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Abstract—In this article, the vegetative drought prediction em-
ploying Deep Learning (DL) models is designed, incorporating
rainfall data and NOAA satellite-data-derived Vegetation Health
Index (VHI) values spanning 1981–2022. Correspondingly, two
DL-oriented models based on Generative Adversarial Networks
(GANs): 1) Pix2Pix GAN (P2P) and 2) Bidirectional Convolutional
LSTM (BiConvLSTM)-P2P GAN (BiCP2P) are developed over the
targeted Region of Interest (ROIs). The assimilation of generative
DL models for the application of drought forecasting constitutes
a novel investigation and a state-of-the-art approach targeted in
this work. Subsequently, the primary ROI designated is peninsular
India, and the models. efficacy is validated by implementing it on
two more ROIs: the Karnataka and Rajasthan states of India. The
proposed models. outcomes are compared with several preferred
methodologies quantitatively through Coefficient of Determination
(R2 score), Mean Squared Error (MSE), and Mean Absolute Error
(MAE) and qualitatively employing drought maps denoting the
VHI-based drought severity levels over the ROI. Remarkably,
excellent performance is demonstrated by the proposed models
over peninsular India, with earned R2 score, MSE, and MAE
values of 0.971, 0.0016, and 0.020 for P2P and 0.963, 0.0021, and
0.0239 for BiCP2P, respectively. Moreover, generated drought maps
efficiently portrayed the drought severities across the land cover
and could potentially be extended further for rapid drought risk
assessments. The proposed models functioned outstandingly for
the developed datasets on the ROIs, corroborating their potential
for similar forecasting applications in other climatic zones, which
can aid in better planning and preparedness to tackle natural
predicaments such as drought calamity.

Index Terms—Deep learning (DL), drought prediction,
peninsular India, Pix2Pix (P2P) generative adversarial networks
GAN, vegetation health index (VHI).

I. INTRODUCTION

DROUGHT designates a prolonged absence of sufficient
rainfall, resulting in catastrophic situations such as deteri-

orating gross agricultural developments and national economic
growth [1]. As a consequence of deforestation, erratic rainfall,
and escalating urbanization, droughts develop gradually and
progressively; correspondingly, the type of drought ensuing is

Manuscript received 31 July 2023; revised 27 September 2023; accepted 24
October 2023. Date of publication 30 October 2023; date of current version 23
November 2023. This work was supported in part by the ANTRIX Corporation
with their generous funding for the Space Data Science Lab at IIT Dharwad,
Karnataka, India and in part by the Science and Engineering Research Board
(SERB) Project under Grant EEQ/2020/000047 and Grant SIR/2022/000957.
(Corresponding author: Rahul Jashvantbhai Pandya.)

The authors are with the Electrical, Electronics, and Communications En-
gineering Department, Indian Institute of Technology, Dharwad 580011, India
(e-mail: jyoti.shukla.21@iitdh.ac.in; rpandya@iitdh.ac.in).

Digital Object Identifier 10.1109/JSTARS.2023.3328299

conditioned by various causative factors. However, the present
article examines agricultural drought, tracking the green cover
across the region of interest (ROI) over time and imbibing var-
ious state-of-the-art artificial intelligence (AI)/machine learn-
ing (ML) approaches. The availability of monumental satellite
data and robust computational resources is presumptive for
the research community’s interest in analyzing and performing
advanced remote sensing (RS) research which also serves as the
foundation for the upsurge in deep learning (DL)-based method-
ologies for RS research. India relies intemperately on agriculture
and annotates numerous states that experience drought annu-
ally, resulting in a detrimental impact on the national econ-
omy [2]. Furthermore, traditional drought prevention strategies
appear partially effective owing to restricted knowledge about
unanticipated geophysical consequences. Therefore, DL-based
techniques embark on research opportunities, further exploring
and extending the current solutions with data modeling for
drought prediction.

A. Related Works

Recent research has substantially focused on aggregating RS
data and AI/ML methodologies employing satellite or recorded
meteorological data as input features to the models. Further-
more, in RS, the features commonly adopted are indices de-
rived from satellite data, such as the vegetation condition index
(VCI), temperature condition index (TCI), vegetation health in-
dex (VHI), normalized difference vegetation index (NDVI), soil
adjusted vegetation index, enhanced vegetation index, and pre-
cipitation condition index. Similarly, indices produced from me-
teorological data, such as the standardized precipitation index,
standardized precipitation evapotranspiration index, standard-
ized streamflow index, and the rest, are frequently employed for
drought modeling. In some research studies, meteorological and
satellite data-derived indices are conflated, and subsequently, a
comprehensive survey of drought prediction utilizing the indices
is conducted [3], [4], [5], [6], [7], and [8]. Generally, it is cus-
tomary to scrutinize the temporal change trends utilizing conven-
tional statistical approaches in drought prediction as revealed in
various studies involving models such as Sen’s slope estimator,
Mann-Kendall test, trend analysis employing linear regression
(LR), and F-test, slope, and correlational statistics amid various
parameters [4], [8], [9], [10], [11], [12], [13]. Moreover, the
ML models for drought analysis and forecasting are pervasive,
and several permutations have been implemented in the last
decade. Correspondingly, a multitude of ML models, such as
K-Nearest neighbor (KNN), random forest (RF), support vector
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machine (SVM), linear discriminant analysis, classification and
regression tree, support vector regressor, radial basis function,
LR, among others, have been rigorously compared to adjudge
the most competent ML models [3], [13], [14], [15], [16]. Fur-
thermore, a distinction is drawn among the types and sources of
the indices proffered to the algorithms, i.e., between indices ob-
tained from meteorological data and derived from satellite data
and subsequently compared to demonstrate the efficacy of the
drought indicators for various topologies [3], [4], [9], [13], [17].

Nevertheless, several DL algorithms have also proven ef-
fective on spatiotemporal (ST) datasets; models such as long
short term memory (LSTM), convolutional neural networks
(CNN), CNN-YOLO, multilayer perceptron, deep belief net-
works, autoregressive integrated moving average (ARIMA), hy-
brid wavelet networks, pretrained networks comprising ResNet
and VGGnet, UNet, neural network models, and convolutional
LSTM (ConvLSTM) models outperformed traditional models.
Additionally, several research efforts exhibited the integrated
permutations of the aforementioned DL models and illustrated
their efficacy through comparative studies [4], [8], [17], [18],
[19], [20], [21], [22], [23], [24]. On the other hand, ensem-
ble techniques form a separate class of competitive models,
where an ensemble is structured by merging different models’
observations, outperforming other classical approaches by en-
grossing different models’ rich features. Subsequently, ConvL-
STM+SVM+RF, LR+RF, CNN+LSTM, and other model com-
binations have been asserted for use in such tasks [25], [26], [27].
Interestingly, numerous ingenious DL-oriented techniques have
been applied recently for RS-based applications, among which
a successful paradigm is originated by the consolidation of bidi-
rectional ConvLSTM with the UNet (BiConvLSTM-UNet) [28],
[29], [30]. Additionally, in the integrated BiConvLSTM-UNet
model, for concatenating feature maps from the encoding and
decoding routes, BiConvLSTM blocks are employed dissident
to the ordinary skip connections of UNet encoder–decoder
modules. Furthermore, in the current study, one of the other
innovative DL models, generative adversarial networks (GANs),
which belong to the generative class of DL models, is being
probed for the application of drought monitoring and fore-
casting [31]. Notably, GAN has emerged as a cutting-edge
model for a wide range of applications in recent years, with
its extended versions becoming increasingly helpful in handling
ST data for tasks such as the fusion of satellite datasets [32],
ST prediction through integrated models [33], or change
detection [34].

Successively, the conditional GAN (c-GAN) models pio-
neered the area of image-to-image translation by extending
the traditional GAN model, as proposed by Mirza et al. [35].
Furthermore, Isola et al. [36] postulated Pix2Pix (P2P), a
c-GAN-based architecture focusing on image-to-image transla-
tion and punctuated a generic approach, wherein the generation
of an image is conditioned on a target image type. The P2P model
comprises a generator and discriminator, where the generator
transforms an input image from one domain into another, and
the discriminator determines whether the given image is real
or fake (generated). Besides, in the P2P model, the generator
trains over an auxiliary L2 norm loss along with the standard

adversarial loss. Remarkably, the P2P model is seldom imple-
mented in the ST data processing, some of which encompass
change detection of a specific land cover [37], [38] or harmo-
nizing time series satellite data [39], among others. Nevertheless,
the c-GAN model’s potential for employing satellite-derived
indices to predict droughts is yet to be thoroughly investigated
to the author’s best knowledge.

Consequently, two c-GAN approaches are suggested in this
work for estimating vegetative drought: P2P and an integrated
BiConvLSTM-P2P-GAN (BiCP2P). The models are applied to
a temporal AVHRR sensor data amassed by the NOAA satellite
series between 1981 and 2022, with peninsular India, Karnataka,
and Rajasthan states of India selected as the ROIs. Subsequently,
a quantitative analysis apropos the mean absolute error (MAE),
mean squared error (MSE), and coefficient of determination (R2)
score, along with a qualitative analysis through drought maps
of the proposed models compared with the traditional ML/DL
models is demonstrated.

B. Key Contributions

The major contributions of the current article are as follows.
1) A novel addition to drought prediction methodologies is

the development of a drought forecasting and monitoring
system established on the P2P-GAN model, which suc-
cessfully maps the short-term land cover changes across
the specified ROI based on historical RS data.

2) Second, a unique BiCP2P integrated model for drought
estimation is designed, in which the P2P model is coupled
with the BiConvLSTM module, which synthesizes the
benefits of generative and temporal feature learning and
may assist in vegetative dryness evaluation.

3) Third, to further instill diversity in the feature set equipped
to the model training, the VHI and rainfall features are
appended and stipulated concurrently in the dataset - IV,
which represents a novel combination to the author’s best
knowledge for studying the influence of two prominent
features in VHI-based drought prediction.

4) Furthermore, extensive investigation with the selection of
ROI and datasets has been undertaken, aiming to validate
the performance of the suggested models. Correspond-
ingly, four datasets are developed: dataset - I represents
the VHI dataset for peninsular India, which enunciates a
significantly massive portion of India with various climatic
fluctuations, dataset - II represents the VHI dataset for the
subsetted region of the peninsula, the Karnataka state of
India, an agriculturally dominant territory, dataset - III is
upheld by the VHI values for a typically dry province of
India with frequent drought episodes, the Rajasthan state,
and dataset - IV constitutes a novel hybrid combination of
meteorological data (rainfall characteristics) and satellite
data features (VHI values).

The rest of this article is organized as follows. Section II
details the datasets and preprocessing. Section III presents the
methodology of the proposed models. Section IV encapsu-
lates the results and discussions. Finally, Section V concludes
this article.
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II. STUDY AREA, DATASETS, AND PREPROCESSING

The literature study reveals that meteorological data, such
as precipitation and soil moisture, or a combination of satellite
and meteorological data, are extensively employed for drought
analysis. In the present work, the satellite data-derived VHI
values and rainfall data as the meteorological counterpart are
conceived for appointed ROIs to predict vegetative drought.

A. Study Area

India’s peninsular region is the preferred research location
for this study, which resembles a large inverted triangular area.
Oceanic bodies surround the peninsula’s three edges: the west
with the Arabian Sea, the east with the Bay of Bengal, and
the south with the Indian Ocean. The peninsula is the largest
physiographic division of India, with a total area of around
1 600 000 km2. Peninsular India’s geography may be broadly
categorized into the Deccan plateau, the central highlands, the
Sahyadri mountain ranges sheltering the west, and the eastern
ghats enveloping the east, encompassing vast stretches of states
such as Maharashtra, Karnataka, and Tamil Nadu [40], [41]. As a
result of dense, diverse geophysical features, the aforementioned
topologies strongly influence climate shifts, sufficing to appoint
peninsular India as ROI for dataset - I.

Successively, the peninsular dataset is narrowed to the state
of Karnataka, which functions as an ROI for dataset - II and
dataset - IV to determine the efficacy of the proposed DL
models for a subset ROI with fewer characteristics. The ROI
is situated in the Deccan plateau region, spanning 191 791 km2.
Also, the Karnataka state’s land cover is predominately filled
with agricultural and forest lands, making it an appealing ROI
for vegetative drought prediction.

Additionally, to diversify the database further, the Rajasthan
state of India is selected as the third ROI in this work, dedicated
to the dataset - III. The Rajasthan state is one of India’s most
frequently drought-affected states; hence, it emerges imperative
to examine the performance of the suggested models on such a
topology. Furthermore, the ROI designates the largest province
of India, encompassing 342 239 km2, with the state climate
influenced by two main topological characteristics, the Aravalli
Hills and the Thar desert located on the north-western periphery
of the state.

The multispectral satellite images acquired through NOAA
satellites’ AVHRR sensors sheathed the globe. Moreover, the
NOAA-derived VHI readings are sourced from STAR NESDIS’s
worldwide data, further filtered to the ROIs as exhibited in Fig. 1.
With such assorted terrains dispersed over the ROIs, evaluating
drought prevalence and vegetation health is arduous, albeit
critical, to determine any potential socioeconomic distresses.

B. Satellite Data

Recently, the significant ascent in RS-based applications is
attributed to the frequent revisiting rate and wide sweep width of
satellites, rendering satellite data with greater ease [42]. Indices
are markers applied to define the levels of a particular entity
predicated upon several attributes, such as satellite data, that
can further assist in estimating entities, notably land classes and

Fig. 1. Study area and datasets. (a) Peninsular India satellite data, (b) Kar-
nataka state satellite data, (c) Karnataka state rainfall data, and (d) Rajasthan
state satellite data.

TABLE I
VEGETATION-BASED INDICES

vegetation cover, through reflectance readings from elements in
different spectral bands. Subsequently, this work concentrates
on the satellite data-derived vegetation-based indices, including
NDVI, VCI, TCI, and VHI, delivering information on the green
cover. Moreover, Table I exhibits the formulas used to compute
the aforementioned indices, where NIR and RED represent the
near-infrared (0.725–1.00 μm) and red (0.58–0.68 μm) spec-
tral bands, respectively; BT denotes brightness temperature (in
Kelvins), and ′a′ dictates the contribution ratio between the VCI
and TCI, which is adjusted to 0.5 for the present study.

Furthermore, VHI evaluates the vegetative healthiness of the
ROI by factoring in the effects of temperature (TCI) and moisture
(VCI). The VHI information generated by NOAA NESDIS
STAR’s Global and Regional Vegetation Health System (Center
for Satellite Applications and Research) is adopted. The NOAA
AVHRR sensors’ weekly (7-day composite) globe data are con-
tained within this database (https://www.star.nesdis.noaa.gov/
smcd/emb/vci/VH/vh_ftp.php), possessing observations from
the satellite series NOAA-6 through NOAA-19, which deliver
data in six spectral bands. Subsequently, the weekly global VHI
images were acquired from the 35th week of 1981 to the 25th
week of 2022 for the current study, where the weekly VHI data
are obtained by aggregating the daily AVHRR data for seven
consecutive days imbibing a hybrid methodology. Moreover, the
AVHRR dataset’s NDVI and VCI values are smoothened (in-
tended to pass through a data smoothening filter and gap-filling)

https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php
https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php
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TABLE II
DROUGHT CATEGORY DEFINITION BY STAR NESDIS

to compute the VHI [42]. Table II indicates drought severity
levels categorized based on the VHI values upholding a direct
proportionality with the vegetative health of the ROI [42].

1) Satellite Data Preprocessing: The VHI dataset is cropped
to the ROIs using GIS-based software and further preprocessed
through padding and scaling; however, due to some unknown
causes, several missing data weeks are encountered in the
database. Consequently, as the current study considers temporal
models, it is deemed paramount to maintain the data sequential-
ity; therefore, a mean-filling approach is applied to replenish the
missing data. Correspondingly, the mean is determined for the
missing week-of-year of a specific location by computing the
mean over all valid values of the same week for the given site
in past years, contrary to finding the average of all valid data
points for the whole image. The sum is further divided by the
total number of years with valid values (Nt) as depicted in the
following [42]:

VHI (loc,wk)

=

∑
(week-of-year ‘wk’ with valid values of location ‘loc’)

Nt
.

(1)

The mean-filling approach is reliable since it accommodates
the seasonal tendencies for a particular week annually. Subse-
quently, the dataset aggregated a total of 2123 images, further
split to generate the requisite datasets depicted below.

1) Dataset - I (VHI data for peninsular India): Postcropping
and padding, the dimensions of the VHI images are (448,
578). The data are further scaled through a min–max scaler
to fetch values in the range of (0, 1).

2) Dataset - II (VHI data for Karnataka state): Postcropping
and padding the Karnataka VHI dataset in similar lines as
of dataset - I, the dimensions obtained are (192, 128).

3) Dataset - III (VHI data for Rajasthan state): Identically
to the previous datasets, postcropping and padding the
Rajasthan VHI dataset, the dimensions obtained are (192,
256).

The labels are one-time-shifted compositions of the input
images post scaling for all the datasets (I–III), respectively. The
splitting resulted in 52 samples for testing and 2069 for training
sets.

C. Rainfall Data

The lack of precipitation is a pivotal contributor to drought
developments [11], constituting rainfall measurements as a crit-
ical part of drought analysis. Hence, in this work, the gridded
daily rainfall data is collected from the Indian meteorological

department’s open-source data archive portal for the period
1981–2021 in the NetCDF format with a fine spatial resolution
of 0.25◦ × 0.25◦ [43], amassed from 6995 rain gauge stations.

1) Rainfall Data Preprocessing: The ROI selected for the
rainfall data is the Karnataka region, cropped from the national
gridded rainfall data; furthermore, its attributes, latitude, lon-
gitude, rain, and time, are used to form a 3-D interpolated
raster data of the shape (timeframes, rows (latitude), columns
(longitude)) with each pixel denoting the rainfall value. Also,
by interpolating, resampling, and reprojecting the rainfall data
into raster image data, the resolution discrepancy between the
VHI and rainfall data is rectified. Subsequently, the daily rainfall
data are averaged to yield a weekly representation identical to
the VHI dataset and are merged with the VHI data to form the
fourth dataset of the current study. The purpose of this alliance
is to witness how rainfall features influence VHI-based drought
analysis. Moreover, the total number of images in the rainfall
dataset, 2107, is less than the satellite dataset since the rainfall
data are only accessible through 2021 at the time of this study.

1) Dataset - IV (VHI + Rainfall data for Karnataka state):
The obtained rainfall images are subsequently reshaped
after padding to attain the shape (192, 128) and are scaled,
reducing the rainfall values to the range of (0, 1). After a
split, there are 106 samples in testing and 1999 samples
in the training set. Meanwhile, the rainfall data are inter-
twined with the exact configuration from the ROI’s VHI
dataset to produce a concatenated input, with the three
time-shifted VHI values as the label. Let X1T (192,128,1)

& X2T (192,128,1) represent the matrices of a VHI and
rainfall sample for a given timestamp, respectively. Sub-
sequently, post concatenating the matrices, the data input
matrix is XT (192,128,2). The corresponding label (YT )
represents the three time-shifted VHI samples, i.e., equal
to X1(T+3) with the shape YT (192,128,1). Apropos of
vegetative drought monitoring application, such a form
of dataset configuration is novel.

III. PROPOSED METHODOLOGY

DL-based integration in RS is a contemporary active field with
significant potential to surpass the statistical models. Similarly,
in the current study, two robust DL models on satellite data are
introduced that remain uninvestigated for drought analysis in
such geographies.

As demonstrated in Fig. 2, the VHI and rainfall databases
are cumulatively employed to develop four different datasets
for three ROIs and furnished to the proposed models, P2P and
BiCP2P. Furthermore, the datasets are implemented on several
other ML/DL models, exhibiting the comparative study targeting
the aforementioned performance matrices. Successively, the
obtained outputs are color-coded into different drought severity
levels.

A. Pix2Pix GAN Model

P2P, a c-GAN model that maps an observed instance x and
noise vector z to the desired output y, i.e., G : {x, z} → y, con-
ditioned on another entity and is renowned for image-to-image
translation tasks [44], is employed in this work. As exhibited in
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Fig. 2. Architectural flow of the proposed methodologies on the devised datasets for drought prognosis.

Fig. 3. P2P architecture with UNet generator and PatchGAN discriminator.

Fig. 3, the generator (G) (further elaborated in Fig. 4) and dis-
criminator (D) modules of P2P comprise stacked convolutional
layers, followed by normalization and pooling layers; a similar
strategy is adopted in this work.

1) Generator: Fig. 4 illustrates the encoder–decoder form of
the UNet architecture of the P2P generator block that contains
skip connections to retain low-level information over the layers.
Meanwhile, as the encoder incrementally applies downsampling
layers till the bottleneck layer is attained, the decoder per-
forms upsampling to generate the final output representation.
Additionally, in the UNet design, the input and output share
identical spatial representation [36], where each layer k and
layer (m− k),m constituting the total number of layers, are con-
nected by the skip connections, and the channels extant at these
two tiers are concatenated. In this work, the encoder is structured
with succeeding blocks of convolutional layers equipped with
constant filters of size (4, 4) and strides of (2, 2), wherein the
feature dimensions W and L (width, length) are successively
halved, and the number of filters doubles sequentially from 64
to 512. Conversely, the decoder performs the reverse operation
of the encoder.

2) Discriminator: The P2P model embodies a PatchGAN
discriminator, which processes the N ×N patch, a hyperpa-
rameter to arbitrate if the patch under consideration is real or
artificial instead of the complete image (see Fig. 3). Moreover,
the discriminator inheres a deep CNN block configured to build
a receptive field that can accord any smaller or larger dataset as
patches, further improving generalization. In this work,N = 1 is
selected, which projects onto a receptive field of 70× 70; subse-
quently, convolution is applied on patches by the discriminator
across the image and computes the probabilistic loss over the
assigned paired images (target image, generated image). Finally,
a feature map is produced at the discriminator chain and averaged
to provide a single score [36] as the discriminator loss, which
is passed to the generator for more realistic data synthesis, as
demonstrated in Fig. 3.

3) Implementation and Training of P2P GAN: As depicted
in Fig. 3, the input image from the dataset is supplied to the
generator block, which yields a future representation of the
conveyed sample; the generated and ground truth images are
further provisioned to the discriminator block, which computes
a probabilistic score to determine the actual image among the
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Fig. 4. Generator architecture of P2P: A UNet architecture with skip connections and mirrored encoder–decoder layers. The dotted blocks in the decoding route
denote concatenated outputs from the skip connections.

TABLE III
NOTATIONS USED IN LOSS EQUATIONS OF C-GAN

two. The training is iteratively executed until the probabilistic
score nears 0.5 and the generated outcomes emerge realistic,
followed by segregation into various drought levels to examine
the ROI drought condition thoroughly.

The P2P model training is consummated over the generative
adversarial and discriminator losses given the real and fake
images. The c-GAN objective function (Lc−G A N(G,D)) is a
marginally modified version of the simple GAN model

Lc−G A N(G,D) = Ex,y[logD(x, y)]

+ Ex,z[log(1−D(x,G(x, z))]. (2)

As illustrated in (2), the objective function of P2P is formu-
lated as an average log probability computed for the generator
and discriminator. Table III displays the notations used in the
equations.

In (2), the log probability Ex,y[logD(x, y)] denotes the aver-
age probability of D when the real image is input, and the log
probability Ex,z[log(1−D(x,G(x, z))] denotes the average
probability of D when input provided is the generated image.
G, i.e., the generator attempts to reduce the combined loss func-
tion [36] whereasD, i.e., the discriminator attempts to maximize
the loss function. Along with minimizing the adversarial loss of
(2), the generator in c-GAN must also beget a visual perception
closest to the labels supplied; therefore, L2 loss (LL2(G)) is
estimated amid real label y and produced image G(x, z) as
revealed in the following:

LL2(G) = Ex,y,z [‖y −G(x, z)‖2] . (3)

Resultantly, the following manifests the total loss or objective
function (Ltotal(G)) for c-GAN:

Ltotal(G) = Lc−GAN (G,D) + LL2(G). (4)

Subsequently, the following implies the generator’s dual min–
max objective function (G∗), where it pursues to reduce the
loss while the adversarial discriminator attempts to boost it; λ

designates a tuneable hyperparameter

G∗ = argmin
G

max
D
{Lc−G A N(G,D) + λLL2(G)}. (5)

The generator employs a weighted (λ) mixture of both losses
(adversarial and L2) ranging in the interval of [0,100] in this
work. Moreover, the loss function computation is gradual for
the generator since it learns via the discriminator, whereas the
discriminator is explicitly trained and learns rapidly compared to
the generator. Consequently, during training, the discriminator’s
training loss function is downsized (usually halved) to comply
with the generator’s training pace.

Contrary to basic GAN models, the generator is not supplied
with a random noise vector; instead, the input is procured
from the source domain, and the randomness (z) is instilled
through the architecture’s dropout layers. As a corollary, the
source image is injected into the generator, which produces
artificial samples recursively during training, following which
the discriminator consumes a paired image (target image, gen-
erated image). Let X represent the paired dataset array as the
P2P model accepts input in the form of paired images (source
image, target image), where data points are equipped as a
pair of (xt, yt) where each xt, yt ∈ X and yt = xt+1, i.e.,
one time-stamp shifted. Consequently, the created dataset is
of the format: (X_train(2069,448,576,1), y_train(2069,448,576,1))
and (X_test(52,448,576,1), y_test(52,448,576,1)). Unlike standard
forecasting DL models, no temporal sampling is applied in the
present model, and the training imbibes a predetermined number
of samples, n_samples (tunable hyperparameter), concurrently
from the paired train dataset, acclimated to three in the current
study.
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Fig. 5. Inner architecture of (a) ConvLSTM and (b) BiConvLSTM mod-
ule [45].

B. BiConvLSTM-Pix2Pix GAN Model (BiCP2P)

The BiCP2P model, a modified variant of the basic P2P
model, is the second suggested model of this work, imbibing
an analogous model architecture as the P2P model (see Fig. 3),
except for the distinction in skip connection establishment. Fur-
thermore, the simple P2P GAN concatenates the layer from the
downsampled encoding path to the preceding upsampled layer of
the decoding path; however, interjecting a BiConvLSTM block
in the concatenation assists in coupling the layers in a nonlinear
manner to further enhance the features [28], [29]. The encoding
path retains higher-resolution feature maps, whereas the decod-
ing path gains by extracting semantic information. Additionally,
dense convolutions are employed after the contracting route to
curb the problem of vanishing/exploding gradient and to retain a
rich collection of different features, and the collected outputs fur-
ther proceed to the expanding route. Moreover, the feature map
devised by the encoding path at layer k and the one induced by
the preceding convolutional layer at layer (m− k) is input into
the BiConvLSTM block for nonlinear concatenation, asserting
spatial relationships, which is advantageous when dealing with
ST data.

1) BiConvLSTM Model: Functioning with ST data desig-
nates it imperative to acquire a comprehensive understanding of
the characteristics, facilitated by employing BiConvLSTM by
conducting back training alongside forward learning, as exhib-
ited in Fig. 5. Moreover, BiConvLSTM’s learning technique is
comparable to the ConvLSTM model, except that it incorporates
both forward and backward sequences during training instead of
just forward learning [28], [45]. The temporal input sequence is
reversed and fed as the backward sequence to the ConvLSTM
block to attain the ricocheted sequence outputs. Also, Con-
vLSTM, similar to LSTM, controls information flow through
self-parametrized gates; however, transitions are convolutional

for input-to-state and within-state in the ConvLSTM model [46].
Input (it), output (ot), and forget (ft) gates constitute the ConvL-
STM architecture. The inputs V1, V2, . . ..Vt, which in the current
instance depicts the feature maps from the encoded and decoded
route, cell states C1, C2, . . . . ., Ct, i.e., the retained memory,
and H1, H2, . . . . Ht represent the hidden states, are passed via
“sigmoid” (σ(.)) and “tanh” activations. Wv∗, Wh∗, and Wc∗
represent the convolutional kernels for input, hidden layers, and
memory cells, and bi, bc, and bf denote the biases. The input
gate it permits input information to enter, ct symbolizes memory
cells that store current information, ft determines whether the
data should be forgotten or retained, and ot or the output gate
connects the final output to Ht. These ConvLSTM layers may
be stacked to build forecasting applications [46], [47]

it = σ (Wvi ∗ Vt +Whi ∗Ht−1 +Wci � Ct−1 + bi) (6a)

ft = σ (Wvf ∗ Vt +Whf ∗Ht−1 +Wcf � Ct−1 + bf ) (6b)

Ct = ft � Ct−1 + it � tanh (Wvc ∗ Vt +Whc ∗Ht−1 + bc)
(6c)

ot = σ (Wvo ∗ Vt +Who ∗Ht−1 +Wco � Ct + bc) (6d)

Ht = ot � tanh (Ct) . (6e)

Consecutively, the future cell output of a particular cell is
determined by the data input and the previous state of the sur-
rounding cells. The equations for ConvLSTM are demonstrated
in (6a)–(6e), where the convolution operation is represented by
“∗”, and “�” expresses the Hadamard product. The equations
for forward and backward calculations for the BiConvLSTM
model are equivalent. In furtherance of calculating the combined
output, the ConvLSTM block’s forward and backward outputs
are merged in the following:

Yt = tanh
(
W
−→H
y ∗
−→Hf +W

←−H
y ∗
←−Hb + b

)
. (7)

In (7),
−→Hf and

←−Hb denote tensors for the hidden state
in the forward and backward direction, respectively. Also, in
BiConvLSTM, the final output (Yt) is obtained by convoluting

these hidden sequences with their respective kernels (W
−→H
y ,W

←−H
y )

as depicted in Fig. 5(b). The output Yt will be relayed along
the expanding route of the UNet architecture. Subsequently, the
dense convolutions adopted in the final layers of the encoding
path incorporate all the preceding feature maps coupled as input,
eliminating any duplicate features recorded in earlier layers.

2) Implementation and Training of BiCP2P: The P2P and
BiCP2P models adorn structural resemblance and hold identical
objective functions (4)–(5), which remain unaltered by the dis-
tinct concatenation adjustments, along with employing similar
training parameters. For a fair comparison, the hyperparameter
settings for both models are left unchanged. Furthermore, the
implementation process adopted is also analogous to the P2P
model, with the identical input dataset supplied to the model.
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TABLE IV
DL MODELS CONFIGURATION

IV. COMPARATIVE ANALYSIS AND MODEL OPTIMIZATION

This section discusses the comparison models employed for
model performance analysis. Furthermore, the procedures for
fine-tuning and optimization have been outlined.

A. Reference Models for Comparative Studies

Various ML/DL-based models, prevalent in temporal data
handling, are applied to produce qualitative and quantita-
tive comparisons. The qualitative comparison is demonstrated
through color-coded drought maps, and the quantitative com-
parison is accomplished by analyzing the model performance
metrics. The color scheme is consistent with the values in
Table II.

1) DL Models: The DL models exercised for comparison
are outlined in Table IV. Moreover, temporal sampling
is employed to supply data into the DL models. For this
study, two-time sampling is adopted, with the label being
a comparable single-time-shifted version of the input.
The layer outputs of the models are standardized through
group normalization. Also, in the 1-D-CNN and BiLSTM
models, the data dimensions (width, height, and depth)
are flattened and applied with the last layer of the models
possessing nodes equal to the flattened shape, as annotated
in Table IV.

2) ML Models: KNN, decision tree (DT), RF, and extreme
gradient boosting (XGBoost) are the ML regressor models
applied and compared in the present work. Some of these
ML models consumed considerably larger memory than
the DL models, guaranteeing DL models an advantage
over the ML models.

3) Ensemble Models: A few ensemble-based models con-
structed using the aforementioned ML/DL models are also
evaluated. ConvLSTM+Conv3-D+DT and ConvLSTM+
Conv3-D+P2P ensemble models are implemented in the
current work.

B. Model Optimization and Tuning

For a suitable paralleling, it is imperative to acquire the
best outcomes [23]; consequently, the implemented models are
optimized to demonstrate the best performances in the respec-
tive geographies for all the datasets. Correspondingly, the ML
models have been ameliorated by hyper-tuning the parameter
arguments; for KNN, the number of nearest neighbors (k) is
modified (in the range of 2−5), DT, RF, and XGBoost form
a part of the bagging techniques and are optimized by tuning
the hyperparameters such as the number of trees (in the range

TABLE V
COLOR-CODING TO SEGMENT INTO DROUGHT SEVERITY LEVELS

1−3), maximum depth (in the range 1−2), and the number of
estimators (in the range 1−3). Since the datasets are enormous,
large hyperparameter values are deemed computationally costly
and, hence, are restricted to nominal counts. Similarly, for the
DL models, the optimal performance is achieved by modifying
the number of layers, nodes per layer and epochs, the optimizer,
and activation functions. The number of layers has been rendered
in the range of 3−7 layers, with the number of nodes varying
based on the dataset size and epochs in the range of 20−50.
The activation functions have oscillated between ReLU and
Sigmoid, out of which ReLU outperformed the latter across
all cases. Subsequently, the optimization functions examined
includeSGD andAdam optimizers for which the learning rates
have been varied in the range of 0.01−0.2.

V. RESULTS AND DISCUSSIONS

The present section exhibits the comprehensive simulation
results of the proposed DL models for drought prediction. The
results are unscaled to obtain their true range of VHI values, i.e.,
[0, 100]. Furthermore, the ROI is segmented into various drought
severity zones as per Table II, and color-coding is performed to
acquire the drought maps as per Table V. All computations are
carried out on a 40 Gb NVIDIA (DGX) GPU and 16 Gb NVIDIA
RTX (A4000) GPU graphics card.

A. Performance Analysis Among Models

Performance metrics for all the models across all datasets are
derived, and a quantitative comparison is presented. For each
model, MSE, MAE, and R2 scores are computed with the actual
label and generated output supplied to it.

1) Mean Squared Error (MSE): MSE determines the close-
ness of the regression line to a set of points; therefore,
lower MSE values represent accurate forecasting.

2) Mean Absolute Error (MAE): MAE represents the abso-
lute anomaly amidst the points and lines irrespective of
their direction; therefore, lower MAE values demonstrate
accurate prediction.

3) Coefficient of Determination (R2 Score): The R2 score
determines the proportion of observed variance to the total
variance present in the data. The R2 score ranges from 0
to 1, with the larger value denoting an accurate regression
model fit.

Table VI describes the formulae for performance metrics in
which the notations depict i as the ith input sample, ŷi as the
expected output value, yi as the real label value, ȳ denoting
the mean of the observed true value and T as the total number
of samples.
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TABLE VI
METRIC FORMULAE

B. P2P Model Training and Derived Metrics

The current subsection presents the drought assessment
study implementing the P2P model on the four aforemen-
tioned datasets. As conferred earlier, paired datasets are given
to the P2P model during training, which is performed in
batches_per_epoch, equivalent to (length of training input/
batch_size) with epochs = 10 and batch size = 1. Additionally,
the number of steps for which the training ensues is defined as
n_steps = batch_per_epoch ∗ epochs, where batch_per_epoch
and the number of epochs are hyperparameters tuned to identify
the best fit. Subsequently, the model is considered well trained
if the discriminator’s loss for real, D_loss1 [see Fig. 6(a)] and
generated images, D_loss2 [see Fig. 6(b)] docks at a median
approximate probabilistic loss of 0.5, with the images being
nearly indistinguishable. The generator loss also abridges to a
meager value over the iterations, as observed in Fig. 6(e).

C. BiCP2P Model Training and Derived Metrics

The current subsection stages the drought assessment study
implementing the BiCP2P model on the datasets. Notably, the
training parameters for BiCP2P and P2P remain identical for
the present study. Fig. 6(c)–(d) and (f) displays the training
curves for the discriminator and generator, respectively. Cor-
respondingly, the generator loss exhibits a declining trend with
occasional noisy spikes in between, which may be ascribed to the
conditional learning of GAN. As envisaged, the discriminator
losses are nearing their optimal saturation threshold, i.e., 0.5.

D. Comprehensive Drought Assessment Among Reference
Models

A multitude of ML and DL models are studied to provide
a comprehensive comparison with the proposed models. The
quantitative comparison entailed examining the metric scores,
whereas the qualitative comparison implicated assessing how
precisely the generated drought maps approximate the envi-
sioned drought map for the ROI.

1) Quantitative Comparison Among Models for All Datasets:
Table VII depicts the performance metrics comparison for
dataset - I, wherein GAN-based models outperformed other
reference models in forecasting the future VHI values over
the ROI. Conspicuously, the P2P model acquired a mean R2
score of 0.971 and a maximum of 0.986 on the test samples
with loss measures MSE and MAE reduced to 0.0016 and

Fig. 6. Training losses for model. (a) P2P: D_loss1 when input is a real image.
(b) P2P: D_loss2 when input is generated image. (c) BiCP2P: D_loss1 when
input is a real image. (d) BiCP2P: D_loss2 when input is generated image.
(e) Generator training loss for P2P. (f) Generator training loss for BiCP2P.

TABLE VII
METRIC COMPARISON AMONG ALL MODELS (DATASET - I)

0.020, respectively. Similarly, the BiCP2P model cultivated
considerable performance metrics, although it underperformed
marginally compared to the P2P model. Peninsular India repre-
sents an enormous geographic landmass, and on such a topology,
the generative models capably traced the vegetation properties
better than other recognized ML/DL models, granting them a
competitive advantage that renders them enticing for large-scale
forecasting applications.

Besides, the proposed models excelled in performance com-
pared to the reference models, as validated through the metrics
obtained by other state-of-the-art temporal models, demon-
strating the less efficient predictions through models such as
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TABLE VIII
METRIC COMPARISON AMONG ALL MODELS (DATASET - II)

TABLE IX
METRIC COMPARISON AMONG ALL MODELS (DATASET - III)

ConvLSTM-based methods, RF, and the least-performing XG-
Boost, which fails to provide a good prognosis on the peninsular
Indian geography. A similar excellent performance is witnessed
for dataset - II through Table VIII with the suggested models
delivering superior metric scores, such as mean and maximal
R2 score, MSE, and MAE of 0.95, 0.96, 0.0018, and 0.023,
respectively, for P2P model.

Analogously, the BiCP2P also outshines other reference mod-
els; however, it demonstrates minor degradation in prediction
accuracy (in terms of the R2 score) and increased loss val-
ues compared with P2P, whereas the XGBoost model proves
unfit for drought prediction with the provided input features.
Comparatively, the ConvLSTM-based models performed sub-
optimally and could not surpass the performance of the P2P
model. Furthermore, the results for dataset - III accentuate the
high-performance caliber of the recommended models, as shown
in Table IX, with prominent metrics of mean and maximum
R2, MSE, and MAE as 0.92, 0.94, 0.0018, and 0.0235 for
the P2P model. Interestingly, for the Rajasthan topology, the
BiCP2P model matches the P2P model performance, while other
reference models perform unfavorably with lower R2 scores and
larger loss values. Also, the computational training cost for the
proposed models, on the available resources for this research, is
considerably lower than other models.

Dataset - IV, comprising mixed features of satellite and
meteorological data, further validates the excellency of the
proposed models in predicting future VHI values. As demon-
strated in Table X, the P2P model gained mean and maximal
R2 score, MSE, and MAE of 0.93, 0.95, 0.0033, and 0.032,
respectively. Contrarily, the metrics obtained for the traditional
models are insufficiently accurate compared to our proposed

TABLE X
METRIC COMPARISON AMONG ALL MODELS (DATASET - IV)

models, as reflected by their inferior metric scores. Moreover,
the ConvLSTM-based models require more parameters and con-
sume increased computational time, delivering unsatisfactory
outcomes. Also, the ML models, such as RF, DT, and XGBoost,
consumed exceptionally long training durations and produced
unsatisfactory results, with the XGboost possessing the most
inconsequential metrics, implying that the randomness feature
of the bagging techniques is unfit for future prediction on the
presented datasets.

2) Qualitative Comparison Among Models: Fig. 7 delineates
drought maps, color-coded as per the drought severity levels (see
Table V), generated by the proposed and referenced models for
comparative study for dataset - I. Fig. 7(a) depicts the expected
drought mapping for comparison with other models’ outputs.
Consecutively, Fig. 7(b) and (c) epitomizes the drought maps
yielded through the proposed models P2P and BiCP2P, respec-
tively, validating outstanding performance metrics compared
with the reference models’ outputs shown in Fig. 7(d)–(n).
Following Table II, the dark green regions in the drought maps
illustrate prominent vegetation cover and less drought-prone.
Furthermore, as can be observed, the drought maps spawned
by other models do not justify their prominence for future
scenario prediction and have significant alterations compared
to the expected output; for instance, the drought map generated
by XGBoost, fails to identify the ROI regions efficiently, and
similarly, the ConvLSTM models also fail.

Fig. 8 outlines drought maps rendered by the proposed and ref-
erenced models for dataset - II. Fig. 8(b) and (c) exemplifies the
drought maps generated through the proposed models P2P and
BiCP2P, respectively. As can be inferred, for the proposed mod-
els, the resemblance of ground truth [see Fig. 8(a)] and generated
maps are unduly precise compared to reference models [see Fig.
8(d)–(n)]. Moreover, ML methods such as DT [see Fig. 8(j)]
are inept in performance, as inferred through the drought maps
validating their inefficiency for drought forecasting applica-
tions. Similarly, preferred DL-based models for time-series data
processing, such as ConvLSTM+Conv3D [see Fig. 8(d)], are
unable to comprehend the data complexity correctly. Addition-
ally, the satisfactory performance of the suggested models on
both a smaller region such as Karnataka and for peninsular
India, as seen priorly, justifies its prediction potential. Appar-
ently, the drought severity demonstrated through color-coding
can aid in identifying the places having more probability of
drought events.
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Fig. 7. Comparison of drought maps generated through the proposed and reference models for dataset - I. (a) Expected drought map. (b) P2P. (c) BiCP2P.
(d) ConvLSTM+Conv3-D. (e) ConvLSTM+Conv2-D. (f) Conv3-D. (g) 1-D-CNN. (h) BiLSTM. (i) KNN. (j) DT. (k) XGBoost. (l) RF. (m) ConvLSTM+Conv3-
D+DT. (n) ConvLSTM+Conv3-D+P2P.

Fig. 8. Comparison of drought maps generated through the proposed and reference models for dataset - II. (a) Expected drought map. (b) P2P. (c) BiCP2P.
(d) ConvLSTM+Conv3-D. (e) ConvLSTM+Conv2-D. (f) Conv3-D. (g) 1-D-CNN. (h) BiLSTM. (i) KNN. (j) DT. (k) XGBoost. (l) RF. (m) ConvLSTM+Conv3-
D+DT. (n) ConvLSTM+Conv3-D+P2P.
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Fig. 9. Comparison of drought maps generated through the proposed and reference models for dataset - III. (a) Expected drought map. (b) P2P. (c) BiCP2P.
(d) ConvLSTM+Conv3-D. (e) ConvLSTM+Conv2-D. (f) Conv3-D. (g) 1-D-CNN. (h) BiLSTM. (i) KNN. (j) DT. (k) XGBoost. (l) RF. (m) ConvLSTM+Conv3-
D+DT. (n) ConvLSTM+Conv3-D+P2P.

Correspondingly, the drought maps obtained by the suggested
and reference models for the third dataset are demonstrated in
Fig. 9(b)–(c) and (d)–(n), respectively. Remarkably, even for
a drier region such as Rajasthan, with significant variations
in the greenery, the suggested models display promising pre-
diction results. As can be seen, the northwest regions appear
comparatively drier as per the color-coding scheme, which cov-
ers the Thar desert topology of the state and has been correctly
classified by the proposed models. Conversely, other renowned
models do not show sufficient resemblance with the ground truth
image [see Fig. 9(a)] with the worst performance demonstrated
by XGBoost. Also, the ConvLSTM-based models inadequately
perform over the target geography.

Furthermore, Fig. 10 exhibits drought maps stemmed by the
proposed and reference models for comparative study on dataset
- IV, wherein the features of rainfall and satellite-data-derived
VHI values are collated. Fig. 10(b) and (c) presents the drought
maps induced through the proposed models P2P and BiCP2P,
respectively. The presented models reflect outstanding results
for dataset - IV and can track the intricate changes in the
dataset more precisely than the reference models. Besides, the
insufficient resemblance of reference models’ drought maps [see
Fig. 10(d)–(n)] concludes that the mixed features input is not
well-comprehended by the models and hence, is unfit for the
research objective of this article.

Additionally, the drought severity levels obtained through the
rendered drought maps by the proposed models can further be
studied to understand the trend and pattern of drought occur-
rences. As per the study conducted in [48], India faced one of
the worst droughts in 2000. To further infer from the generated
drought maps, the outputs for weeks 24 to 31 are observed in
this study, which marks an adequate season for many crops, for
the drought year 2000. The outcomes for a nondrought year,
conformed as 2017, are further displayed for the same weeks
to contrast the two drought maps and validate the presence of
drought in the year 2000.

Definitively, Fig. 11 reveals the severe differences between
the green cover for the same weeks in a drought year and a
nondrought year. Fig. 11(a) and (b) peculiarly demonstrate the
region affected under moderate to extreme drought, as referred
to in Table V. Moreover, the whiter shades demonstrate a lack
of greenery, as a result of which the VHI value dropped for
the region when it was drought-hit. Conversely, for the drought
maps of the year 2017, a healthy green cover (depicted by hues
of brown) over the western ghat belt of the peninsular region
can be noted from Fig. 11(c) and (d). Furthermore, P2P and
BiCP2P models validate their efficacy by distinctly predicting
the maps for drought and nondrought years. Convincingly, such
efficient drought segmentation further emphasizes the need to
perform such prediction tasks more frequently to tackle future
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Fig. 10. Comparison of drought maps generated through the proposed and reference models for dataset - IV. (a) Expected drought map. (b) P2P. (c) BiCP2P.
(d) ConvLSTM+Conv3-D. (e) ConvLSTM+Conv2-D. (f) Conv3-D. (g) 1-D-CNN. (h) BiLSTM. (i) KNN. (j) DT. (k) XGBoost. (l) RF. (m) ConvLSTM+Conv3-
D+DT. (n) ConvLSTM+Conv3-D+P2P.

Fig. 11. Comparison of drought-hit peninsular India for the year 2000 through (a) P2P and (b) BiCP2P and nondrought-hit peninsular India for the year 2017
through the models (c) P2P and (d) BiCP2P.
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consequences appropriately. The key advantages of choosing
generative models for the regression task in the present research
are exceptional prediction metrics and realistic and finer predic-
tion outputs. Additionally, the proposed frameworks also share
the benefits of projecting the same models for both regression
and further classification into various attributes (of land types),
as well as the generation of new data samples embodied similar
to the training set to aid in the analysis of potential land scenarios
in the near future at relatively nominal computational cost.
Additionally, the obtained results can further be extended to per-
form seasonal trend analysis by observing the seasonal drought
maps that capably explain the present scenario and assist in
short-term drought forecasting.

Conclusively, several momentous advantages inferred in this
work encompass the quintessential performance of the proposed
models, P2P and BiCP2P, across all the datasets, which are
diverse in magnitude, terrain, and topology, with the incurred
drought maps by suggested models complying with the ground
truth image. Moreover, the suggested models are able to demon-
strate the drought and nondrought segmentation adequately, as
witnessed for the years 2000 and 2017, respectively. The P2P
and BiCP2P models can be further customized for an assortment
of applications, such as precipitation forecasting and crop yield
analysis, among others, unlike other ML/DL-models, which are
highly complex for regeneration for different applications, such
as models like ConvLSTM and LSTM. Furthermore, statistical
models, such as the Mann-Kendall test, are parameter-specific
and are not adaptable for multiple applications. The generative
models, P2P and BiCP2P, can be trained additionally on several
more related features to predict and generate more accurate
future VHI samples, which can aid in disaster mitigation. The
computational time and resources consumed by the models are
nominal as compared to other ML/DL models, giving it an
edge over the others. Furthermore, the models can be trained to
generate seasonal and condition-specific outcomes by supplying
suitable data, such as by providing seasonal information, the
future seasonal scenario of the ROI can be predicted, and also,
the inclining or declining trend of greenery can be traced. How-
ever, the P2P and BiCP2P models cannot demarcate between
the seasonal/geographical conditions unless specified manually.
Due to the widescale topological variations within the ROI, the
climatic, regional, and natural interferences are not explicitly
taken into account in this study and can be recognized as
one of the future scopes for the current work. Alternatively,
the VHI dataset is delivered to the models with the uniform
data assumption. The models can provide forecasts dependent
on the input datasets, and the forecast precision also relies in
some ways on the data quality supplied to it. Hence, the data
quality should be monitored before supplying it to the models.
Besides, natural variables impacting the vegetative capacity of
the land, such as high winds, acid rain, or pest-infested crops,
are exceptions that must be manually differentiated and cannot
be distinctly detected through the existing model alignment.
Such natural factors are uncommon and intend to be demarcated
as an outlier during the data preprocessing step. Moreover,
the dataset employed in this study features a weekly temporal
scale, enabling it to present short-term scenarios of the ROI and
significantly influence the continual surveillance of crops and

land cover. Nevertheless, the data’s temporality scale may be
altered and delivered to the generative models, which possess
the competence to yield precise results at various envisioned
timelines, both short- and long-term. Remarkably, alternative
statistical or AI-based models seldom exhibit the versatility that
the P2P and BiCP2P models practice, producing precise results
at various temporalities.

VI. CONCLUSION

The current article delivers the novel application of two DL-
oriented models—P2P and a novel integrated BiCP2P model, for
vegetative drought analysis utilizing satellite data. The proposed
models are implemented on four datasets from 1981 to 2022
and are compared with several state-of-the-art ML/DL-based
models. Furthermore, the performance metrics gained by the
P2P and BiCP2P models are superior to the reference models
with mean R2, MSE, and MAE for dataset - I conforming to
0.971, 0.0016, and 0.020 (P2P) and 0.963, 0.0021, and 0.0239
(BiCP2P), for dataset - II achieving values of 0.95, 0.0018,
and 0.023 (P2P) and 0.9462, 0.0021, and 0.0254 (BiCP2P),
for dataset - III acquiring values of 0.92, 0.0018, and 0.0235
(P2P) and 0.92, 0.0021, and 0.024 (BiCP2P) and finally for
dataset - IV gaining up to 0.93, 0.0033, and 0.032 (P2P) and
0.94, 0.0042, and 0.033 (BiCP2P), respectively. The models
worked productively across diverse ROIs involving different
topological and geophysical alignments. Furthermore, the novel
amalgamation of rainfall and VHI characteristics performs ef-
ficiently for VHI-based drought prediction. Additionally, the
recommended models exhibited precise segregation of drought
and nondrought sectors, guaranteeing the high metric scores
attained and the potential of the models in short-term drought
forecasting with multiple databases and adaptability to other
applications. The future scope of this study entails performing
seasonal trend analysis incorporating seasonal drought maps or
observing drought probability with various natural constraints
(e.g., pests, temperature) on the green cover of the ROI under
consideration. Moreover, the analysis can be strengthened by
diversifying the feature sets through a larger ROI or boosting
the temporality scale.
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