quality at the same time. For example, Akima’s interpolation
method provides a natural and more suitable method for the
smooth fitting of data, so it is very popular and there are a
lot of improvement studies, such as Bica [26] proposed an
optimization method to reduce oscillations on the end-points
intervals. MATLAB also provides an improved implementation
of this method [27]. Therefore, we choose several commonly
used interpolation algorithms and make an in-depth study of
their parallel computing methods in remote sensing image pro-
cessing. Our work refers to several popular remote sensing
image processing software (including GDAL, OpenCV, SNAP,
ENVI, and MATLAB), and selects six interpolation algorithms,
including nearest neighbor, linear, cubic, B-spline, sinc, and
Akima algorithms. This article mainly introduces the design and
implementation of the parallel algorithms of these algorithms,
and compares and analyzes their acceleration effects in the two
application scenarios, and also makes a simple comparison with
existing research.

II. INTERPOLATION FUNCTIONS

The interpolation function introduced here is the basis of the
interpolation algorithms implemented in this article. In order to
simplify the description of the interpolation functions, we first
give a general 2-D interpolation formula, as follows:

f (x, y) =

j+n+a∑
l=j−n

i+n+a∑
k=i−n

f (k, l) ∗ h (x− k, y − l) . (1)

In the above-mentioned formula, the coordinate to be inter-
polated is (x, y), (i, j) is the coordinate of the sample point in
the upper left corner of (x, y), f(k, l) represents the sample point,
h(x-k,y-l) represents the interpolation kernel function, the value
of n determines the size of the neighborhood, and a = 0 (n = 1,
2, …) when the neighborhood is odd or a = 1 (n = 0, 1, 2, …)
when the neighborhood is even. In general, a 2-D interpolation
kernel function can be expressed as a convolution of two 1-D
interpolation kernel functions. Let u = x–k and v = y–l, and then
h(x− k, y − l) = h(u) ∗ h(v). In general, h(u) and h(v) are
completely similar. They can be simply regarded as the weights
of sample points.

Obviously, the difference between the interpolation formulas
is just the kernel function. Therefore, only the formula h(u) is
given below (except for Akima interpolation).

A. Nearest Neighbor Interpolation

The 2-D neighborhood of the nearest interpolation is 2∗2, but
only the sample point closest to the interpolation point is taken.
The interpolation kernel function is as follows:

h (u) =

{
1, 0 ≤ |u| < 0.5
0, elsewhere

. (2)

B. Linear Interpolation

The 2-D neighborhood of linear interpolation is 2∗2, in which
the influence of all points is calculated. The interpolation kernel
function is as follows:

h (u) =

{
1− |u| , 0 ≤ |u| < 1
0, elsewhere

. (3)

C. Cubic Interpolation

The 2-D neighborhood of cubic interpolation is 4∗4. The
weight coefficient of each point in it is calculated by a piecewise
cubic polynomial [28]. The interpolation kernel function is as
follows:

h (u) =

⎧⎨
⎩
(a+ 2) |u|3 − (a+ 3) |u|2 + 1, 0 ≤ |u| < 1

a|u|3 − 5a|u|2 + 8a |u| − 4a, 1 ≤ |u| < 2
0, elsewhere

(4)

where the commonly used value of a is –0.5.

D. B-Spline Interpolation

B-splines are one of the most commonly used families of
spline functions [29]. Its common 2-D neighborhood is 4∗4 or
larger, such as 6∗6. It also uses a piecewise cubic polynomial
to calculate the weight coefficient of each point in the neigh-
borhood [30]. The interpolation kernel function is as follows:

h (u) =

⎧⎨
⎩

1
2 |u|3 − |u|2 + 2

3 , 0 ≤ |u| < 1

− 1
6 |u|3 + |u|2 − 2 |u|+ 3

4 , 1 ≤ |u| ≤ 2
0, elsewhere

. (5)

Different from the above interpolation, h(u) here is the weight
coefficient of the control points of the B-spline curve [31]. We
also need to calculate the corresponding control points based on
the sample points [32], and the corresponding solution equations
are as follows:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

s0
s1
s2
...

sk−2

sk−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

1

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4 1
1 4 1

1 4 1
...
1 4 1

1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p0
p1
p2
...

pk−2

pk−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6)

where k is the 1-D dimension of the neighborhood. For example,
if the 2-D neighborhood is 4∗4, then k = 4. si(i = 0, 1, …, k–1)
represents a sample point, and pi(i = 0, 1, …, k–1) represents a
control point to be sought.
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E. Sinc Interpolation

Sinc function, also known as ideal interpolation function, is
infinite in space. In practice, its space is often truncated by
some kind of window, such as the Lanczos window [33], Kaiser
window, Hanning window, and Hamming window [34]. Its 2-D
neighborhood is usually odd, such as 5∗5. The interpolation
kernel function and a truncated window function are as follows:

h (u) =
sinπu

πu
= sinc (u) (7)

wh (t, T ) = α− (1− α) cos

(
2πt

T

)
, −2π

T
≤ t ≤ 2π

T
(8)

where wh(t, T) is the Hanning window (α = 0.5) or Hamming
window (α = 0.54) in the time domain.

F. Akima Interpolation

Akima interpolation is a continuous differentiable subspline
interpolation [35]. Its 2-D neighborhood is 6∗6. Its 1-D inter-
polation only needs five adjacent points. They are assumed to
be xi-2, xi-1, xi, xi+1, and xi+2, and then the 1-D interpolation
function is as follows:

f (x) = a0 + a1 (x− xi) + a2(x− xi)
2 + a3(x− xi)

3

xi ≤ x ≤ xi+1. (9)

In the above-mentioned formula, the calculation formula of
ai is as follows: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
a0 = f (xi)
a1 = ti
a2 = 3mi−2ti−ti+1

xi+1−xi

a3 = ti+1+ti−2mi

(xi+1−xi)
2

(10)

where ti is the first derivative of the spline curve at xi, and mi

is the slope between the point (xi, f(xi)) and the point (xi+1,
f(xi+1)). Their calculation formula is as follows:{

ti =
|mi+1−mi|mi−1+|mi−1−mi−2|mi

|mi+1−mi|+|mi−1−mi−2|
mi =

f(xi+1)−f(xi)
xi+1−xi

. (11)

Different from the previous interpolation methods, its 2-D in-
terpolation also needs to introduce partial differential conditions
into the ai [36], [37], otherwise the 2-D interpolation results are
not always smooth. The 2-D interpolation function is as follows:

f (x, y) =

3∑
l=0

3∑
k=0

alk(x− xi)
k(y − yj)

l

x ∈ [xi, xi+1] , y ∈ [yj , yj+1] . (12)

The above formula needs to determine 16 coefficients, which
can be found in the literature [37].

III. METHODS

First of all, based on a serial interpolation algorithm, we
designed two general parallel interpolation algorithms for CPU
and GPU, respectively. Then, based on them and the above
six interpolation functions, nine interpolation algorithms are

Algorithm 1: Pseudocode for a Serial Orthorectification.

implemented, each of which implements one serial method
and three parallel computing methods, totaling 36 algorithms.
Finally, based on an RPC-based orthorectification algorithm for
remote sensing images, parallel computing experiments in two
application scenarios are designed to test the computing time of
these algorithms.

A. Design of Parallel Algorithms

1) Serial Interpolation Algorithm for CPU: The design of
the parallel algorithm is based on a serial orthorectification
algorithm described in Algorithm 1.

In Algorithm 1, the locating of a pixel is done in each cycle,
and the elevation is required for the fifth step. I(x, y) is the
pixel coordinate of I, corresponding to X(i, j). The mapping
relationship between them is based on a geo-spatial locating
model.

Steps 4 and 6 in Algorithm 1 were chosen as our experimental
scenarios. Parallel experimental algorithms are designed based
on them, as are described in Algorithms 2 and 3.

2) Parallel Interpolation Algorithm for CPU: The basic idea
of this algorithm is to divide the image into blocks, and then
dispatch these blocks to different threads to parallel process.
A general parallel interpolation algorithm for CPU is shown in
Algorithm 2.

In Algorithm 2, the tasks in steps 5 and 6 are similar to
those in steps 2–9 in Algorithm 1, both of which are processed
pixel by pixel. The difference between them is that the former
is for the whole image, whereas the latter is only for data
blocks.

3) Parallel Interpolation Algorithm for GPU: The basic idea
of this algorithm is to transfer the image into GPU to process, in
order to make use of a large number of parallel threads of GPU
to accelerate the processing. A general parallel interpolation
algorithm for GPU is shown in Algorithm 3.

Considering the capacity limitation of GPU memory, Algo-
rithm 3 divides the images to be processed into blocks (divided
by row and their sizes are determined according to the GPU
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Algorithm 2: Pseudocode for a CPU-Oriented Parallel
Interpolation.

Algorithm 3: Pseudocode for a GPU-Oriented Parallel
Interpolation.

memory capacity). In Algorithm 3, each GPU thread processes
only one pixel at a time.

B. Implementation of Parallel Algorithms

We have implemented nine interpolation algorithms, includ-
ing six basic algorithms and three improved algorithms (using
batch mode). The so-called batch mode refers to the centralized
processing of some preprocessing computations that can be per-
formed independently before interpolation, in order to reduce the
computation during interpolation. These computations include
the boundary processing of bicubic algorithm, the solution of
control points of B-spline algorithm, and the computation of
differential conditions of Akima algorithm. The other three

interpolation algorithms do not have such preprocessing com-
putations.

Each algorithm implements the following four computing
methods.

1) Serial computing method (implemented Algorithm 1).
2) Parallel computing method based on OpenMP (imple-

mented Algorithm 2).
3) Parallel computing method based on ISO C++ 11 (im-

plemented Algorithm 2).
4) Parallel computing method based on CUDA (implemented

Algorithm 3).
The implementation of the serial method refers to the relevant

implementations of the open-source software GDAL, OpenCV,
and SNAP, and unifies the implementation modes of all algo-
rithms. OpenMP is a set of guiding compilation and processing
schemes for multiprocessor programming in shared memory
parallel systems. It is easy to use and has become one of the
popular parallel computing technologies. Our implementation
mainly uses its “parallel for” directive to segment image pro-
cessing automatically. Starting from the 11th edition, the ISO
C++ standard has been added as a support framework for
parallel computing. Our implementation leverages its mapping
mechanism between data blocks, algorithms, and threads to
customize parallel computing schemes. CUDA is a parallel com-
puting platform and programming model invented by NVIDIA
Corporation. It is one of the mainstream parallel computing
technologies based on GPU.

Referring to some literature and combined with our engi-
neering practice, some key parameters of the interpolation algo-
rithms are set as follows: nearest neighbor, bilinear and bicubic
interpolation algorithms use default common parameters; the
neighborhood of B-spline interpolation algorithm takes 6∗6;
Akima interpolation algorithm adopts the improved scheme of
MATLAB; sinc interpolation algorithm uses Hanning window
function, and its neighborhood takes 7∗7.

C. Experimental Environment

The development environment of the experiment is Windows
10, and various software and hardware configurations are de-
scribed in Table I.

D. Experimental Data and Application Scenarios

The experiment is based on a RPC-based orthorectification
algorithm for remote sensing images. The input and output
images of the algorithm are shown in Fig. 1.

The size of each band of the GF1-WFV image is about 306 MB
(TIFF format) and the dimension is 12 000∗13 400. The size of
the corrected image varies depending on the storage format and
the dimension is 17 266∗15 597. In the correction, the image
will be interpolated for about 269 million times. Because the
computation complexity of the interpolation algorithm is not
large, the feature of the interpolation of the image tends to be
data-intensive.

The size of the DEM image is 18.90 MB and the dimension is
3634∗2710. In the correction, the image will also be interpolated
269 million times. Compared with the GF1-WFV image, the
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Fig. 1. Original image, DEM image, and corrected image. (a) Official preview of a GF1-WFV image (pseudocolor) with a 16 m resolution, which can
be downloaded from the website https://data.cresda.cn. (b) DEM image (3-D false-color) with 90 m resolution, which is derived from the free SRTM data.
(c) Corrected image (the true color image synthesized from the first, second, and third bands of the corrected image).

TABLE I
EXPERIMENTAL SYSTEM CONFIGURATIONS

feature of the interpolation of this image is significantly more
computing-intensive.

IV. RESULT AND DISCUSSION

Based on the above algorithms and data, the computing time
of 36 algorithms is tested in two scenarios. In order to facilitate
the comparison of acceleration effects, the interpolation in both
scenarios takes only one band (the GF1-WFV image has four
bands). The test results and their analysis are as follows.

A. Data-Intensive Interpolation

The interpolation of GF1-WFV images is data-intensive. The
computing time of all algorithms and the speedup of parallel
algorithms are shown in Table II.

The comparison of the acceleration effects of all parallel
algorithms is shown in Fig. 2.

From Table II and Fig. 2, the acceleration effects of the three
parallel computing methods have the following characteristics.

1) All three methods have a good acceleration effect, the
lowest speedup is close to two times (nearest interpolation
algorithm based on CUDA) and the highest speedup is 27
times (sinc interpolation algorithm based on CUDA).

2) The speedup effects of the OMP method and the C11
method are almost identical. The speedup lines of the two
methods in Fig. 2 almost completely overlap. Table II
also shows that the difference between them is small.

Fig. 2. Speedup of all parallel algorithms.

This should be related to their similar implementation
mechanism, both of which are to process data in blocks.

3) The speedup of the CPU-oriented computing method
mainly depends on the number of physical cores of CPU,
followed by the ratio of data processing time to computing
time, and other factors have little influence. Table II shows
that most of the speedups of these methods are around 4,
whereas the speedup of algorithms with a large proportion
of data processing time is slightly smaller, such as Nearest
and Aki_E algorithm. This is consistent with our previous
research results on geometric correction [38]. It can be
seen that increasing the number of physical cores is the
most effective way to improve the performance of this
kind of computing method.

4) The acceleration effect of the CUDA method on different
algorithms is very different. Compared with the CPU-
oriented method, the speedup of most algorithms based
on CUDA is higher or much higher, whereas the speedup
of Bilinear and B-s_E is not much different from that of
the former, and the speedup of the nearest algorithm is
significantly lower than that of the former. The main reason
for this difference is the unique architecture and data
processing mode of GPU. On the one hand, the parallel
computing of a large number of physical cores in GPU
can greatly reduce the computing time. The longer the
computing time of the algorithm, the higher the speedup,
such as the sinc interpolation algorithm. On the other
hand, data needs to be transferred between CPU memory

https://data.cresda.cn
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TABLE II
COMPUTING TIME (SECONDS) AND SPEEDUP OF ALGORITHMS IN DATA-INTENSIVE INTERPOLATION

TABLE III
COMPUTING TIME (SECONDS) AND SPEEDUP OF ALGORITHMS IN COMPUTING-INTENSIVE INTERPOLATION

and GPU memory during processing, which increases the
proportion of data processing time, especially unfavorable
for algorithms with short computing time, such as the
nearest interpolation algorithm.

5) The improvement of algorithm performance in batch mode
is closely related to the data volume to be preprocessed.
Algorithms with smaller data can significantly improve
computing performance in CPU-oriented methods, such
as Bic_E and B-s_E algorithms, whereas algorithms with
larger data will reduce computing performance, such as
Aki_E algorithm. The reason for this phenomenon is
that the storage and transmission of intermediate data
generated by preprocessing takes extra time. The more
intermediate data, the longer the preprocessing takes.

B. Computing-Intensive Interpolation

The interpolation of the DEM image is data-intensive. The
computing time of all algorithms and the speedup of parallel
algorithms are shown in Table III.

The comparison of the acceleration effects of each parallel
algorithm is shown in Fig. 3.

Compared with Table II and Fig. 2, Table III and Fig. 3 show
significant differences, which shows that the performance of
parallel computing methods has changed greatly in computing-
intensive scenarios, as described in the following.

1) All the speedup increases. This fully shows that the
parallel computing method has more advantages in
computing-intensive interpolation. For CPU, smaller data
are more conducive to using caching to optimize data

Fig. 3. Speedup of each parallel algorithm.

access speed. For GPU, smaller data gives the algorithm
the opportunity to use the data broadcast mechanism to
greatly speed up the data reading speed.

2) Table III shows that in the CPU-oriented methods, most of
the speedups slightly exceed the number of physical cores
of the CPU, and the average reaches 4.1. This is the benefit
of the hyper-threading optimization of the CPU, but the
improvement is limited. In practice, if hyper-threading
is turned OFF or the number of threads is limited to the
number of physical cores of the CPU, there will be a small
loss in speedup. This also shows that in the CPU-oriented
method, only by adding physical cores can the computing
performance be greatly increased.
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3) Compared with the CPU-oriented method, the speedup
increase of the CUDA method is very significant, and the
average value is more than double that of Table II. Even for
the nearest interpolation algorithm, its speedup exceeds
its CPU-oriented method. This mainly benefits from the
data broadcasting mechanism of GPU. This mechanism is
useless in data-intensive interpolation.

4) The batch mode algorithms have achieved a complete vic-
tory among the four computing methods, and the comput-
ing time is much lower than that of the original algorithm.
Their performance in the CUDA method is even more
amazing. The speedup of the Bic_E and B-s_E algorithms
increases several times, and the Aki_E algorithm achieves
the inversion, from slower than that of the original algo-
rithm in data-intensive interpolation to much faster than
that of the original algorithm in computing-intensive. The
reason for this great change is that the preprocessed data
volume of these algorithms is greatly reduced, which saves
a lot of processing time. In addition, these algorithms can
also benefit greatly from the data broadcasting mechanism
of GPU when reading data.

C. Comparison With Existing Research Works

The performance of the interpolation algorithm is closely
related to the implementation of the algorithm and the running
environment. This article studies the software implementation of
several equidistant interpolation algorithms, only for CPU and
GPU. Therefore, we briefly compare them from the following
three aspects.

1) Implementation of the algorithm. Existing studies all focus
on an interpolation algorithm and often optimize the calcu-
lation process for the running environment. For example,
Mohanty et al. [11] separated the cubic spline interpo-
lation process into multiple phases to use the pipelining
model for the reduction process, in order to adapt to
several parallel paradigms. FPGA-based implementation
needs to redesign the calculation process according to the
hardware architecture. In this article, several interpola-
tion algorithms are studied. In order to conduct a simple
horizontal comparison, similar optimization is not used,
because some interpolation algorithms cannot be further
optimized.

2) Acceleration effect. As far as the software implementation
of similar algorithms (such as spline interpolation) is con-
cerned, our speedup is much higher, which may be affected
by implementation and hardware performance. But it is
also consistent with the conclusion that the larger the size
of data, the higher the speedup [11] (the size of the image
we use is much larger). However, our speedup is also much
lower than irregular interpolation [10] and FPGA-based
interpolation. Of course, it is not fair to compare between
different types of interpolation methods or applications.

3) Real-time. Previous studies are based on FPGA to achieve
real-time interpolation [7], [8]. In our research, the
CUDA-based method has been able to interpolate a large
image in a few seconds, which can meet the requirements
of some near real-time processing. Obviously, if there

is more powerful hardware, the software implementation
algorithms can also perform real-time computations.

V. CONCLUSION

Parallel computing is a common acceleration method for
remote sensing image processing. All kinds of interpolation
algorithms can greatly improve the computing speed through it.
However, different parallel computing methods have different
acceleration effects on different interpolation algorithms, and
different application scenarios have different effects on the
methods. On the whole, the speedup of CPU-oriented paral-
lel computing methods is mainly determined by the number
of physical cores of CPU, and other factors have little influ-
ence. Compared with data-intensive interpolation, computing-
intensive interpolation can use the hyper-threading of GPU to
obtain a higher speedup. However, the speedup of the GPU
method varies with different interpolation algorithms or dif-
ferent application scenarios. On the one hand, an interpolation
algorithm with a high computation complexity can obtain a
high speedup and vice versa. This is beneficial to the efficient
application of interpolation algorithms with large computation
complexity. On the other hand, in most cases, the speedup of
computing-intensive interpolation is much higher than that of
data-intensive interpolation. It shows that the GPU has a greater
advantage in such scenarios.

In practical applications, the choice of parallel computing
methods needs to consider the computing requirements. In most
cases, the GPU-oriented methods are the best choice. If you
only use CPU-oriented methods, OpenMP is usually a good
choice. If the computing process needs to be handled flexibly,
then the ISO C++ 11 (or higher version) parallel framework is
a better choice. In addition, for data-intensive interpolation with
a smaller computing complexity, such as nearest neighbor, the
CPU-based parallel computing method is the best choice.

To sum up, in two typical application scenarios, this article
studies three parallel acceleration methods of six commonly
used interpolation algorithms in remote sensing image geo-
metric processing, and analyzes and compares the acceleration
effects. Further research lines in the future may include the
following.

1) Internal depth optimization of complex interpolation al-
gorithms in different scenarios.

2) Real-time computing of complex interpolation algorithms
supported by high-performance hardware.

3) FPGA-based implementation of complex interpolation
algorithms.

4) Application of various parallel paradigms (such as
OpenCL) in interpolation, and so on.
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