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Abstract—Deep learning (DL) has emerged as a powerful tech-
nique for a wide range of computer vision applications. Conse-
quently, DL is also being adopted to process geospatial and re-
mote sensing (RS) images. As these methods are sporadic over
different studies, many review papers have also been published
to gather the approaches and summarize the existing models in
this field. However, a state-of-the-art review paper is still scarce
in this field that will present a bibliometric analysis as well as a
critical analysis of the recent works. Therefore, this article aims
to spur the researchers with a bibliometric analysis to identify
the current research trend. As a research sample, in total, 281
related papers were collected from the Web of Science source, and
bibliometric analysis was accomplished using VOSviewer software.
Among the collection of associated works from the database, 28
papers were selected according to the defined criteria for detailed
analysis. Besides this, a few research questions were generated to
extract necessary information from the literature for extracting the
pros and cons of the selected works. DL techniques were applied
in these works and achieved results. Furthermore, the papers were
also categorized based on the addressed RS application domain.

Index Terms—Bibliometric analysis, deep learning, remote
sensing (RS), segmentation, VOSviewer.

I. INTRODUCTION

R EMOTE sensing (RS) technology is being used as a
primary tool to analyze data and provide necessary

information about various fields related to agriculture [1],
environment monitoring [2], catastrophe risk management [3],
urban planning [4], and so on. The data used in the RS
technology are mainly comprised of RGB images, captured
by unmanned aerial vehicles (UAVs) and hyperspectral images
collected from satellites. Consequently, processing these
remotely sensed images is one of the crucial steps for utilizing
RS technology in the application of the abovementioned fields
to find helpful information. The processing of the images
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involves several tasks like classification, change detection,
image fusion, segmentation, etc. [5]. Hence, researchers from
all over the world are devoting their efforts to developing RS
methods for analyzing the images accurately and improving
the performance of the tasks. Over the years, neural networks
(NNs) have been employed by RS researchers.

However, with the advancement of machine learning (ML)
classifiers, the RS researchers shifted their focus to the tree-
based classifiers (e.g., random forest (RF) [10] and support
vector machine (SVM) [9]), from the very basic NN algorithms.
The SVM got more attention than the other methods due to its
good results with less training data and high-dimensional data
handling. On the other hand, the RF proved itself a lightweight
algorithm with high accuracy (fewer parameters). In the last
decade, deep learning (DL) technology has gained vast popu-
larity among researchers by showing mesmerizing performance
in different computer vision applications. The DL models can
automatically decode necessary and relevant features from the
images while handling different complex scenarios to solve the
targeted computer vision problems. The remarkable success of
DL algorithms in other fields has impelled the RS community
to adopt the DL methods in RS technology [11]. It is found that
since 2014, RS researchers have already started implementing
DL models like convolutional neural networks (CNNs) [12],
graph NNs [13], generative adversarial networks [14], etc., in
various RS tasks. And these algorithms have produced signif-
icant outcomes in many RS applications including land cover
classification [15], forest change detection, [16] semantic seg-
mentation of urban scenes [17], etc.

Semantic segmentation is a widely adopted process nowadays
for analyzing remotely sensed images among the DL-based
image analysis problems in the RS domain [24]. Rather than
predicting a single image, the semantic segmentation process
predicts all the pixels of an image, giving detailed information
about the embedded objects in an image. With the continuous
advancement of the semantic segmentation methods, they are
being employed to solve RS problems, including crop type anal-
ysis [18], building damage monitoring [19], urban village settle-
ment [20], etc. As a result, already many outstanding technical
research works have been published that focus on solving RS
problems by utilizing semantic segmentation techniques [21],
[22], [47]. Fig. 1 shows a few examples of the segmentation
result on various RS fields.

However, there is still a scarcity of review papers that will
pay attention to bibliometric analysis with critical extraction
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Fig. 1. Illustration of several segmentation examples on various RS images. These image are collected from [6], [7], and [8]. (a) Original image containing
buildings. (b) Original image containing different scenes. (c) Original image containing road. (d) Segmented image after extracting buildings. (e) Segmented image
after performing scene classification. (f) Segmented image after extracting road.

of particular RS domain knowledge. The bibliometric analysis
will extract current research trends, influential articles, journals,
countries, and pioneering authors in this arena. The critical
analysis of the existing research works will filter out the specific
application field and utilize DL architectures on the correspond-
ing papers. Accordingly, considering this deficit and research
scope in this work, we will present a review paper by analyzing
a few influential documents published between 2015 and 2021,
focusing on semantic segmentation in RS technology. The sig-
nificant contributions of this review article are the following.

1) This article presents a bibliometric analysis of a few se-
lected papers focused on the semantic segmentation of re-
motely sensed images. Data mining techniques were used
to highlight the current research trend, important research
terms, influential publications, journals, and collaboration
patterns of this research field.

2) This article presents a comprehensive analysis of the se-
lected papers to find out the specific application fields of
segmentation techniques in RS.

3) This article discusses the DL architectures used in the
corresponding papers and also provides a summary of the
prominent papers by answering a few research questions
in the form of a table.

The rest of this article is organized as follows. Section II
provides a concise recap of the existing survey papers on the

DL-based RS works. Section III provides the methodology of
this work. Section IV depicts the scientometric analysis of a few
papers from the utilized dataset of this work. Section V presents
the critical analysis of the DL-based works. Section VI lists out
the findings of the study, key challenges of this research domain,
and research direction for future researchers. Finally, Section VII
concludes this article.

II. LITERATURE REVIEW

DL has proven its potential to meet the challenging require-
ments of RS image processing for the last few years. Innovation
and progression in this field are all moving at a very fast
speed. In addition to the continual endeavor of upgrading the
algorithms, researchers also enlisted the existing methodologies
in a theme of the review paper to accelerate the research in
this area. This section recapitulates a few leading aspects from
previous papers and covers the landmarks of the neoteric articles
that prove themselves a great inclusion to the research field.
Table II summarizes the survey papers published in the domain
of DL-based RS technology.

The first review paper that we examine in this work was
published in June 2017 [23]. The authors presented the find-
ings of a few papers and did a meta-analysis of image source
sensors used in those papers. They also discovered that RF
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TABLE I
PRESENTATION OF THE CLASSIFIED GROUPS AND THE ACCOMPANYING

REVIEW PAPERS

exhibits the best performance in object-based categorization, and
detection-based frameworks limit the application of fuzzy tech-
niques. Moreover, they identified that the SVM method also en-
hances classification accuracy in supervised object-based image
classification. Zhu et al. [32] showed that in the RS arena, DL
opens up additional opportunities such as global trend monitor-
ing and appraising the current resource conservation techniques.
They also addressed the issues of DL in RS mechanics and
recommended critical resources to identify the DL-based RS
research field. Ming et al. [33] presented a survey paper in 2019
where they summarized the basic principles of RS along with its
conventional applications. They illuminated the most important
DL models in RS for land cover classification, target recogni-
tion, and change detection. They gave an incisive description
of the advantages and disadvantages of these methods. They
also explored the research progress, development history, and
significant issues that researchers face in this field and future
development strategies.

In 2021, Osco et al. [34] provided a systematic overview of the
fundamentals of DL in UAV-based imagery. The classification
and regression algorithms used in recent UAV-acquired data
applications are also discussed in their paper. In 2021, Neupane
et al. [29] published an article of review and meta-analysis in
the Remote Sensing journal. Among the research papers that
were analyzed and discussed in this work, this was the only
review paper that issued statistical and bibliometric analyses.
It also reviewed some articles that employed DL algorithms to
classify urban images. In 2021, Yuan et al. [24] reviewed a few
DL algorithms for semantic segmentation of RS imagery. The
constitutive structures of different CNNs and their applications
in the field of RS semantic segmentation were also discussed
by the reviewer. They also reviewed DL model performance in
different datasets and identified how the lack of proper trainable
datasets affects the model performance. Zang et al. [26] used
DL for land-use mapping (LUM) of high-spatial RS images
in 2021. They summarized two LUM criteria that were utterly
dependent on DL. Moreover, this article gives an idea of the pro-
ductiveness of representative semantic segmentation and single
object segmentation. According to some interrelationships and
congruity, these works can be classified into four groups shown
in Table I. All of the papers have extraordinary contributions to
this augmented research field, but they have several limitations,
such as these review papers did not systematically collect the
articles [5], [24]. The review papers [25] and [33] did not
provide proper statistical or bibliometric analysis of the papers
except [29]. Moreover, most reviews did not classify the articles
according to the application sectors [32]. Besides these, a few
papers gave only an overview of the benchmark DL methods for

utilizing in RS tasks; they did not analyze the papers individually
based on the modified architecture and the integrated modules on
the networks, which accelerate the performance of the tasks [23],
[27]. Since there is still a significant literature gap and huge
research opportunities in this domain, we will delineate the
existing research paper systematically.

In this study, we will provide both statistical and bibliometric
analyses, giving the new researchers a vast idea about research
trends, important research terms, collaboration patterns, influ-
ential journals, authors, and articles in this field. Moreover, we
will cluster the influential articles based on different application
sectors, which will give a clear vision of the research topic
to novice researchers. Furthermore, this article will present a
critical analysis of a few prominent research articles based on
their problem statement, methodology, and achieved results.
During the analysis, we will mention the benchmark DL method.
We will also discuss how the papers are modifying the bench-
mark DL architectures to develop new methods for getting
better results in different complex scenarios. This will help the
readers of this article to get familiarized with the modified DL
methods and the fast-changing RS image semantic segmentation
sector.

III. METHODOLOGY

This work has been designed using a mixed method to present
a bibliometric and critical analysis of the papers, focusing on
analyzing the remotely sensed images using DL technology. The
purpose of utilizing a mixed method is to give readers an overall
idea about the RS application fields so that new researchers
can easily grasp the necessary knowledge. From bibliometric
analysis, the readers can easily learn about the influential authors
and journals in this research field. The critical analysis, on the
other hand, gives an overview of the different DL architectures
that are developed in this domain. Fig. 2 represents the overall
methodology of this study.

1) Data collection: In this work, we searched for
peer-reviewed papers in an online digital library named
Web of Science (WoS) using a set of search strings
for constructing a database on October 25, 2021. The
keywords and Boolean operators were applied in the
abstract of the publications. The search string we used in
this work was in the following format: “Deep Learning”
AND “Segmentation” AND “Hyperspectral OR Image”
AND “Remote Sensing.”
After searching, we found within the search string that the
first paper was published in 2015, in which DL was used
for remotely sensed images. Therefore, we selected all
the papers till the 25th of October and collected a total of
281 papers. Then, we generated a text file from the WoS,
which contained the entire record and cited references
from the 281 papers. Later, we used this text file as our
dataset for performing bibliometric studies in the second
stage of our work.

2) Bibliometric analysis: In this stage, we performed a
bibliometric-based analysis of the WoS dataset. We
split the process into two categories for conducting the
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TABLE II
SUMMARY OF PREVIOUS REVIEW ON DL-BASED RS
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TABLE II
(CONTINUED.)

Fig. 2. Overview of research methodology.

bibliometric analysis: a) performance analysis and b)
science mapping.
We discussed the emerging trend of publications and jour-
nal performance. We extracted the pioneer authors and the
leading countries to examine the contribution of research
constituents and the intellectual structure of the RS re-
search field. After then, we utilized the VOSviewer soft-
ware to present a science mapping analysis of our dataset
to show the relatedness between research constituents.
Moreover, we discussed the collaboration patterns in this
research field using the science mapping technique and
found the critical research terms in this domain.

3) Critical analysis: For conducting critical analysis, we have
selected a subset of the initially collected papers from the

WoS. The utilized dataset had an H-index value of 29. We
then extracted these 29 papers to present and analyze them
critically for having a better idea about the application
sectors of RS and utilized DL architectures. However,
when we screened all 29 papers, we found that one paper
was a review paper. Excluding that paper, the 28 papers
were briefly discussed in this section.
Finally, we critically analyzed the papers based on the
problem statement and the utilized methodology of the
papers. In this section, the papers were categorized into
several groups based on the application sectors of the
remotely sensed images. The applied DL methods and
their modified architectures were briefly discussed in this
section.
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Fig. 3. Overview of annual statistics of the publications. (a) Number of publications over the years (2015–2021). (b) Number of received citations by the
publications over the years (2015–2021). (c) H-index of the publications over the years (2015–2021).

IV. SCIENTOMETRIC ANALYSIS

A. Overview of the Publications

1) Annual Analysis of the Publications: This section demon-
strates the annual exploration of the publications of the elected
281 papers from 2015 to 2021. From Fig. 3(a), it can be observed
that in the very beginning, research in this field started with only
one and two articles in 2015 and 2016, respectively. The num-
ber of annual publications has started to increase significantly
since 2017, five times more than the previous year. An upward
tendency can be observed from the figure in the following
years. Consequently, in 2021, 117 papers had been listed in the
publications, which was 41.64% of the total published papers.
Therefore, it can be comprehended that researchers became more
and more interested in exploring this field.

Another exploration of this work is of annual citations gained
by the publications. Fig. 3(b) presents the number of total
attained citations per year. It is evident from the figure that the
citation rate had been increasing from the beginning. From 2015
to 2021, papers achieved a total of 4849 citations. The figure
also showed that in 2015, the attained citation number was 9,
while in 2016 and 2017, it turned to 23 and 94, respectively.
After that, the citation rate started to grow notably. In 2018, the
publications were cited 315 times. During the following three
years, the publications got 4449 citations, which was 90.90% of
the total citations. The received citation numbers from 2019 to
2021 were 831, 1532, and 2086, respectively, which indicated
an upward trend in the case of received citations. From this, it
can be said that researchers are contributing frequently to this
field. Therefore, it is expected that this research area will reign
in the upcoming decades.

This work also analyzed the annual publications using an-
other metric named H-index. The values of the H-index of the
publications over the years from 2015 to 2021 are exhibited in
Fig. 3(c). It clearly shows that the highest H-index was gained
in 2018 and the value was 18, and the lowest H-index was 1 in
2015. Of the 281 papers, only 29 had at least 29 citations; thus,
the final H-index of the elected publications for critical analysis
was decided to be those 29 papers. From the figure, an upward
tendency can be noticed from 2015 to 2019 in the value of the
H-index. This can be contributed to the growing research interest
of the researchers as a new research direction (DL) became

prominent. And as time went by, the interest became saturated.
By October 2021, the H-index for the year 2021 was 5, which
was not a good statistic. However, it could be expected from the
trend of the previous year’s H-index that a significant number
of citations might be obtained by the end of the year.

2) Most Cited Publications: This work extracted 281 papers
that were the most commanding, creative, and popular among
the researchers. From them, 15 top-cited papers were considered
for statistical analysis in this section. Analysis revealed that these
papers were cited 3053 times, about 62.04% of the total citations
received by all publications. These papers were arranged in
Table III with the following information: their title, the source
journal that published the paper, the corresponding author’s
name and his country, the number of citations, and the average
citation number per year.

The top-cited paper on the list titled “Road extraction by
deep residual U-Net” was published in 2018 and earned 1749
citations. It was published in IEEE GEOSCIENCE AND REMOTE

SENSING LETTERS. The second paper in the list titled “Deep
learning classification of land cover and crop types using remote
sensing data” has 1438 citations. The average citation rate for
the paper is 239.6, which is lower than the paper entitled “Deep
learning in remote sensing applications: A meta-analysis and
review.” Though this is in the third position (1364 citations) in
the list of top-cited papers, it holds the second-highest average
citation rate (341). It was published in the ISPRS Journal of
Photogrammetry and Remote Sensing in 2019. The least cited
papers among these 15 were cited 162 times, and the average
citation per year is 27. With a more profound analysis, it can
be seen that all these 15 articles are from only four journals.
Those are IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,
ISPRS Journal of Photogrammetry and Remote Sensing, IEEE
TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, and
Remote Sensing. One more thing to note from this analysis is
that the authors of 11 papers of these 15 are from China, which
appraises that researchers from China are dedicating their huge
endeavor to this research area.

B. Influential Journal, Authors, and Countries

In this section, we extracted and analyzed the influential
journals, authors, and countries in the research domain of RS.
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TABLE III
SUMMARY OF THE TOP-CITED PAPERS
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TABLE IV
SUMMARY OF THE MOST PRODUCTIVE JOURNALS

From this, the new researchers can get a compact overview of
this domain. By extracting the influential authors, it became clear
which authors are contributing to the field of the RS domain, and
the new researchers can learn which authors they should follow.
From the influential journals, it became clear which journals a
new researcher should publish their work to and which journals
are more authoritative and of better quality. Readers can also get
an overview of which journals they should follow to get more
recent and relevant information in the field of RS. The productive
countries in this domain provide an overview of development
trends in the field of the RS domain. Also, researchers can get an
idea about which countries would be interested in collaborating
with their research.

1) Most Productive Journals: The selected 281 papers from
this research are published in 64 different journals. In this
section, this work delineates the ten most abundant publication
sources in the field of image-based RS technology. Since 218
papers (77.58% of all papers) are published in these ten journals,
it is possible to get an overall idea about the publication sources
of this research field by analyzing these journals. The journals
have been analyzed in Table IV based on their publication as
well as their received citation numbers, their average citations,
impact factor, five-year impact factor, publishers of the journals,
and H-index.

Along with the table, for getting a better visualization of the
productive journals, we provided a citation network of a few
prominent journals in Fig. 4. The journal “Remote Sensing” by
“MDPI” is in first place with 92 publications (see Table IV).
This journal collected a total of 1200 citations over the years.
From these, we can realize the productivity and popularity of this

journal among researchers. Moreover, its impact and five-year
impact factors are 4.848 and 5.353, respectively. The “IEEE
JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVA-
TIONS AND REMOTE SENSING” has 32 publications and 205
citations. Publications of the following four journals on the list
are 18, 16, 16, and 13, but the received citations of these journals
are noticeably divergent. Total publication and total citation,
along with an average citation, are the same for IEEE ACCESS

and ISPRS Journal of Photogrammetry and Remote Sensing,
and they are 16, 11.63, and 72.69. There is a noticeable journal
from the IEEE, “IEEE GEOSCIENCE AND REMOTE SENSING

LETTERS,” with an average citation of 114. Though the journal
has lesser publications, it has a good impact factor because of
its higher citation rate.

Another fact to discuss in Table IV is the quartile in the
category. A quartile is a rank-order classification that categorizes
scientific journals and delineates the citation level associated
with scientometric indicators. Along with citation, the journal is
also categorized by impact factor and index number by Journal
Citation Report and SCImago Journal Rank. These journals are
ranked into four categories based on quartiles: quartile 1 (Q1)
represents the top 25% of the journals, quartile 2 (Q2) includes
ranking between top 25% and 50%, quartile 3 (Q3) corresponds
to the 25% of the journals after Q2, and quartile 4 (Q4) includes
the last 25% journals. Among these ten journals, “Journal of
Applied Remote Sensing” is in the Q4 category in the quartile,
and “Applied Sciences-Basel” is in Q3. “IEEE TRANSACTIONS

ON GEOSCIENCE AND REMOTE SENSING” and “ISPRS Journal
of Photogrammetry and Remote Sensing” are Q1 categories and
the rest of the journals are Q2.
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Fig. 4. Citation network of the prominent journals. (The size of the circle indicates the citation number of journals, and the thickness of the connected line shows
their relative citation strength.)

This research has also analyzed the historical development of
the top publication sources based on publications and citations.
This scrutiny is presented in Table V, where P denotes the
number of articles and C denotes the citations received by
the paper. This table shows that this work collected data from
2015, but in 2015, “IEEE TRANSACTIONS ON GEOSCIENCE AND

REMOTE SENSING” had only one publication and nine citations.
This journal did not publish an article in 2016, but it gained
20 citations this year. The publication number is meager even
in the next two years; in 2016, “IEEE JOURNAL OF SELECTED

TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENS-
ING” and “Journal of Applied Remote Sensing” had one pub-
lication each. If we compare “IEEE JOURNAL OF SELECTED

TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENS-
ING” with “IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE

SENSING,” the total publication is almost twice (32 and 18,
respectively), but the received citations are much more for
the second one. Considering these two journals for 2021, the
first one got 84 citations from 19 publications, whereas the
second one got 224 citations from seven publications. Thus,
we realize that the number of publications does not reflect
the popularity. The journal named “Journal of Applied Remote
Sensing” is notable. It has published nine articles from 2017
to 2021. However, its received citations are 12, 65, 239, 352,
and 358, respectively. It is noticed that articles by this jour-
nal are influential and popular among researchers. From the
discussion, it is also noticed that the journals are following
an upward trend in case of receiving citations; as a result,
all of the journals received the maximum number of citations
in 2021.

2) Most Productive Authors: The work describes the most
productive authors in the research domain of image-based RS
technology in this subsection. From the WoS database, this work
found that 1189 authors are involved with these 281 papers. The
top ten authors based on the highest publication numbers were
specified. Table VI expounds these authors by their name, num-
ber of articles, total citations, citation rate, number of published
papers as first author, H-index, and author’s belonging country.
Along with the table, for getting a better visualization of the
influential authors, we provide the citation network of a few
prominent authors in Fig. 5.

From the table, it can be seen that Xing Li has the highest
publications of seven papers with 40 citations. However, four
of his papers did not get any single citations; two papers got
four and five citations. The paper entitled “Building-A-Nets:
Robust building extraction from high-resolution remote sensing
images with adversarial networks” received 31 citations, which
are 77.5% of all his citations. He is the first author of four
articles among these seven, and his H-index is 3. The following
six authors Lei Ma, Shunping Ji, Xian Sun, Ying Zhang, Wei
Liu, and Min Xia have the same publication numbers. They
all have at least five publications each. Lei Ma gained 747
citations for only five publications. His papers are excellent in
quality, significantly productive, and influential. This work got
more in-depth observation that Lei Ma had written two review
papers. These are “Deep learning in remote sensing applica-
tions: A meta-analysis and review” and “A review of supervised
object-based land-cover image classification.” These two papers
received 379 and 348 citations, respectively. Therefore, 97.32%
of his citations were gained from only these two review papers.
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TABLE V
HISTORICAL DEVELOPMENT OF THE JOURNALS IN TERMS OF THE PUBLICATIONS AND CITATIONS

TABLE VI
SUMMARY OF THE MOST PRODUCTIVE AUTHORS

Shunping Ji got 208 citations for five publications with a citation
rate of 41.6. He is the first author of three papers, with the
H-index 4.

The rest of the authors, with five publications, attained 31,
19, 13, and 12 citations. Abolfazl Abdollahi, Kun Fu, and Jie
Li have four publications each. Abolfazl received 32 citations
for his four publications, and his average citation is eight. The
total citation and average citation for Kun Fu and Jie Li are
16, 12 and 4, 3, respectively. There is an exciting fact that
Kun Fu has only one paper as a first author, and Jie Li is
not the first author even in a single paper, whereas Abolfazl
Abdollahi is the first author of all of his publications. Again,
he is in the third position considering the average citation.
If we consider the countries the authors are from, it is seen
that they all are from China except Abolfazl Abdollahi, who
is from Australia. Thus, we can see that Chinese researchers

are so far ahead of others in this research field of image-based
RS technology.

3) Most Productive Countries: This work found the most
productive countries in the DL-based semantic segmentation
research domain. In this section, the work will discuss the
countries’ contributions in this field. According to the collected
dataset from the WoS, authors from 58 countries put their
contributions in the case of publishing papers. The geographical
distribution of the publications is represented in Fig. 6. Here,
we can observe that the lion’s share of the contribution is from
China (67.978%). The USA, Germany, Japan, and Australia
are responsible for 9.608%, 6.049%, 4.626%, and 4.27% of
the published articles. Moreover, the rest of 13.167% of the
publications are from the other mentioned parts of Fig. 6. Along
with the geographical distribution of the publications, this work
describes the most productive countries in this research domain.
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Fig. 5. Citation network of the influential authors. (The size of the circle indicates the citation number of the authors, and the thickness of the connected line
indicates their relative citation strength.)

Fig. 6. Geographical distributions of the publications.

The top ten influential countries are summarized in Table VII by
their name, full publications (TP), total citations (TC), average
citation per year, the number of cited papers more than or
equal to 30/20/10/5, and H-index. Moreover, for getting a better
visualization of the productive countries, we provided a citation
network of a few major countries in Fig. 7.

In the table of most productive countries, China is in the first
position with 3400 citations for 191 publications. The H-index
of China is 22, which is double compared to the second position
holder country in the list. The USA claimed second place in the
list with 27 publications and 1145 citations. The citation rate for
the USA is 42.41. If we compare China and the USA, though
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TABLE VII
SUMMARY OF THE MOST PRODUCTIVE COUNTRIES

Fig. 7. Citation network of the influential countries. (The size of the circle indicates the citation number of the countries, and the thickness of the connected line
indicates their relative citation strength.)

the number of articles and citations in China is far more than in
the USA, the citation rate in the USA is more significant than
two times that of China. Germany is in the third position with 17
publications. However, the citation rate for Germany (45.41) is
the highest among all the countries. Its H-index (11) is the same
as that for the USA. The following countries in the table are
Japan and Australia with 13 and 12 publications, which denotes
that the performances of these two countries are proceeding at an
equal pace. The following four countries have an equal number
of publications (9). However, Canada and South Korea gained
44 and 48 citations and 4.89 and 5.33 citation rates, respectively.
France received 211 citations for nine publications, and its
average citation is 23.44, which is the second-highest citation
rate of the countries. It is even greater than China’s rate, the top
productive country with H-index-5. India is at the bottom of the
list with eight publications and got 33 citations in this table. The
rest of the countries not shown in the table also have outstanding
contributions to DL based on semantic segmentation.

C. Science Mapping Analysis

1) Co-Citation Analysis: This work considered co-citation
analysis as one of the techniques for science mapping analysis.

Co-citation occurs when a pair of published articles, say x and
y, are cited together in any other published document z. When
the same pairs of papers are co-cited by many authors, clusters
of RS research domains begin to form where each cluster has
one common theme. With the help of single-link clustering
and multidimensional scaling techniques, co-citation analysis
can map the structure of different research areas [49]. In this
section, this work will present a co-citation analysis based on
cited sources and cited authors to show the relatedness between
the journals and authors in terms of the research focus. Because
if two sources or two authors are cited together, it is needless to
say that they have a shared research interest.

This work set a threshold of at least 50 citations and found
34 sources among the 3052 sources that satisfied the threshold.
Table VIII presents these sources with the total link strength of
co-citation.

For better analysis of the sources, this article generated the
scientific landscape of co-citation analysis of journals using the
VOSviewer software. From Fig. 8 , it can be seen that the journals
have been divided into a total of four clusters (pink, mint, violate,
and black) with 561 links and total link strength of 190 489. Each
node in Fig. 8 represents the corresponding journal. The bigger
node has a higher weight. For the co-citation analysis, the total
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TABLE VIII
CO-CITATION INDICES OF THE SOURCES

Fig. 8. Co-citation analysis of the sources. (The size of the circle indicates the total link strength of the publication sources, and the thickness of the connected
line shows their relative strength.)
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link strength has been selected as the weight by this work; that
means the sources with higher weight have higher link strength.
The connection line between two consecutive journals illustrates
that these two sources have been cited in a publication. The
frequency of the authors being cited together is proportional to
the thickness of the line.

The interesting thing about the clusters is that all the sources of
each cluster have been cited with the sources of all other clusters.
From Fig. 8, it can be observed that the journals in the mint clus-
ter have thicker links among themselves, which suggest similar
interests among the journals. The prominent journal in the mint
cluster and among all the clusters is “IEEE TRANSACTIONS ON

GEOSCIENCE AND REMOTE SENSING,” with 33 links and 46 652
total link strength. The journal has been cited with all the other
journals; however, it has been cited maximum times (6159) along
with the journal “Remote Sensing,” which indicates the high re-
latedness of these two journals in the research field of DL-based
semantic segmentation. “Remote Sensing” achieves the second
position employing total link strength (44 893), placed in the
violate cluster. Looking deeper into the clusters, we observe
that the mint cluster has 11 sources (32%). The other influential
sources in the mint cluster are “ISPRS Journal of Photogram-
metry and Remote Sensing” (37 302), “Remote Sensing of Envi-
ronment” (24 535), “IEEE GEOSCIENCE AND REMOTE SENSING

LETTERS” (24 430), and “IEEE JOURNAL OF SELECTED TOP-
ICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING”
(21 663).

The pink cluster consists of 14 sources (41%), making it
the largest cluster. The top influential source in this cluster is
“Proceedings CVPR IEEE,” with a total link strength of 31 176.
This source has been cited together with the journals from
other clusters such as “Remote Sensing” (3919, violate), “IEEE
TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING” (3695,
mint), and “ISPRS Journal of Photogrammetry and Remote
Sensing” (3276, mint). This shows the highly similar research
interests among the journals of different clusters. The other
prominent journals in this cluster are: “Lecture Notes in Com-
puter Science” (15 812), “IEEE TRANSACTIONS ON PATTERN

ANALYSIS AND MACHINE INTELLIGENCE” (13 236), and “IEEE
International Conference on Computer Vision” (9469).

The violate cluster consists of seven sources (21%), among
which “Remote Sensing” takes the lead with a total link strength
of 44 893. It is also the most-cited journal (1203 citations), with
thick links connecting the journal to all other clusters, making it
highly influential in DL-based semantic segmentation research.
“Sensors” (5473), “IEEE ACCESS” (5167), “Journal of Applied
Remote Sensing” (4146), etc., are some of the other journals in
this cluster. The black cluster is the most underpopulated of them
all, having only two members: “IEEE Geoscience and Remote
Sensing Magazine” (5049) and “PROCEEDINGS OF THE IEEE”
(3050). The link strength between these two journals is also
low (42). The sources of the black cluster have been cited more
times with the sources of pink, mint, and violate clusters than the
sources of the black cluster. It implies that though the sources of
the black cluster have relatedness based on their research topic
over the years, these sources have not been cited too many times
together.

TABLE IX
CO-CITATION INDICES OF THE AUTHORS

This work set a threshold of at least 40 citations. After
analyzing the co-citation network of cited sources, this work
analyzes the co-citation network of cited authors. A threshold
of at least 40 citations was set to analyze further in-depth.
Consequently, among the 6390 authors, 28 authors satisfied the
threshold. Table IX presents these cited authors with the total
link strength of co-citation.The co-citation network of the cited
authors was generated using VOSviewer for deeper analysis
(see Fig. 9). From Fig. 9, it can be seen that the authors have
been divided into a total of three clusters (orange, azure, and
brown) with 378 links and 9653 total link strength. Like the
cited sources, in the case of cited authors, the total link strength
has been selected as the weights of the nodes. If there is a
connection between two authors, it indicates that the authors
have been cited together in any other publications. The thicker
the line, the more frequently the authors cited together. The
leading author with the highest total link strength (1491) is “LC
Chen” from the brown cluster. The author has been cited the
maximum number of times (126) with “J Long,” another member
of the brown cluster, indicating similarity in their research topics.
LC Chen also gets cited many times, along with authors like
“Olaf Ronneberger” (119), “V Badrinarayanan” (108) from
the brown cluster, and “N Audebert” (96) from the orange
cluster, as well as “Kangmin He” (95) from the azure cluster.
The brown cluster consists of eight authors in total. The other
influential authors employing link strength are: “J Long” (1346),
“O Ronneberger” (1221), “V Badrinarayanan”(1079), “V Mnih”
(551), “S Ioffe” (513), “D Kingma” (407), and “Zx Zhang”
(328). The orange cluster has 12 authors (43%), making it the
largest cluster. The most prominent author in this cluster is
“N Audebert” (1088).

2) Co-Authorship Analysis: Collaboration in research is es-
sential to produce creative ideas and implement them more
accessible and more sophisticatedly. One individual can find it
too challenging to complete a research task. This work consid-
ered co-authorship analysis as one of the techniques for science
mapping analysis. Co-authorship is a form of a coalition in which
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TABLE X
CO-AUTHORSHIP INDICES OF THE COUNTRIES

Fig. 9. Co-citation analysis of the authors. (The size of the circle indicates the total link strength of the authors, and the thickness of the connected line shows
their relative strength.)

two or more researchers publish their works together on some
topics. It is another technique that has been used in this work
as bibliometric content. This work will present a co-authorship
analysis by considering countries and organizations to show
the collaboration pattern and relatedness among the authors of
different countries and institutions in terms of the research focus.
In the case of the co-authorship analysis of the countries, this
work set the threshold of the maximum number of collaborating
countries per document to ten as well as a minimum of two docu-
ments and 40 citations per country and found 14 countries among
the 51 countries which satisfied the threshold. Due to poor link
strength, Thailand was further omitted from this list of countries.
Table X presents the countries with the total link strength.

To better analyze the scientific landscape of co-authorship
analysis of countries, Fig. 10 was generated using the
VOSviewer software. From Fig. 10, it can be seen that 13
countries have been divided into a total of three clusters (brown,
cyan, and violet) with 32 links and 73 total link strengths, where
the brown cluster holds the majority number of countries (six
items). Germany (total link strength 15) and The Netherlands
(total link strength 10) are the prominent members of this cluster.
However, the most influential country among all employing total
link strength (40) is China, a member of the violet cluster that
only has three members. Therefore, despite being the smallest
cluster, it holds a more significant position. The cyan cluster
has four members, including the USA (total link strength 15)
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Fig. 10. Co-authorship analysis of the countries. (The size of the circle indicates the total link strength of countries, and the thickness of the connected line shows
their relative strength.)

TABLE XI
CO-AUTHORSHIP INDICES OF THE TOP TEN ORGANIZATIONS

and Australia (total link strength 15). The different clusters
of Fig. 10 each represent a comparatively similar research
focus; the link strength among members like China and the
USA (link strength 11) represents their collaboration frequency.
This work selected organizations having at least three papers
and 40 citations to analyze the research collaboration patterns
of different organizations. This work found 14 organizations
among the 422 organizations that satisfied the threshold. Ta-
ble XI presents the top ten of these organizations with the
total strength as well as the number of documents of different
organizations.

For better analysis of the scientific landscape of co-authorship
analysis of organizations, Fig. 11 was generated using the
VOSviewer software. From Fig. 11, it can be seen that the
14 organizations have been divided into a total of five clusters
(brown, cyan, violet, pink, and gold) with 23 links and 54 total
link strengths. The brown and cyan clusters consist of four
organizations each, and they reside in two corners of Fig. 11,

signifying their vast differences in research focus. Top universi-
ties like the Technical University of Munich (total link strength
8) and Southwest Jiaotong University (total link strength 6) are
members of the brown cluster. The most prominent organization
employing citations (744), Nanjing University, is also a member
of the brown cluster. On the other hand, one of the prominent
members of these organizations, Wuhan University (total link
strength 11), is a member of the cyan cluster. The most influ-
ential among these organizations through total link strength is
the Chinese Academy of Science, which belongs to the violet
cluster. Its high link strength (29) suggests the large number of
research collaborations conducted by this institution. The gold
cluster consists of only two members: the German Aerospace
Center and Tokyo University. Finally, the sole member of the
pink cluster is the China University of Geosciences.

3) Co-Occurrence Analysis of Keywords: This work consid-
ered co-occurrence analysis of keywords as one of the techniques
for science mapping analysis. Co-occurrence is a correlation
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TABLE XII
SUMMARY OF THE TOP TEN KEYWORDS

Fig. 11. Co-authorship analysis of the organizations. (The size of the circle indicates the total link strength of the organizations, and the thickness of the connected
line shows their relative strength.)

in which a thing (i.e., a keyword) occurs with something else
(i.e., another keyword). Here, a keyword refers to any noun or
phrase that reflects or highlights the core concept of work. This
work considered keywords that have occurred at least five times,
and among the 1077 keywords, 89 were selected. To further
analyze the co-occurrence of keywords, a scientific landscape
was generated using VOSviewer software (see Fig. 12). The
top ten of these keywords are listed in Table XII, utilizing
total link strength. Fig. 12(a) depicts the 89 keywords that have
been divided into a total of five clusters (brown, cyan, violet,
pink, and gold) with 1319 links and 3045 total link strength.
The occurrences of each selected keyword are presented by the
weight of the circle, where the more prominent the circle, the
more a keyword has co-occurred. Also, the distance between any
two keywords demonstrates their relative strength and similarity

in research topics. Fig. 12(b) depicts the most recent keyword
occurrences among these keywords. The colors of keywords
shown in Fig. 12(b) represent the time-varying keyword occur-
rences from 2019 (in dark blue) to 2021 (in yellow).

1) Satellite-based technologies (Cluster 1): The leading key-
word with the highest number of occurrences (115) and
highest total link strength (480) is “deep learning” from
the brown cluster. This keyword has 85 links, making
it linked with almost all other keywords, suggesting its
very high relation with the subject field. Keywords from
the brown cluster such as “Deep learning” (115 occur-
rences, total link strength 480), “Classification” (82 oc-
currences, total link strength 393), “Convolutional neural
network” (22 occurrences, total link strength 80), “Landsat
8” (six occurrences), “Sentinel-2” (seven occurrences),
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Fig. 12. Overview of keywords. (a) Co-occurrence analysis of the keywords. (The circles denote the number of occurrences of the keywords, and the thickness
denotes the number of co-occurrence between the keywords.) (b) Co-occurrence analysis of the keywords shown in the scale of average publication year.

“Algorithm” (nine occurrences), “Remote sensing im-
ages” (seven occurrences), etc., suggest that the cluster
focuses on “Deep-learning-based remote sensing tech-
nologies using satellite.”

2) Urban planning technologies (Cluster 2): In the cyan
cluster (lower-left corner, 16 items), the leading keyword
with the highest number of occurrences (77) and highest
total link strength (420) is “Remote sensing” with to-
tal links of 78. Notable other keywords such as “Image
segmentation” (51 occurrences, total link strength 299),
“Semantics” (28 occurrences, total link strength 207)
“Road extraction” (12 occurrences), “Building extraction”
(16 occurrences), “Road” (eight occurrences), “Building”
(eight occurrences), etc., focus on the primary domain of
“Application of remote sensing technologies in the field
of urban planning.”

3) Aerial image segmentation technologies (Cluster 3): In
the violet cluster (middle right corner, 13 items), the
most influential keyword with the highest number of
occurrences (89) and highest total link strength (390) is
“Semantic segmentation” with 80 links connecting this
keyword with other keywords. Other essential keywords
are “Extraction” (30 occurrences, total link strength 149),
“Aerial” (eight occurrences), “Aerial images” (five occur-
rences), “Lidar” (eight occurrences), etc. By analyzing the
keywords, the cluster items can be associated with the
topic of “Application of semantic segmentation in remote
sensing aerial technologies.”

4) Environment/crop detection technologies (Cluster 4): The
leading keyword of the pink cluster (lower right corner, ten
items) is “Segmentation” with the highest number of oc-
currences (39) and highest total link strength (176), which
has 65 links connecting the keyword with other keywords.
The keywords in this cluster like “Machine learning” (16
occurrences), “Agriculture” (eight occurrences), “Forest”
(seven occurrences), “Forestry” (six occurrences), etc.,
suggest its association with the term: “Remote sensing-
based environment, plant diversity, and crop monitoring.”

5) Ground/surface analysis technologies (Cluster 5): In
the gold cluster, the keyword “Convolutional neural

networks” holds a key position with 45 links (30
occurrences, total link strength 149) connecting the
keyword with other important keywords. Some of
the domain-specific important keywords are “Transfer
learning” (11 occurrences), “earth” (ten occurrences),
and “artificial satellites” (five occurrences), etc., which
corresponds to the focus of “Aerial image-based remote
sensing ground analysis technologies.”

Overall, the five main clusters each represent relatively similar
topics or a subfield of a field of RS, and by analyzing the central
node circle, each of the clusters these similarities can be noticed.

V. CRITICAL ANALYSIS

By analyzing the influential papers in this field, this work
would like to show how different segmentation applications
of RS technologies are being improved using the help of DL
techniques. As discussed in the methodology, after a laborious
selection process, 28 papers were selected by the authors. These
papers were further divided into nine groups based on RS
applications, i.e., building extractions, change detection, road,
slum, crop, or different land cover detection, etc. The authors
then analyzed these papers based on their problem statement,
methodologies, and results. A summary of these papers based
on their dividing groups is given as follows.

A. Building Extraction

Ji et al. [21] presented a DL model named scale robust
fully convolutional neural network (SR FCN). The model
incorporated VGG-16 backbone architecture to identify building
structures from RS imagery enhancing the segmentation result
of building data from high-resolution aerial images. The
authors proposed a network model which includes two
atrous convolutions to be applied on the 1/4 and 1/8 scales.
The uniqueness of this approach is that they applied atrous
convolution on the concatenated multilayer features and thereby
successfully scaled the network. They trained, validated, and
tested their model using an aerial image dataset called the
“WHU Building dataset” [41] consisting of approximately
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187 000 buildings. Ji et al. [41] mentioned that the model
showed a 94.4% precision and a 93.9% recall rate.

Ji et al. [41] introduced a novel U-Net backbone-based struc-
ture which was further modified by adding a siamese neural
network (SiU-Net). The Siamese network creates a two-channel
map from the original image tile and its downsampled counter-
part, which corresponds to the two-channel labels. The resultant
labels are then used for training the modified U-Net architecture.
The model showed 93.8% precision and 93.9% recall rate. Ji
et al. also employed radiometric augmentation on the images
before training, which enhanced the prediction result of satel-
lite images. The authors compared their methods with a few
other classification techniques (such as U-Net) and showed that
their model was more accurate than others. In another related
work [40], Wu et al. introduced a modified U-net that assimilated
residual neural network (ResNet) as the backbone (Res-U-Net).
In this work, Res-U-Net was used to perform the classification of
RS images with very high resolution. The feature extraction was
done in four stages, each containing several residual blocks. The
authors used the guided filter to fine-tune the achieved features
by DL in this work. The authors trained, validated, and tested
their model using the open-source Potsdam and Vaihingen [66]
datasets and showed 97.71% (Vaihingen) and 96.91% (Potsdam)
accuracy, respectively, which are moderately better than a few
other classification techniques (including FCN, CNN+RF, and
SegNet) comparatively.

Yi et al. [50] introduced DeepResUnet, a U-Net-based deep
residual network comprising two subnetworks. A cascade down-
sampling and an upsampling network network were designed to
reduce the learning parameters and reconstruct those features,
respectively. In this work, the upsampling network used four
upsampling layers instead of the max-pooling layer used in
the downsampling network to reconstruct the feature maps.
The authors trained and tested their model using open-source
aerial images of Christchurch City, New Zealand [67], in which
approximately 25 454 buildings were present. Yi et al. compared
their model against six different existing DL models while ob-
taining a 0.9364 F1-score and. 9176 Kappa score. The numerical
results proved their model performs better than all six models,
especially U-Net. The only drawback of their approach is its
poor time complexity.

B. Change Detection

Peng et al. [47] proposed a semantic segmentation technol-
ogy, which is a U-Net++-based encoder–decoder architecture
for change detection in earth surface imagery. The Multiple
Side-Output Fusion strategy was used for deep supervision to
capture finer spatial details. The open-source satellite image-pair
datasets of different timelines and the same location obtained by
Google Earth [68] were used to train, test, and evaluate the pro-
posed model and obtained 89.54% precision and 87.11% recall
rate, respectively, which is the best compared to the six different
DL approaches mentioned in this work. However, it should be
noted that in this work, the seasonal change was ignored, and
the implementation of radiometric corrections, a necessary step

in traditional change detection methods, was omitted from the
design of the model as it was deemed unnecessary by the authors.

Gong et al. [48] designed a change detection framework based
on DL for multispectral image pairs. The proposed method was
hybrid in nature. The constitution of the model could primarily
be divided into two parts. The core part is an unsupervised
multispectral change detection framework for feature extrac-
tion and difference representation learning. It was noted as the
main focus of this work. Another part of the work entailed a
semisupervised classifier for the final processing and evaluation
stage. Satellite images from four different regions taken by
GF-1 [69], [76] and WorldView-2 [70], [76] satellites were
used to train, test, and validate the model. The authors trans-
formed the change detection task into a typical classification
one through NN. They then used semisupervised-difference-
representation-learning-based DL models, which incorporated
stacked denoising autoencoders (SDAE) to solve the problem.
In the validation part, the proposed methods were compared
and evaluated together, which showed the strength of the novel
framework and demonstrated its effectiveness.

In another related work, Gong et al. [42] introduced a unique
approach to detect changes in multispatial images. This work
incorporated a hybrid method for feature learning and change
analysis. An unsupervised multilayered stacked autoencoders
(SDAE) structure was implemented for multilevel feature learn-
ing of four different image datasets (two SAR and two SAT im-
ages). To evaluate results, both object-based (OBCD) and pixel-
based change detection methods were examined, and OBCD
was selected as a preliminary change map, which later helped in
robust model construction, and different DL algorithms applied
to validate this work confirmed this.

Yue et al. [51] proposed a DL-based image fusion network
(IFN) to analyze the land surface change. The proposed IFN
network utilizes a combination of bitemporal images for raw data
image feature extraction. A difference discrimination network
(DDN)-based backbone architecture was then used to analyze
change detection on images from two different datasets. The
model’s performance was evaluated against DL-based change
detection methods where IFN gains were measured using eval-
uation matrices such as F1-score (0.6733), precision (67.11%),
recall (67.54%), and overall accuracy (88.86%).

Mou et al. [57] analyzed the results of the “2016 Data Fu-
sion Contest” hosted by the “Image Analysis and Data Fusion
Technical Committee” of the “IEEE Geoscience and Remote
Sensing Society.” The authors went over the methodology of the
first two winning teams, their problem-solving methodologies,
and the experimental validation results in great detail. The VHR
pictures and video obtained from space by the Demos-2 satellite,
which covers an urban and harbor area of the Vancouver, Canada
region, were included in the open-source dataset of the data
fusion challenge 2016 [71]. This paper discussed in detail the
numerical assessment of the change detection results, which
demonstrated the merits of the proposed methods.

Liebel and Körner [55] presented a CNN-architecture-based
DL method called super-resolution CNN (SRCNN). The method
was proposed for scaling the RS imagery from satellite
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images. The proposed network consisted of three inner con-
volutional layers of different kernel sizes (9 × 9, 1 × 1, and
5 × 5 px, respectively). The authors trained, validated, and
tested their model using datasets that consisted of publicly
available “Sentinel-2” multispectral satellite images and showed
the ability to successfully scale the single-band satellite images
from the multispectral satellite images [68], [76]. Researchers
used different state-of-the-art evaluation matrices like structural
similarity (SSIM) and PSNR to evaluate scaling results for
different test datasets. They claimed to successfully scale the
Sentinel-2 single-band images.

C. Scene Classification

Diakogiannis et al. [46] proposed “ResUNet-a,” a novel DL
architecture that is based on the U-Net basic architecture to
verify the application of DL technologies on RS applications
such as semantic segmentation. The proposed model consisted
of residual blocks in which atrous convolution was employed
and pyramid scene parsing pooling. Researchers also proposed
a dice-loss-based function, which was termed “Tanimoto.” The
ISPRS Potsdam dataset [66] was used to classify different
classes. The background, building, car, impervious surfaces,
low vegetation, and tree were objects of classification in this
experiment. Researchers evaluated the performances of different
models based on ResUNet-a architectures and later compared
them against eight different DL models to show the robust-
ness of the model. One ResUNet-a-architecture-based model
obtained an average F1-score of 92.9% and overall accuracy
of 91.5%.

Wang et al. [43] discussed information entropy and the label
error in the DL model feature maps and proposed a gated con-
volutional neural network (GCNN) method in RS imagery. The
basic building blocks of GCN architecture consist of ResNet-
101 as the backbone architecture for extracting features in the
encoder part, followed by residual convolution modules (RCMs)
as basic processing units, and lastly, entropy control module for
feature fusion in the decoder, which is again followed by RCMs
before obtaining the final prediction output. The softmax layer
was used in the entropy control module (ECM) module as the
classifier for the given feature map. The open-source ISPRS
2-D semantic labeling contest dataset [66] was used for the
performance evaluation of the proposed method. Researchers
used the method to again classify six different classes (back-
ground, building, car, impervious surfaces, low vegetation, and
tree), which is similar to the experiment done by Diakogiannis
et al. [46]. The mean F1-score of 85.2% and overall accuracy of
87.9% were obtained, which proved to be more effective than
several other mainstream DL models such as FCN-8s, SegNet,
Deeplab-v2, and RefineNet.

Fu et al. [39] introduced an FCN-based classification method
for RS image classification. The authors employed a pretrained
VGG-16 backbone network consisting of five downsampling
layers for increasing convergence speed. Researchers later used
atrous convolution to create dense feature maps. The model was
trained and evaluated using the GF-2 [69] and IKONOS imagery
datasets [76], and the mean precision score of 81%, mean recall

of 78%, and mean Kappa score of 83% were obtained, which
proved to be more effective than several other DL models such
as SVM, patch-based CNN, and even FCN-8s.

Panboonyuen et al. [65] proposed an approach to improve
the global convolutional network (GCN) for multiobject seg-
mentation of aerial and satellite images by focusing on mainly
three aspects: by varying ResNet backbones, by applying a
channel attention block for weighing influential features, and
by employing transfer learning (TL). The experimental mod-
els were trained and validated using the Landsat-8 satellite
imagery dataset supplied by the Thailand government and the
publicly available aerial imagery dataset from the ISPRS Vai-
hingen Challenge [66]. While being trained using the Landsat-8
datasets [76], the proposed system obtained an F1-score of
82.75% and mIoU of 71.78%. On the other hand, by using
the ISPRS datasets [66], the proposed system obtained an F1-
score of 79.42% and a mean IoU of 91.23%. The final result
showed that the enhanced GCN model surpassed the benchmark
encoder–decoder model by 17.48% and 2.48% on the Landsat-8
corpus and ISPRS corpus datasets, respectively.

D. Ice Wedge Polygon Detection

Zhang et al. [54] proposed an experimental study where
they used a DL-based object instance segmentation method
to precisely mark and classify ice wedge polygons in aerial
orthoimagery. The authors used Mask R-CNN, a CNN-based
model, to detect imagery objects and generate an instance
segmentation mask. The building blocks of Mask R-CNN are
ResNet as backbone, feature pyramid network, region of in-
terest (RoI) generating network, RoI classifier, boundary box
regressor, and FCN. The dataset used in this experiment consists
of Nuiqsut [72], a Northern Alaska town area. The researchers
detected approximately 79% of ice wedge polygons in study
sites. The VHSR imagery pixel resolution was 0.15 m. The
imagery had a pixel resolution of 0.25 m in this work.

E. Land Cover Classification/Crop Type Detection

Kussul et al. [36] experimented on procedures to determine
DL methods to be applied to images to classify different land
areas and types of crops from satellite imagery. The DL methods
(1-D and 2-D CNNs) that had been discussed in this article were
compared against RF and ENN. 1-D and 2-D CNN methods
discussed in this work each had five CNNs in the ensemble.
Each of them consisted of two convolution layers and max-
pooling layers. In addition, two fully connected layers were
added at the end. Datasets consisting of Landsat-8 and Sentinel-1
satellite images of the Kyiv region of Ukraine from different
time frames [76], [76] were secured to be used in this work,
and overall classification accuracies achieved for the ensemble
of 1-D and 2-D CNNs were 93.5%, and 94.6%, respectively.
Meanwhile, the overall accuracy observed for RF and ENN
methods was 88.7% and 92.7%, respectively. Major crops such
as wheat, maize, sunflower, soybeans, and sugar beet and land
covers such as forest, grassland, and bare land were subjects of
classification in this work.
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Zhang et al. [53] proposed an experiment that mainly focused
on dl methods such as stacked denoising autoencoder (SDA)
or stacked autoencoder (SAE)-based classification approach for
object-based land cover image classification. Two datasets that
consisted of aerial images from Anhui and Tianjin provinces of
China and contained three spectral bands, representing the red,
green, and blue bands separately, were used in this experiment.
The overall accuracy of 72% (SAE) and 73.5% (SDA) was
obtained, which indicated an increase in performance of around
6% when compared to other ML methods such as Bayes, KNN,
and different SVM models. This result shows the necessity of
shifting from ML to DL methods.

Kattenborn et al. [52] presented a CNN-based DL model for
spatial distribution and plant species segmentation from satellite
or UAV imagery. The model had U-Net as the basic architecture.
The datasets for two plant species, namely “Pinus radiata” and
“Ulex europaeus,” were obtained. They were further processed
to extract the orthoimagery data using the Agisoft Photoscan.
The program implemented Structure from Motion to generate
the output and later obtain the image tiles. The CNN model
was trained using the obtained image tiles. The authors claimed
to have at least 84% accuracy using this approach but further
validation and comparison among other DL methods are needed
to prove the benefits of this approach.

F. Road Segmentation

Lan et al. [58] proposed a novel DL model global context-
based dilated convolutional neural network (GC-DCNN) for
road segmentation from RS imagery. The proposed method was
mainly made up of three different parts: an encoder network,
PPM, and a decoder network; a total of 21 convolution layers
were used in the design of this method. The class imbalance
issues were dealt with using the dice coefficient loss. In this
work, the authors also presented two datasets; CasNet data
composed of 224 different VHR images collected from Google
Earth [68] and RoadTracer data [73], which contains 300 satellite
images from 40 cities in six countries. The RoadTracer data were
first used by Bastani et al. The dice loss function was used in the
proposed model. To evaluate the work, four evaluation matrices
(competence, correctness, quality score, and F1-score) were
used. The proposed model was compared against six different
CNNs (FCN, U-Net, etc.). The model needed a high number
of model parameters and high runtime. Despite that, the results
obtained by the proposed model showed 92.88% competence
(COM), 95.40% correctness (COR), 88.87% quality score (Q),
and 94.02% F1-score on the CasNet dataset. It clearly indicated
the model’s efficiency against several different DL baseline
models. However, results from the RoadTracer dataset showed
that the model had further room for improvement.

In [37], a DL NN-based model that combined residual learn-
ing and U-Net and was termed as DeepResUnet (a seven-level
architecture) was proposed. The model was applied in semantic-
segmentation-based road area extraction applications. The basic
structure of the method could be divided into three parts, namely
the encoding network, the bridge network, and the decoding
network. A sigmoid operation was performed to obtain the final

output. The Massachusetts roads dataset [74] was used to train,
test, and evaluate the proposed model. The mean squared error
(MSE) was used in this work as a loss function. Researchers
observed the break-even point to be 91.87%, which is the best
compared to the five different DL approaches (four CNN archi-
tecture based and one U-Net-based model) mentioned in this
work.

In [63], DL models based on FCN architecture (FCN-8s) were
examined to learn if this can be used for road segmentation
applications. The first two FCN networks examined in this work
had VGG-19 and ResNet backbone architecture, respectively.
The DeepLabv3+ model had an Xception backbone architecture.
The loss function used in this research was MSE. The researchers
created their own dataset with the help of TerraSAR-X im-
ages [75], [76] and later identified and classified different types
of road data (i.e., major roads, country roads, dirt paths, etc.)
using Google Earth [68]. Three regions were selected (Lincoln,
Kalisz, and Bonn) in the dataset to create and evaluate the
FCN-8s model. The VGG-19-based model in particular obtained
an IoU score of 45.46%, a precision score of 71.69%, and a recall
score of 75.17% in the Lincoln area. Researchers later compared
the model against U-Net where it outperformed in all regions.
Against the DeepLabv3+, in the Bonn area, the model performed
better (IoU 42.57%).

He et al. [64] proposed “ASPP-Integrated Encoder–Decoder
Network,” a novel DL architecture for road extraction. The
U-Net architecture was used as a basic method. An atrous
spatial pyramid pooling (ASPP) network processed the encoder-
generated feature maps, which were then used as input for the
decoder to generate the segmentation map. SSIM was used as the
loss function and an evaluation method in this research. Here,
researchers used the Massachusetts roads dataset [74] to train,
test, and evaluate the proposed model. The achieved results were
83.5% F1-score and 0.893 SSIM value. Compared to the normal
U-net, the proposed model showed 2.6% F1-score improvement
and 0.18 SSIM improvement.

G. Ship Detection

Tang et al. [38] propose SDA-ELM, a DL-based approach
that was modeled using a DL network and the extreme learning
machine (ELM) algorithm. A SDA was used as the primary
method. The model was built to develop a compressed-domain
framework for ship detection. 4000 SPOT 5 panchromatic im-
ages [76] of 5-m resolution and 2000 × 2000 size (in pixels)
were prepared to build the image dataset to compare the per-
formances of four different DL-based models. Among them,
1600 training samples were extracted for feature learning. The
research methodology was that the discrete wavelet transform
was performed on the preprocessed image data to generate two
different subband images (low- and high-frequency images).
The bands were separately trained using two SDAs to obtain
different band features. After that, ELM was performed to
combine the learned features and obtain the feature vector of 100
dimensions. Researchers obtained an accuracy of 94.57% (MF-
SVM), 91.63% (SA-SVM), 96.45% (SDA-SVM), and 97.58%
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(SDA-ELM). Among the overall time cost of different methods,
SDA-ELM achieved the lowest score of 2.6844 s.

Cheng et al. [62] proposed FusionNet. It is an edge-aware
convolutional network based on encoder–decoder architecture
for segmentation to parse an RS harbor image. The basic network
architecture employed in this work is “SegNet.” In addition, an
edge network was introduced, which contained concatenation,
convolution, and softmax layers to help generate the final pre-
diction maps. The edge network was designed to work in parallel
with the “SegNet” network to extract and combine the low- and
high-frequency features. The images were parsed mainly into
three objects, such as sea, land, and ship. In this work, a novel
loss function based on a conditional random field model and
termed LossFusionNet has been introduced as the edge-aware
regularization. Two datasets, one containing mainly “Harbor
images” and another one containing “Sea-Land images,” were
created, which contained a total of 520 images from Google
Earth [68] to train, test, and validate the models. Researchers
achieved an average F1-score of 97.43% and 99.36% using these
datasets, respectively. Compared with the results of other ship
detection methods, the proposed model’s F1-score of 93.77% is
a major improvement, which clearly indicates the usefulness of
the proposed model.

H. Urban Regions Detection

Wurm et al. [45] analyzed TL capabilities of different
FCN-based models to analyze slum mapping in various satel-
lite images, mainly in QuickBird, Sentinel-2, and TerraSAR-
X imagery datasets [68], [75], [76]. The VGG-19 backbone
architecture-based model contained multiple convolution, ReLU
activation, and upsampling layers. The input images had to
be 224 × 224 pixels in size to train the models. The models
were trained to identify four different classes namely: “Urban,”
“Vegetation,” “Water,” and “Slums.” The results obtained by
researchers showed that positive predictive value and sensitivity
for QuickBird images [76] were up to 86% and 88%, respec-
tively. For Sentinel-2 dataset [68], the results were observed up
to 55% and 85% for positive predictive value and sensitivity,
respectively. However, for TerraSAR-X image datasets [75], re-
searchers found that the DL methods not only decreased the per-
formance but also did not improve the results. Researchers found
that the networks were unable to identify the urban structures
from optical images and successfully apply the DL methods.

Albert et al. [60] analyzed the usage of CNN-based DL
models to explore urban environments from satellite imagery.
The DL models discussed in this work mainly consist of VGG-16
and ResNet-based backbone architectures. Researchers used the
“Google Maps Static API” platform to obtain sat images and cre-
ated a dataset consisting of approximately 140 000 images [77].
Information was collected from six different cities, namely
Athens, Barcelona, Berlin, Budapest, Madrid, and Rome, to
train and test this work. A subsection of this work contained
training the model using one (or a set of) location datasets and
testing using one or more different city datasets. The “Urban
Atlas dataset” was used in this work to pretrain the classifier
using ten different environment classes by analyzing the ground

truth for land use distribution for three example cities (Budapest,
Rome, and Barcelona) [77]. The analyzed results were used
as references to develop the data sampling method for training
data collection. In this research, results showed that the models
could successfully classify green urban areas, densely populated
urban areas, or water bodies. As airports, forests, agricultural
lands, etc., tend to be similar in different cities, these can also
be identified successfully. Despite this, the research showed
that the models struggled to successfully identify the “high-,”
“medium-,” and “low-”density urban environments.

I. Vehicle Detection

Audebert et al. [44] proposed a three-step segment-before-
detect pipeline to perform vehicle classification in VHR RS data.
Researchers at first implemented SegNet, a DL network based
on VGG-16 backbone architecture for semantic segmentation.
Basic SegNet architecture consists of the following layers: en-
coder, decoder, dense prediction, and softmax layers, to produce
semantic maps. The ISPRS Potsdam [66], NZAM/ONERA [78],
and Christchurch [67] data were used by researchers in this
step to extract vehicles and filter small objects and create
vehicle masks. At last, the ImageNet initialized CNN model
was used for vehicle classification on the VEDAI dataset [79].
The researchers trained the CNN in four classes, namely, car,
van, truck, and pick-up. Classification results obtained using
the VEDAI dataset showed that the VGG-16-based architecture
achieved approximately 89.7% overall accuracy. When applied
to Potsdam and Christchurch data, the VGG-16-based classifier
obtained 89% and 96% of overall accuracy, respectively. The
authors claimed that the DL models used in this experiment
achieved an average accuracy of 67% while applied on the ISPRS
dataset and 80% while using the NZAM/ONERA dataset.

Mou and Zhu [59] proposed a boundary-aware ResNet (B-
ResFCN) for semantic segmentation and vehicle detection from
aerial imagery. Researchers used ResNet as the backbone archi-
tecture of the proposed model for its usage in vehicle instance
segmentation tasks. The network outputs two homogeneous
branches, which are used to create a segmentation mask and
boundary map. The ISPRS Potsdam dataset [66] and a video
dataset created by the researchers using a UAV were used in
this research. To evaluate the results researchers used the Dice
coefficient among other more common evaluation matrices such
as F1-score, precision, and recall. The results were compared
among six (UAV video data) to eight (ISPRS Potsdam) different
FCN-based models to show the effectiveness of the model.
Results showed that the instance-level Dice similarity coefficient
varied from 77.5 to 79.39 for the UAV video data and from 77.72
to 93.80 in the case of the ISPRS Potsdam data. Researchers
observed an increment in the Dice coefficient of 1.16% on the
Potsdam dataset and 7.31% improvement on the UAV video
dataset when compared to the ResFCN or ResNet-based model.

After summarizing the papers, some critical questions came
forward such as the following.

Q1: Which DL method is used in an article?
Q2: Which backbone is used by the DL method?
Q3: Which framework is used to conduct the experiment?
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Q4: Which datasets are used by an article?
Q5: Which loss function is taken into consideration by re-

searchers?
Q6: Which optimizer is used in the experiment?
Q7: What performances are achieved by the researchers?

We summarized the findings of the questions in Table XIII.

VI. FINDINGS, KEY CHALLENGES, AND FUTURE RESEARCH

DIRECTION

A. Findings of the Study

This study provides both the bibliometric analysis and the
critical examination of several chosen papers within the field of
DL-based semantic segmentation in RS and image processing.
The bibliometric analysis aimed to identify research trends,
influential authors, prominent journals, publications, countries,
significant research terms, and collaboration patterns. We list
our findings from the bibliometric analysis as follows.

1) The publication rate in the earlier years (before 2015)
was too low. Research output in this area has increased
since 2018. The number of published articles increased
dramatically in 2020 and 2021 (117 papers were published
in 2021).

2) China, the USA, and Germany are the top three countries
with the most research output in the field.

3) IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE

SENSING, Remote Sensing, ISPRS Journal of Photogram-
metry and Remote Sensing, and Proceedings of IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition are the most impactful and most cited
journals.

4) Papers [5], [23], [36], [37], and [38] are the most cited
papers in our data collection period.

5) The research organizations contributing most to the field
are Chinese Academy of Science, Wuhan University, and
Technical University of Munich.

In the critical section analysis of our work, we have cat-
egorized the papers according to their respective application
domains. We present several significant findings as follows.

1) U-net was the most widely used DL backbone network,
appearing in nine out of the 28 reviewed works. ResNet
and VGG followed closely, each being utilized in eight
works. The popularity of these networks indicates their
effectiveness in semantic segmentation tasks in the RS
domain.

2) TensorFlow emerged as the dominant choice among re-
searchers, with a usage rate of 46.4%. MATLAB and Caffe
were also utilized, although less frequently, showcasing
their relevance in specific contexts.

3) Cross entropy, dice coefficient, and MSE loss functions
were most popular among researchers. These loss func-
tions play a vital role in training DL models and achieving
accurate segmentation results.

4) Researchers predominantly employed Adam and stochas-
tic gradient descent optimizer for model development. The

Adam optimizer was favored slightly more, being used in
40% of the reviewed works.

5) Several researchers proposed modifications to the DL
models to enhance their performance in various tasks.
Some noteworthy approaches involve implementing a skip
layer structure [64], adding gate mechanism [43], residual
connections [46], ASPP [56], and designing multiscale
network architecture [39].

6) Many works leveraged the existing DL models and exper-
imented to analyze the TL capability of these models in
various domains [45], [60], [65].

B. Key Challenges

In this section, we list several key challenges encountered
within this research domain.

1) Limited training data: One of the major challenges in
applying DL to RS is the availability of limited labeled
training data. Obtaining high-quality labeled data for var-
ious RS applications can be time consuming and resource
intensive.

2) Class imbalance: Imbalanced class distribution is a com-
mon issue in RS datasets, where certain classes may
be underrepresented. This imbalance can lead to biased
model performance and affect the accuracy of segmenta-
tion results.

3) Standardization of evaluation criteria: The use of diverse
performance metrics by researchers highlights the need
for standardized evaluation criteria within the field. This
could enhance comparability and reliability in assessing
model performances.

4) Domain adaptation: RS data may vary significantly across
different regions, sensors, and environmental conditions.
Adapting DL models to handle variations in data distribu-
tions and domain shifts is a challenge.

5) Computational complexity: DL models, particularly those
with deep architectures, can be computationally intensive
and require significant computational resources for train-
ing and inference. This can hinder the practical application
of DL methods in RS tasks.

6) Model interpretability: DL models are often perceived as
“black boxes” due to their complexity, making it chal-
lenging to interpret their decisions. It can be a concern,
especially in critical applications such as plant species
detection [52], change analysis [57], etc.

C. Future Research Direction

The previous sections listed the findings of our study and the
key challenges encountered in this research domain. Moreover,
along with these, we have also determined a set of research
scopes and directions for future researchers by analyzing the
extracted DL-based papers.

1) Benchmarking studies: Conducting comprehensive
benchmarking studies is essential for evaluating the
performance of different DL models and frameworks in
the context of RS semantic segmentation. These studies
should involve diverse datasets, encompassing various
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TABLE XIII
SUMMARY OF DL TECHNIQUES FOR RS IMAGE ANALYSIS



1414 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE XIII
(CONTINUED.)

RS applications and scene types. By comparing the
accuracy, efficiency, and robustness of different models,
researchers can identify best practices and gain insights
into the strengths and weaknesses of various approaches.
Standardized evaluation protocols and metrics are crucial
to ensure the comparability of results and to establish a
reference point for future advancements.

2) Transfer learning: Exploring the potential of TL of-
fers a promising direction to leverage existing knowl-
edge from related domains and apply it to RS tasks [2],
[6], [45], [60], [65]. By pretraining DL models on large-
scale datasets from domains like aerial images, satel-
lite images, or ground label images for computer vi-
sion, researchers can capture generic features that are
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transferrable to RS imagery. This process can signifi-
cantly enhance model generalization and alleviate the
data scarcity issue faced in RS. Fine-tuning the pretrained
models on specific RS data allows for faster convergence
during training and can lead to more accurate segmenta-
tion results.

3) Uncertainty estimation: Estimating uncertainty in DL-
based semantic segmentation results is a crucial step to-
ward building trust in the model outputs. Uncertainty mea-
sures provide insights into the confidence of the model’s
predictions, particularly in challenging or ambiguous sce-
narios. Some works give approximate estimations of un-
certainty in the models [32]. However, most of the time,
researchers fail to mention this in their work [17]. Re-
searchers should investigate techniques to quantify uncer-
tainty in segmentation maps. Understanding and visual-
izing uncertainty will be valuable for decision making in
critical applications, where high confidence is required.

4) Integration of contextual information: Integrating contex-
tual information into DL models can significantly improve
the accuracy and robustness of semantic segmentation
in RS. Spatial relationships, spectral characteristics, and
temporal context play a vital role in interpreting RS
data. Researchers should explore attention mechanisms
and graph-based approaches to capture long-range depen-
dencies and contextual cues effectively. By incorporating
such information, DL models can better understand the
complex relationships within the scene and produce more
semantically meaningful segmentations.

5) Domain-specific architectures: Developing domain-
specific DL architectures tailored to the unique character-
istics of RS data is essential to unlock the full potential of
semantic segmentation. RS data differ significantly from
traditional images due to its high spatial resolution, multi-
ple spectral bands, and the presence of various land cover
types. Researchers modify the architectures that exploit
these specific properties. Domain-specific architectures
will allow DL models to better capture the intricacies of RS
data and deliver more efficient and accurate segmentation
outcomes.

6) Explainability and interpretability: Advancing research
on interpretable DL models is critical to foster trust and
confidence in the predictions made by the models. By
enhancing model interpretability, researchers can under-
stand the reasoning behind the model’s decisions, making
them more transparent and interpretable for end users
and stakeholders. Techniques like attention maps, saliency
analysis, and feature visualization can provide insights
into the regions and features that influence the model’s
predictions.

VII. DISCUSSIONS AND CONCLUSION

In this article, the authors have provided a literature review
of the recently published papers (2015–2021) which utilize DL-
based semantic segmentation techniques to analyze remotely
sensed images. DL has become a captivating part of the RS

research field. DL is an essential consideration of modern RS
research for making the RS image segmentation swifter and
more precise. This domain has observed a significant surge in
the prosperity curves of RS tasks. This study has conducted a
bibliometric analysis of the prevailing papers published in the
last five years to determine the current research practice in the
RS field. Moreover, this study has identified potential future
research avenues by highlighting the important analytical terms
in this domain, allowing the following researchers to explore this
research theme. In addition, this article has presented a thorough
survey of a few scrutinized DL-based papers and also abridged
many essential insights of the articles. Some intriguing research
questions have been yielded as an annex to the main findings
from the reviewed articles. This article has also supplied elegant
responses to questions about the robustness and viability of an
individual paper or DL technique in this research arena. Follow-
ing the extracted outcomes of this article and preceding history,
the authors of this work convoke at one point that modifying the
benchmark DL models by integrating different modules is going
to be a fascinating research topic in this field. Employing feasible
outcomes and practical applications and modifying models can
lead the DL practice in RS technologies in the near days. It will
be a rational move for the researchers if they exaggerate their
research to modify the DL models for better results in the RS
field.
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