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Automated Method for Artificial Impervious Surface
Area Mapping in Temperate, Tropical, and Arid

Environments Using Hyperlocal Training
Data With Sentinel-2 Imagery

Kristofer Lasko and Francis D. O’Neill

Abstract—This study presents an automated methodology to
generate training data to map up-to-date artificial impervious
surface (AIS) extent maps using two dates (winter and nonwinter)
of a Sentinel-2 granule across six international sites (Egypt, India,
Qatar, U.K., Eastern USA, and Western USA). It uses a series of
spectral, textural, and distance decision functions combined with
an outdated AIS layer to create nontarget and target binary masks
from which to generate a balanced set of training data applied to
a random forest classifier. Two outdated global AIS layers (GMIS-
2010 and GISA-2016) were evaluated within the framework to cre-
ate AIS maps from more recent years (e.g., 2020). For the decision
functions, stepwise threshold adjustments applied to normalized
difference vegetation index (NDVI) and Euclidean distance layers
were evaluated on the binary masks (low-density AIS, high-density
AIS, and nontarget land covers) with 729 permutations and 115
permutations for global impervious surface area (GISA) and global
manmade impervious surface (GMIS), respectively. The optimal
thresholds were determined globally (all six scenes), individually
(scene) and grouped by climate for adaptive thresholds. The accu-
racy assessment found both GMIS-output and GISA-output with
global thresholds can accurately map current AIS with 86.9%
(±1.7%) (GISA) and 82.7% (±2.3%) (GMIS) accuracy. Adaptive
climate thresholds yielded slightly higher accuracies for temperate,
tropics, and arid scenes. A novel beach bare ground sampling
mask and annual NDVI standard deviation were also evaluated
for performance and improved the accuracy in 5/6 sites. Lastly, the
global GISA output was compared with a manually labeled deep
learning model (Esri) with slightly lower overall accuracy (86.9%
vs 88.6%).

Index Terms—Built-up, global impervious surface area (GISA),
global manmade impervious surface (GMIS), image classification,
impervious surface, machine learning, random forest, Sentinel-2,
spectral indexes.

I. INTRODUCTION

THE mapping of artificial impervious surfaces (AIS) is key
for understanding a variety of environmental and social
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phenomena. AIS includes manmade material that is mostly
impervious to precipitation and is associated with human set-
tlements [1]. Accurate mapping of AIS is critical for urban
demographics and population growth estimates, impacts on land
cover and land use changes, and more. AIS and associated
urban land uses represent a small proportion of the global land
area; however, their effects are wide-reaching with impacts on
hydrology due to increased run-off, air pollution emissions, and
associated health impacts due to focused commerce and more
[2], [3], [4], [5]. Accurate and up-to-date data on the extent and
change of AIS are key for gaining a better understanding of
the above impacts and broader issues such as climate change
mitigation and adaptation.

There have been many efforts to map AIS extent and change
using remotely sensed imagery. Studies have applied AIS spec-
tral indexes or devised new ones. The built-up area extraction
index, for example, is a band ratio consisting of SWIR-1, green,
red, and an arithmetic constant from Landsat 8 imagery which
provided better accuracy than earlier methods [6]. Other spectral
indexes included the new built-up index, normalized-difference
built-up index, band ratio for built-up area, normalized built-
up area index, built-up land features extraction index, and
VBISWIR1 among others [7], [8], [9], [10], [11], [12], [13],
[14], [15]. Accuracies have been mixed and ranged from ap-
proximately 70% to 95% with manual thresholds created on a
per-site basis. AIS is difficult to map across certain landscapes,
especially bare ground due to similar spectral signatures [16].
AIS can also be confused with cropland, grassland, and wetlands
[17], [18]. Generation of an algorithm to accurately map across
varied geographies can introduce challenges related to high
spectral complexity in central business districts attributed to tall
buildings and shadows, as well as varied AIS construction styles
and materials which result in significantly varied spectral signa-
tures [19]. These include rocky material used for construction in
arid and semi-arid regions resulting in misclassification between
bare ground and AIS, as well as cropland confused for low-
density AIS (villages and small towns) due to spectral similarity
of vegetation mixed with high reflectance surfaces [20], [21]. In
fact, some studies have creatively generated separate workflows
for arid and nonarid regions to account for these difficulties [22],
[23].
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To overcome issues with similar spectral signatures
researchers began using nighttime lights (NTL) imagery. Early
studies leveraged Defense Meteorological Satellite Program
(DMSP)- Operational Linescan System (OLS) NTL imagery
for mapping AIS using a time series, considering that built-up
areas will yield a persistent signal through time as compared
with natural sources like fires [24], [25], [26]. The NTL datasets
have increased in accuracy and resolution with the use of VIIRS
[27]. One recent study used VIIRS NTL data and Landsat 8
with adaptive thresholding and automated training data yielding
93% accuracy [28]. Other studies have mapped megacities with
VIIRS NTL time series yielding overall accuracies between 85%
and 95% [29], [30], [31].

More recently, studies have used moderate resolution multi-
spectral imagery such as Landsat 8 or Sentinel-2 for mapping
AIS extent or change by leveraging grey-level co-occurrence
matrixes (GLCMs), spectral unmixing, or image fusion [32],
[33], [34]. Robust studies capturing AIS extent and change over
multiple years have leveraged machine learning models in con-
junction with temporal filtering and other heuristics to exclude
false positive AIS found in a single date [22], [23]. Newer studies
have gained the ability to better characterize human settlement
structure by harnessing deep neural networks and manually or
automatically selected training data. For example, one recent
study used a U-NET based convolutional neural network (CNN)
with manually drawn labels and 10 m SAR imagery to map
AIS over a large portion of China with relatively strong accu-
racy ranging from 76% to 93% depending on the scene [35].
Unlike some earlier studies, they assessed accuracy across a
wide range of challenging landscapes. Other studies have used
various CNNs with moderate or fine resolution imagery and
accuracies above 90%–95% [36], [37], [38]. However, some of
these studies are geographically limited and the models may
require further training and tedious manual data collection for
broader application. To alleviate this issue of a lack of training
data, models can be pretrained in the large ancillary dataset, and
then finetuned at the local scale with limited labels; furthermore,
reference data can be generated based on center points derived
from CenterNet and guided by transfer learning [39], [40].

Several studies have harnessed ancillary training datasets with
multispectral, SAR, or a combination of imagery. This approach
does not require tedious training data collection and can result in
models that are applicable to broad regions. Two recent studies
harnessed OpenStreetMaps to generate training data for super-
vised classification on Landsat 8 with accuracy as high as 91%
in tropical Brazil [41], or across multiple international human
settlements using Sentinel-2 with F1-scores averaging from 0.75
to 0.94 [42]. Some studies have used NTL with normalized
difference vegetation index (NDVI) time series composites for
accurate training data selection and supervised classification
with accuracy above 91% across varied regions [43], [44].
Mapping of rural–urban gradients in Europe was done using
automatically created training data from spectral indexes [45].

To overcome cloud cover, some studies have leveraged an
SAR time series. One study used C-band ENVISAT ASAR and
Sentinel-1 [46]. Another study demonstrated that operational
built-up area mapping was possible across urban and rural

areas at 30 m scale with C-band SAR, GLCM texture, and
other layers integrated into a supervised classifier [47]. Texture
metrics can capture spatial heterogeneity of human settlements
and improve accuracy as characterized in a recent study with
one-class random forest [48]. Other studies have successfully
mapped AIS using Sentinel-1 backscatter [49], [50] or interfer-
ometric coherence [51], [52]. Lately, studies have leveraged the
joint use of ALOS PALSAR, Sentinel-1 SAR and/or Sentinel-2
multispectral imagery and applying unsupervised clustering,
supervised classification, or deep learning [53], [54], [55], [56],
[57].

Global AIS datasets have been produced from sensors such as
Landsat 8 or Sentinel-1. For example, a 2015 AIS was produced
using multispectral imagery [58], and a very accurate operational
30 m dataset has also been made recently available [59], [60].
Lastly, a Landsat-based 30 m dataset was created with moder-
ately high accuracy [61]. These datasets were generated based on
automated or semi-automated supervised classification schemes
with multisource satellite imagery and ancillary datasets.

Using AIS data layers from prior dates as training data can
save significant time to a user in the data collection process,
further, many of the summarized studies use dense time series
imagery from an entire year which also can be intensive without
cloud computing resources. While previous studies have lever-
aged ancillary datasets, they typically did not leverage datasets
that were more than ten years outdated (e.g., GMIS produced in
2010). In this study, we create a framework to automatically map
current AIS extent by leveraging just two dates of Sentinel-2 20
m multispectral imagery (winter and nonwinter) with ancillary
datasets including digital elevation models (DEMs) and a glob-
ally produced AIS layer from prior dates considering that AIS
does not typically revert to other land cover classes [62]. Logical
decision functions based on spectral indexes, band reflectance,
Euclidean distance rules, and texture are created to determine
possible AIS training data pixels and possible nontarget training.
The training data are selected automatically and there is no
required manual input in the framework. The study seeks to
quantify how accurately this automated method can map AIS and
evaluates the use of two different AIS layers from different time
periods. The approach uses balanced training data selection and
subsequent image classification using hyperlocal training data
fed into a random forest classifier. Furthermore, the thresholds
for the logical decision functions are evaluated and optimized
using a stepwise evaluation procedure grouped by different
climate regions. The AIS mapping algorithm is assessed across
six different Sentinel-2 scenes representing varying degrees of
urbanization with challenging terrain characteristics including
arid environments, agricultural environments with fallow fields.

The novelty of the proposed research and its contribution is
described as follows.

1) Evaluation of AIS workflow incorporating 30 m global
manmade impervious surface (GMIS) AIS dataset from
more than ten years prior (2010) against recent Sentinel-
2 imagery containing 20 m imagery with different pixel
alignment.

2) Evaluation of the same AIS workflow incorporating more
recent Sentinel-2 based AIS dataset from 2016 (GISA)
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and how the output differs when using the GMIS AIS
from 2010.

3) Creation of a workflow using only two dates of imagery
within a year (winter and non-winter image) with shallow
machine learning classifier (random forest) as compared
against an Esri-hosted land cover layer based on manually
labeled training data with a dense time series and CNN
method.

4) Evaluation of a novel beach bare ground sampling method
and time series NDVI standard deviation included in the
workflow.

5) Use of automated sampling scheme based on the outdated
AIS layers and logical decision functions optimized by
stepwise threshold testing.

6) Creation of adaptive thresholds based on climate region
types and determination of impact on accuracy.

II. OBJECTIVES, STUDY AREA, AND DATASETS

A. Objectives

While supervised classification with manual training data
collection is common, it can be tedious. Previous studies have
produced accurate global AIS datasets, but these data layers
eventually become outdated over time. For example, GMIS was
generated on imagery from 2010 and global impervious surface
area (GISA) was generated on 2016 imagery, and while accurate
for their respective years, they have not been updated to a more
recent year. The primary objectives of this study are as follows.

1) To create a framework based on logical decision functions
and two existing AIS datasets from prior years (2010
and 2016) with supervised classification for automated
mapping of AIS from recent moderate resolution satellite
imagery in order to obtain accurate, timely, and current
spatial extent of AIS.

2) Evaluate different stepwise thresholds on the logical
decision functions (NDVI thresholds, Euclidean dis-
tance thresholds) to map AIS and compare the accuracy
of thresholds across climate-based groups via adaptive
thresholding.

3) Create a novel beach bare ground sampling method to re-
duce commission errors on bare ground adjacent to water,
create and apply an NDVI texture metric, and include an
annual NDVI standard deviation composite and evaluate
the impact that these inputs have on accuracy.

4) Compare the accuracy of this framework to a more ad-
vanced and data intensive deep learning model maintained
by Esri.

B. Study Area

For evaluation and testing, we selected six unique Sentinel-
2 granules spanning multiple ecological and climate zones.
The first site covers granule ID T36QVM featuring Aswan, a
moderately-populated city of 1.5 million located along the Nile
River in the arid tropics of Egypt. It includes seasonal water,
wetlands, croplands, and large swaths of bare ground, exposed
rock, and varied topography yielding a very challenging site

for mapping AIS. The second site covers granule ID T10TDP,
which includes Eugene, Oregon USA, a town of low population
(<175K inhabitants) located adjacent to large swaths of forestry.
The site also includes the Willamette Valley with agricultural
areas which can be erroneously mapped as AIS. This granule
lies in a Marine West Coast climate zone with Mediterranean
characteristics. The third site covers granule ID T18TYM, fea-
turing Providence, USA (approximately 200k inhabitants) and
more than ten small towns with populations less than 100k. It
is a humid continental climate and includes forest, mixed land
use, and suburban development. The fourth site covers granule
ID T30UXB and features Portsmouth, U.K., which is the most
densely populated U.K. city with a population of approximately
250k. It also includes the port city of Southampton. The site
includes a large coastal area, along with small tracts of forest,
wetlands, rivers, and agriculture including field crops such as
wheat, grasses, and fallow fields. The fifth site covers granule
ID T45QXE, featuring the megacity of Kolkata, India, which
has a metropolitan population in excess of 13 million and rapid
peri-urban expansion. It has a tropical wet-and-dry climate with
monsoonal influence. It also includes portions of the Sundarbans
National Park and agricultural activity, including Rice fields and
shrimp farms. It contains dozens of small towns and villages
within the state of West Bengal, many with populations under
5k inhabitants, and a small portion of Bangladesh (including the
town of Basantapur). The sixth site cover granule ID T39RWJ,
featuring Doha, the capital city of Qatar, whose population
exceeds 2 million. It features peri-urban expansion, coastal areas
along the Persian Gulf, and zones of irrigated agriculture. The
climate is hot desert with minimal precipitation, and the scene
contains large swaths of sand.

C. Datasets

1) Sentinel-2 MSI: The Sentinel-2 multispectral instrument
(MSI) imagery is provided by the European Space Agency
[63]. We acquired the bottom of atmosphere reflectance, Level
2A (L2A), from the Copernicus Open Access Hub. The L2A
product contains geometrically- and radiometrically corrected
imagery, along with a quality assurance layer called the scene
classification layer (SCL) that contains information on clouds,
cloud shadows, snow, water, and ice, which we use to mask the
input imagery and obtain a snow mask. Sentinel-2 MSI imagery
includes 13 spectral bands at three spatial resolutions (10, 20,
and 60 m). For this study, we leveraged the 20 m dataset to
utilize the two shortwave-infrared (SWIR) bands and red-edge
bands. For each site, a winter season and nonwinter season image
was acquired. The processing algorithm for Sentinel-2 L2A im-
agery applied through Sen2cor underwent changes for imagery
acquired in late 2021 and after. The most notable difference is
that, post-2021, L2A surface reflectance values have an offset
value of 1000 added to them. Note that all spectral band values
reported in the methods have had this offset removed (where
applicable), and reported values correspond to pre late 2021
ranges.

Spectral indexes such as the NDVI, modified normalized-
difference water index (MNDWI) were derived from the
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TABLE I
SENTINEL-2 IMAGERY USED IN THIS STUDY

Fig. 1. Sentinel-2 imagery of the six study sites.

Sentinel-2 imagery. Table I shows a list of input imagery used
for each site and Fig. 1 visualizes the study sites.

2) SRTM Digital Elevation Model: DEM data from the shut-
tle radar topography mission (SRTM) were acquired for the
one scene with significant topographic relief: Aswan, Egypt
(Sentinel-2 granule ID T36QVM), for the purpose of correcting
false positive AIS in hilly terrain. The SRTM DEM is provided
at 1 arcsec (30 m) with void-filled data. The dataset was down-
loaded from the USGS EarthExplorer website. As with most
DEMs, the SRTM DEM suffers some artifacts due to terrain
shadow, vegetation canopy, or other dense obstructions [64]. The
SRTM DEM was downscaled to 20 m resolution using nearest
neighbor resampling and aligned to the Sentinel-2 imagery.

AIS training pixels with slope greater than 18° are converted
to bare ground training. Any remaining AIS training pixels with
slope greater than 5° are masked out.

3) Landsat 8 Global Manmade Impervious Surface (GMIS)
Layer: The GMIS layer was previously generated for the year
2010 from 30 m Landsat imagery and was downloaded from the
Socioeconomic Data and Applications Center of NASA [61]. It
was derived from Global Land Survey imagery, which contains
both Landsat 5 TM and Landsat 7 ETM data. The distributed
layer includes a “percent impervious” variable, ranging from 0
to 100 indicating the percentage of impervious surface within
a given pixel. Using GDAL, we downscaled the GMIS layer
to 20 m resolution using nearest neighbor and ensured pixels
were properly aligned considering the discrepancy between this
derived Landsat dataset and the Sentinel-2 imagery it will be
applied upon. We apply logical decision functions to increase the
accuracy of the training data selection for our model as described
in the methodology section.

4) Global Impervious Surface Area (GISA): The GISA layer
was generated for the year 2016 using a full time series of
imagery from Sentinel-2 at 10 m and Sentinel-1 SAR at 10
m resolution [59]. The dataset is a binary layer produced at
a global scale with an overall accuracy of about 86%. It was
generated from a previous 30 m Landsat-based layer [60], as
well as training data from Open Street Maps and other sources
combined with a complex set of spectral, spatial, temporal, and
geometric rules.

5) Landsat 8 Annual NDVI Composites: The Landsat 8 Level
2, Collection 2 dataset (surface reflectance) was used to create
annual composites of the NDVI. One year of cloud-free pixels
were used to obtain the standard deviation of NDVI for each
30 m pixel using Google Earth Engine. The 30 m pixels were
resampled to 20 m scale and used for improving separation of
AIS and non-AIS pixels. The AIS extent mapping framework
was evaluated both with and without this layer.

6) Sentinel-2 10 m Land Use/Land Cover: The Sentinel-2
10 m land use/land cover product was produced on an annual
basis for each year of 2017–2022. It was developed using the
UNet CNN model trained on millions of manually labeled points
across the world [65]. Nine land cover classes were produced.
For this study, we used only the “built area” class to correspond
with AIS and remapped the remaining values to zero. The dataset
was resampled to 20 m pixels (majority reclassification scheme)
to correspond with our Sentinel-2 20 m imagery. We acquired
the year of imagery corresponding to the date of our Sentinel-2
imagery for each study area. In this study we refer to this dataset
as Esri Land Cover because it is freely available for download
on their website (https://livingatlas.arcgis.com/landcover/).

III. METHODOLOGY

Some current methods for AIS mapping rely on an imagery
time series, computationally intensive deep learning, or manu-
ally collected training data with supervised classification. The
method proposed in this study is designed to be efficient and
automated while leveraging the results of previous studies and
using only two dates of multispectral imagery within a single
year. While previous studies have produced accurate AIS extent
maps, these maps are sometimes produced via regeneration of
new manually labeled training points which can be a tedious

https://livingatlas.arcgis.com/landcover/
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Fig. 2. Flowchart of the methodology evaluated in this study.

process. The framework proposed in this study does not require
manual labeling, which would enable AIS maps to be generated
for any given proceeding year via an easily reproducible work-
flow. This is in contrast to the currently publicly available AIS
datasets which are generated only for a previous year and not
regularly updated (e.g., GMIS in 2010, and GISA in 2016). A
high-level overview of the proposed workflow is shown in Fig. 2.

Accordingly, this approach uses two dates (winter and non-
winter) of Sentinel-2 L2A imagery to capture vegetation phe-
nology and intra-annual dynamics, but without the intensity of
a full time series. From this imagery, spectral indexes, texture,
etc., are generated for each date and included in the feature
set. An intermediate set of AIS extent maps is then generated
separately using GISA and GMIS as inputs combined with
logical decision functions and a sampling scheme which selects
training points for the random forest classifier for various target
(low-density AIS, high-density AIS) and nontarget land covers
(e.g., wetlands, water, etc.). After the intermediate maps are
generated, a stepwise threshold method is used to determine
optimal NDVI and Euclidean distance thresholds for each scene
and dataset. Pixel frequency count maps are generated to demon-
strate how these thresholds impact the output. The differences
between GISA (Sentinel-2 based AIS from 2016) and GMIS
(Landsat 8 based AIS from 2010) are also evaluated. The most
accurate threshold for each scene is then recorded as well as
the most accurate threshold across all scenes which is referred
to as the global threshold. Climate region adaptive thresholds
are also generated where the study sites are grouped into trop-
ics, temperate, arid, and nonarid. The study also evaluates the

TABLE II
BINARY LAND COVER MASK CREATION FOR SUBSEQUENT TRAINING DATA

SAMPLING

accuracy of a novel beach bare ground binary mask and an
annual time series NDVI standard deviation composite. Lastly,
the AIS maps generated from this study are evaluated against a
robust manually trained deep learning based global land cover
layer hosted by Esri. The accuracy assessment was guided by a
robust method using 228 equalized random points per scene as
described subsequently in more detail.

A. Ancillary Data Generation

An NDVI texture metric is created from the two dates of
Sentinel-2 NDVI. It is calculated using the standard deviation
of the absolute difference of the leaf-off and leaf-on NDVI
images with a 3x3 pixel window (1). We expect AIS will have
higher standard deviation than other land cover types because
AIS NDVI often varies significantly within a landscape due to
varying vegetation levels, mixed pixels, different surface and
structure types (e.g., pavement, flat roofs, sloped roofs, etc.)
which yield significant spectral heterogeneity evident in the
texture layer. Other studies have had success with different types
of multitemporal texture layers [48].

A shoreline water texture layer was also created based on the
Sentinel-2 SCL water mask: water-flagged pixels are assigned
a value of 1, while nonwater pixels are reclassified to 0. The
texture layer is a convolved sum of these pixels within a 5x5
pixel neighborhood. Pixels surrounded by water would have a
value of 25 and pixels adjacent to, but not surrounded by water
would have lower values. This layer was designed to assist the
image classification to reduce erroneous AIS on shoreline or
water areas

texturendvi = SDkernel = 3 (|ndvisummer − ndviwinter|) . (1)

B. Binary Mask Layer Generation

After the input data are processed, binary raster masks are
created for target and nontarget land cover types using the input
data including spectral indexes, texture layer, GMIS or GISA
layer, and NDVI annual composite layer as shown in Table II.
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These masks are used only for generating training data for the
target and nontarget land cover types used to fit the supervised
classifier. The following masks are created: low-density AIS,
high-density AIS, bare ground, beach bare ground, low NDVI
vegetation, high NDVI vegetation, persistent water, snow, and
wetland and perennial water. The two AIS masks (low density
and high density) are designed to have minimal erroneous pixels
due to commission errors, while omitting some pixels which may
be borderline or have uncertain land cover type.

The masks are designed to capture representative training
points from each class, not to capture all possible pixels for each
class, which will be the task for the classifier. Subsequently, the
supervised classifier would determine the appropriate class for
such pixels based on the combination of training data.

C. Intermediate AIS Binary Mask Generation

The proceeding sections describe the creation of each of the
binary masks. The procedure is run with different AIS masks
based on the GISA and GMIS datasets. For generation of the
AIS mask with GMIS, the 2010 GMIS layer containing percent
impervious pixels (0%–100%) from 30 m Landsat imagery is
used. Two separate masks are created prior to supervised clas-
sification and combined postclassification: 1) low-density AIS,
and 2) high-density AIS. Intermediate threshold values were
assigned for each one for subsequent optimization after accuracy
points are generated, the high-density AIS contains GMIS pixels
with 50% or greater impervious surface, while low-density AIS
contains GMIS pixels between 25% and 50% impervious sur-
face. Pixels with less than 10% impervious surface are excluded
from the mask due to errors in the dataset for some scenes.
Moreover, for data quality purposes and to generate a mask
with minimal erroneous pixels, an NDVI threshold maximum of
0.40 is applied to the low-density AIS training points, and 0.30
maximum is applied to the high-density AIS training points.
The two-date NDVI texture layer has a threshold minimum of
3.5 to reduce false errors on bare ground, which typically has
a more homogenous spatial texture than AIS. The annual time
series NDVI standard deviation composite layer was used to
mask out training pixels with annual standard deviation above
the 95th percentile. The logic behind this is that AIS pixels have
significantly less spectral variation through time than other land
cover classes such as wetlands, forest, or cropland which vary
seasonally. The use and removal of this layer is evaluated in the
study as well.

The intermediate GISA-based AIS mask is created through
a different procedure because it only contains two values: 0 for
non-AIS and 1 for AIS. In this manner, the initial, nonoptimized
AIS mask is generated for low-density and high-density AIS.
The low-density AIS contains AIS pixels with NDVI< 0.80 and
> –0.50 for winter (< 0.75 and > –0.50 for nonwinter), while
the high-density AIS mask contains AIS pixels with NDVI <
0.35 > –0.50 for winter (< 0.60 and > –0.50 for nonwinter).

D. Nontarget Binary Training Data Mask Generation

The bare ground/sparse vegetation binary mask is created
by the following logical decision functions with threshold

values guided by the literature [66], [67], [68] and through data
exploration: 1) winter NDVI must be > = 0 and < = 0.35,
non-winter NDVI must be > = –0.20, 2) with a minimum
SWIR-1 reflectance of 600 to exclude possible wetland and
water pixels. To reduce confusion with AIS, the bare area pixels
must be at least 600 m from pixels in the AIS training layer.

A similar binary mask was generated for representing bare
ground on beaches which are commonly incorrectly classified
as AIS. This mask has the same thresholds as the bare ground
mask except a Euclidean distance minimum of 40 m from AIS
pixels and a maximum of 90 m Euclidean distance from surface
water so that points are focused on this area.

Two low-moderate NDVI vegetation layers are generated; the
first captures pixels which may have lower NDVI in winter,
and the second captures pixels which may have lower NDVI in
nonwinter. The first mask requires the following.

1) Winter NDVI between 0.10 and 0.70, and nonwinter NDVI
between 0.35 and 0.70.

2) A minimum SWIR-1 reflectance of 800 to reduce confu-
sion with wetland pixels.

3) A minimum Euclidean distance of 250 m from the AIS
layer to avoid erroneous and mixed pixels.

The second layer requires the following.
1) Winter NDVI between 0.35 and 0.70, and nonwinter NDVI

between 0.10 and 0.70.
2) A minimum SWIR-1 reflectance of 700 in winter and 1200

in nonwinter.
3) A minimum Euclidean distance of 250 m from the AIS

layer.
Two high NDVI layers are also generated, with the first

capturing pixels with low NDVI in winter, and second capturing
pixels with low NDVI in nonwinter. The first mask requires the
following: 1) winter NDVI between 0.10 and 0.7, and nonwinter
NDVI greater than 0.7, 2) a minimum Euclidean distance of 200
m from the AIS layer. The second mask requires the following:
1) winter NDVI greater than 0.7, and nonwinter NDVI between
0.1 and 0.70, and 2) a minimum Euclidean distance of 200m
from the AIS layer.

A wetland mask is generated based on the following logic.
1) Both dates of NDVI must be between –0.05 and 0.65.
2) Both dates of MNDWI must be between –0.20 and 0.60.
3) A minimum Euclidean distance of 200 m from the AIS

layer.
4) A maximum Euclidean distance of 200 m from the

Sentinel-2 SCL water layer from both dates.
The water mask was produced following a published method

[69] and requires the following.
1) MNDWI, AWEI, and NDWI values greater than –0.03.
2) SWIR-1 reflectance below 1000.
3) A minimum Euclidean distance of 100 m from the AIS

layer.
A second, perennial water layer was created which required

only one date of imagery to meet all three of the previously listed
requirements.

For any of the above layers, if a snow pixel is detected in the
winter date of imagery, then only the nonwinter date criteria must
be met. Lastly, a snow mask is created based on the provided
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Fig. 3. Binary masks, NIR, and MNDWI quantile maps visualized. Spectrally
balanced training samples from the binary masks are generated in conjunction
with the quantile layers.

Sentinel-2 SCL snow mask if both dates of imagery contain
snow.

Subsequently, training points are randomly selected from
these binary masks and then used for classifying the imagery
into AIS and not-AIS pixels.

E. Training Data Selection and Image Classification

After the target AIS and nontarget binary land cover masks
are successfully created, then training data are selected from
each of the masks to fit a supervised classifier. Each binary
mask is converted into three quantiles based on the near-IR band
with each group containing one-third of the pixels as shown in
Fig. 3. The purpose of the quantiles is to ensure selection of
a spectrally balanced set of training data. Subsequently, points
are generated on each mask with equalized stratified random
sampling across the three quantiles. The following numbers of
points are generated for each class: persistent water (450), low
NDVI vegetation (250), wetland (450), dense AIS (400), light
AIS (400), bare ground (450), high NDVI vegetation (300),
seasonal water (250), persistent snow (450), beach/coastal bare
ground (50). Two training point datasets are created for each
mask: one “no-snow” set, in which both the nonwinter and winter
criteria must be met; and one “snow” set, in which the nonwinter
criteria must be met and the winter scene must be labeled as snow
by the SCL layer. Previous work has shown that accuracy is not
substantially affected after a minimum training point count is
achieved [70].

The training data are used to fit a random forest classifier
containing the following parameters: 500 trees, max_depth =
30, max_samples = 500 as implemented in scikit-learn [71],
[72]. The classifier then predicts the land cover type using the
two dates of Sentinel-2 imagery, 2-date NDVI texture, shoreline
water texture layers, spectral indexes, annual standard deviation
of NDVI (results were evaluated with and without this layer), and
optionally the DEM (if within a mountainous environment, only
applied to EG scene). After image classification is complete, the
nontarget classes are condensed into a single class with value “0,”
and both AIS classes are condensed into a single AIS class with
value “1.” The AIS classes are combined due to the potential
for mistakes in the accuracy assessment when differentiating
between the subjective low- and high-density AIS.

F. Accuracy Assessment and Stepwise Threshold Adjustment

After the intermediate set of AIS extent maps are created for
each site, an accuracy assessment is conducted across each of the
six study sites. AIS and non-AIS pixels are selected via equalized
stratified random sampling with 228 points per scene (114 AIS,
114 non-AIS) and 1368 points total, following best practices
in accuracy assessment and an estimated standard error of 0.15
for AIS and 0.05 for non-AIS [73], [74]. A 200 m minimum
distance between points was specified to reduce spatial bias in
the assessment. The ground-truth for each point was interpreted
using a combination of high-resolution worldview imagery, the
original Sentinel-2 imagery, and spectral indexes. The overall
accuracies, user’s accuracies, producer’s accuracies, F1-scores,
and adjusted overall accuracies are reported. A 95% confidence
interval of uncertainty is computed for comparison purposes and
the adjusted overall accuracy was computed based on error rates
and the weighting from the proportion of land area for each class
[73].

After ground-truth has been interpreted for the 1368 points
across the six scenes, the points are then used for stepwise
determination of optimal thresholds for the logical decision
binary masks which could improve upon model accuracy during
training sample selection. Several key variables were evaluated
separately for GISA and GMIS.

For GMIS, the study first evaluated the minimum required
Euclidean distance between bare ground training data pixels
and the AIS layer’s pixels for both leaf-on and leaf-off imagery.
Ranges from 0, 200, 400, and 600 m were evaluated. The second
variable was the minimum Euclidean distance between AIS
training pixels and water pixels, with distances including 0, 100,
200, 300, 400, and 500 m. The third variable evaluated was the
lower bound value for the low-density AIS training data. That
is, the minimum percent AIS from the Landsat 8 GMIS layer
which would be considered as AIS training pixels. Similarly, the
upper bound for low-density AIS, along with both bounds for
high-density AIS, were also evaluated. These thresholds were
used to inform the overall model for both data layers.

Unlike GMIS, the GISA layer is binary and lacks percentage
AIS; therefore, different stepwise thresholds were analyzed.
Specifically, the study evaluated different combinations of the
minimum and maximum NDVI thresholds for both light AIS and
dense AIS. This included maximum NDVI values for dense AIS
of 0.15, 0.20, and 0.25 on both the leaf-on and leaf-off imagery,
minimum NDVI values for light AIS of 0.20, 0.25, and 0.30 for
both dates, and maximum NDVI values for light AIS of 0.45,
0.55, and 0.65 for both dates. This resulted in a total of 729
different permutations for evaluation on each scene. Ultimately,
these stepwise comparisons are applied during training data
selection and are designed to select a threshold which improves
accuracy of the model.

The final AIS maps are created and evaluated based on the
optimal thresholds determined from this analysis.

IV. RESULTS

After the two sets of intermediate AIS extent maps were
generated (GISA- and GMIS-based output) from the initial set
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of thresholds, ground-truth points were created on each of the six
sites as described in the methods. These 1368 equalized random
sample points were then used to evaluate stepwise threshold
changes as described in the methods.

A. Stepwise Thresholds: GMIS

The stepwise threshold adjustments were evaluated on 11
variables for the GMIS-trained output, as shown in Fig. 4(a)
and (b). After evaluating the minimum Euclidean distance from
impervious surface when creating the bare ground training mask,
4/6 sites yielded strong overall accuracy improvements when
using values greater than 0 m, whereas 2 sites (US-OR and EG)
yielded minimal change and decreased accuracy with thresholds
greater than 0 m (respectively) for both winter and nonwinter
imagery. The minimum Euclidean distance from water for AIS
pixels found minimal accuracy variation for no-arid sites, but
generally any threshold above 0 m performed best. For the
two arid sites the accuracy was highest when the distance was
reduced to 0 m. This is likely due to spatial location of many
AIS pixels in the desert regions being located adjacent or near
water pixels, more than the other sites. The dense AIS percentage
minimum and maximum thresholds that were tested did not
seem to have a noticeable impact on accuracy. Whereas the light
density AIS minimum percent impervious in both winter and
nonwinter resulted in values less than 45% yielding the highest
accuracy, except for EG where 45% had the highest accuracy,
the QA where 45% had similar accuracy to the other values.

The most accurate threshold combination for the GMIS-
trained output based on overall accuracy was found to be the
following.

1) 400 m minimum distance of bare ground training from
GMIS AIS based on Euclidean distance.

2) 300 m minimum distance of water training from SCL
water layer based on Euclidean distance.

3) 50%–90% impervious pixel area from GMIS layer for
dense AIS class.

4) 15%–60% impervious pixel area from GMIS layer for
light density AIS class.

B. Stepwise Threshold: GISA

Unlike GMIS (which contains percent impervious surface per
pixel), GISA is a binary layer; therefore, other factors were
evaluated to determine the impact on the overall accuracy. The
optimal thresholds from GMIS for Euclidean distance of AIS
training pixels from water, along with Euclidean distance of bare
pixels from AIS, were transferred into the GISA-based analy-
sis. The GISA-based analysis is shown in Fig. 5 and involved
different NDVI threshold minimums and maximums for low-
and high-density AIS layers. Specifically, the stepwise threshold
evaluation found that NDVI maximums of 0.15, 0.2, and 0.25 in
winter and nonwinter yielded minimal discernable differences
in accuracy. The same is also true for the minimum NDVI for
light density AIS. However, for the NDVI maximum on light
density AIS, moderate variation in accuracy was observed when
the winter NDVI threshold was changed for the three temperate
climate sites of U.K., US-OR, and US-MA. For these three sites,

Fig. 4. (a) Percent impervious (0–100) thresholds evaluated for low-density
AIS and high-density AIS while using the 2010 GMIS layer as AIS training. Vari-
ables include for example: Dense min. AIS summer which is the minimum AIS
percentage from the GMIS layer for a pixel to be a candidate for the “Dense AIS”
class. (b) Euclidean distance thresholds evaluated against the GMIS-trained
output. The first facet evaluates the minimum distance of nontarget bare ground
training samples from the GMIS AIS layer (to reduce false positive AIS).

a maximum NDVI threshold of 0.45 performed with the lowest
accuracy. Unsurprisingly, less variation was observed in the two
arid sites (EG and QA) and subtropics site (IN) as they contain
less seasonal vegetation senescence.

The most accurate threshold combination for GISA-trained
output based on overall accuracy was dense AIS winter NDVI
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Fig. 5. Evaluation of different NDVI thresholds tested using GISA AIS as
training data. Light density AIS and high-density AIS classes were evaluated
with minimal variation in overall accuracy observed based on the changes.

max (0.15), dense AIS nonwinter NDVI Max (0.25), light AIS
winter minimum NDVI (0.15), light AIS nonwinter min NDVI
(0.25), light AIS winter max NDVI (0.65), light AIS non-winter
max NDVI (0.45).

C. AIS Pixel Frequency Maps (Stepwise Thresholding)

The AIS pixel frequency count maps resulting from the 729
different threshold combinations applied to the GISA-trained
output are shown in Fig. 6(a) and (b). They highlight that the
threshold changes accounted for noticeable variation in AIS
pixel labeling in some locations, but not all. The most variation
was observed in the U.K. scene, with 13.9% of pixels yielding
values between 1 and 728, indicating that altering the NDVI
thresholds impacted whether the pixel was classified as AIS or
not AIS. The India scene had 10.8% of pixels in that range,
followed by US-MA (9.8%), QA (6.3%), US-OG (5.3%), and
EG (4.0%). From the figure, it is apparent that much of the AIS
pixel variation occurs in hilly bare terrain and shoreline regions
along Nasser Lake in the EG scene. For the U.K. scene, much of
the variation is found in suburban areas in the Northeast quad-
rant, for the US-OG scene most variation is found in agricultural
areas in the northern portion of the scene, and for the remaining
scenes the variation is more spatially varied.

Analysis of the 90th percentile of the most accurate NDVI
threshold combinations applied per site using the GISA-based
framework revealed some interested patterns. Frequency plots
are shown in Fig. 7. For the two arid sites, a dense AIS winter
image NDVI threshold of 0.15 was found in a majority of the
most accurate outputs. Interestingly, when evaluating accuracy
across all six sites combined, this 0.15 minimum threshold was
also key suggesting that there is flexibility in the thresholds for
the nonarid sites. For the nonarid sites and temperate sites, light
density AIS winter NDVI threshold max of 0.65 was key for
maintaining high accuracy. Importance of threshold values for
the other variables was not as clear.

Fig. 6. (a), (b) Number of times a pixel was classified as AIS based on the
729 different NDVI threshold combinations evaluated using the GISA-based
training layer.

D. Overall Accuracy (Global Versus Scene GMIS Versus GISA
Versus Esri)

After evaluating the 729 different threshold combinations
based on the GISA-trained output, and the 115 different thresh-
old combinations based on the GMIS-trained output, we de-
termined the most accurate threshold values for each. Because
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Fig. 7. Occurrence of different GISA-based NDVI threshold values in the 90th
percentile of the most accurate threshold combinations. Plots are grouped by the
respective climate regions, as well as all sites combined.

TABLE III
ACCURACY METRICS FOR EACH MODEL EVALUATED

GISA was more accurate, we compared differences in individual
Sentinel-2 scene-based thresholds and globally-optimized (as
defined by analysis across all six sites) thresholds as shown
in Table III. The accuracy metrics are shown individually for
each scene in Fig. 8. For GMIS-trained output the most accurate
global threshold had overall accuracy of 82.7% with adjusted
overall accuracy of 86.5% (±2.3%) and F1 score of 77.6%.
Whereas the GISA-trained most accurate global threshold had
higher overall accuracy (86.9%) and adjusted overall accuracy
(91.4% (±1.7%)) and F1 score (80.2%). When using the most
accurate threshold combination determined from individual
scene points instead of jointly with accuracy points combined
from all six sites, the overall accuracy was 88.8% with adjusted
overall accuracy of 93.8% (±1.4%) and an F1 score of 83.4%.
The confusion matrices indicate that each algorithm in this study
slightly overestimated AIS extent with more commission errors
than omission errors.

Fig. 8. Accuracy metrics for each study site for the globally optimized and
scene-optimized thresholds using GISA (Sen-2), and the globally optimized
thresholds using GMIS (L8), and deep learning model from Esri.

The Esri model produced from a CNN, manual labels, and
a full time series had an overall accuracy of 88.6% (±1.4%)
and an F1 score of 81.8%, both of which were the highest global
model overall. As compared with the GISA-based global model,
this dataset had higher rates of false positive AIS, but lower
rates of false negative AIS. At the individual scene level as
visualized in Fig. 8, the Esri model had far superior accuracy
in EG with an overall accuracy of 97.1% and F1 score of 85.0%
as compared with GISA global-based output with 89.5% overall
accuracy and 60.0% F1 score. The other arid scene, QA, also had
higher accuracy with the Esri model. Interestingly, the US-MA
scene had relatively low accuracy in the Esri LC model (Overall
accuracy: 84.6%, F1 score: 85.4%) as compared with the GISA
global-based model (overall accuracy: 93.4%, F1 score: 92.9%),
which was attributed largely to low precision in the Esri model
for this scene.

E. Climate Region Adaptive Thresholds

We evaluated the utility of climate-based NDVI thresholds
when generating GISA-trained AIS output and whether these
types of thresholds yielded changes to overall accuracy and
F1-scores. The confusion matrices can be seen in Table III. The
three temperate climate scenes were grouped together (U.K.,
US-MA, US-OG), and the three tropics and subtropics scenes
were a second group (EG, IN, QA). The highest accuracy for
the temperate group was 88.6% (STD ±3.9%) with F1-score of
84.2% (STD± 7.5%) with NDVI maximum thresholds for dense
AIS of 0.15 (winter), 0.15 (nonwinter), and NDVI thresholds for
light AIS of 0.20 (winter minimum), 0.25 (nonwinter minimum),
0.65 (winter maximum), 0.45 (nonwinter maximum). For the
tropics and subtropics group, the highest overall accuracy was
85.8% (STD ±1.4%) with F1-score of 71.7% (STD ±14.3%)
and NDVI maximum thresholds for dense AIS of 0.15 (winter),
0.25 (nonwinter), and NDVI thresholds for light density AIS of
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0.25 (winter minimum), 0.15 (nonwinter minimum), 0.45 (win-
ter maximum), and 0.65 (nonwinter maximum). Furthermore,
arid and nonarid regions were evaluated using climate-based
NDVI thresholds. The QA and EG scenes were the arid group,
and the remaining four scenes were the nonarid group. The
highest accuracy for the arid group was 86.0% (STD ±1.9%)
with F1-score of 68.7% (STD ±18.9%) with NDVI maximum
thresholds for dense AIS of 0.15 (winter), 0.25 (nonwinter),
and NDVI thresholds for light density AIS of 0.25 (winter mini-
mum), 0.15 (nonwinter minimum), 0.45 (winter maximum), and
0.65 (nonwinter maximum). Whereas for the nonarid group the
highest accuracy was 87.9% (STD ±3.5%) with F1-score of
82.8% (STD ±6.3%) and NDVI maximum thresholds for dense
AIS of 0.25 (winter), 0.15 (nonwinter), and NDVI thresholds
for light density AIS of 0.15 (winter minimum), 0.20 (nonwin-
ter minimum), 0.65 (winter maximum), and 0.55 (nonwinter
maximum).

F. Outputs AIS Maps

The AIS extent maps for the global GISA-trained output and
GMIS-trained output from the stepwise threshold output are
shown in Fig. 9. At this scale, the figure visualizes differences
between the two outputs over areas of notable variation. For the
two arid scenes (EG and QA), the GISA-trained output generally
detected more AIS extent, including more false positives than
GMIS in QA, but detected fewer errors in EG especially along
the shoreline of Lake Nasser in the southern portion of the scene.
This difference even accounts for the large false positive AIS
area from GISA-based output over the water body in EG as
shown in Fig. 9. For the IN scene, GISA-trained output appeared
to better extract AIS in mixed pixels with tree cover and other
subtropical vegetation, but with additional commission errors
along water, agriculture, and wetland areas in the southwest
portion of the image. For the US-OG site, the GISA-trained
output resulted in more AIS commission errors on sand dunes
in the western part of the image, however, the GMIS-trained
output resulted in more AIS commission errors in agricultural
areas, especially north of the city of Eugene as shown in Fig. 9.
The QA scene illustrates large areas of Doha’s AIS missed by
GMIS-based output, but captured by the GISA-based output.
The GISA-based output also has the trend of increased AIS false
positives along water body boundaries, whereas the GMIS-based
output was stronger in this regard.

G. Beach Bare Ground and NDVI Standard Deviation

The utility of the beach bare ground mask and the annual
composite of NDVI standard deviation in the classification
workflow was evaluated by comparing the overall accuracy
variation on the 90th percentile and higher ranked threshold
combinations on the GISA-trained output by computing them
with and without these inputs. The results are visualized in the
boxplots shown in Fig. 10. In 5/6 scenes the median overall
accuracy was higher when using both additional inputs, the
exception being the QA scene. This was likely due to many of the
suburban AIS areas that are adjacent to agricultural areas with
both small water bodies and temporally varied NDVI. However,

Fig. 9. (a), (b) GISA-based global output vs GMIS-based global output
zoomed to areas of disagreement.
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Fig. 10. Evaluation of the 90th percentile of most accurate threshold combi-
nations from GISA-based output for each site highlighting variation in overall
accuracy with and without the novel beach bare ground sampling input and
annual NDVI standard deviation composite input.

the highest overall accuracy in QA was still attained using both
inputs, as shown by the outlier value in the boxplot. The most
substantial effect on the overall accuracy was observed in the
EG scene, where both the beach bare ground sampling input
and NDVI_STD resulted in substantially improved accuracy.
This was likely due to a large area of shoreline in this scene,
as well as a substantial area of sparsely vegetated areas which
would resemble AIS in one or two dates of imagery but are
differentiated with the time series composite. The remaining
scenes also yielded improvements from these additional inputs,
but to a lesser degree.

H. Spatial Qualitative Intercomparison of All AIS Models

The workflow outputs comparing the major inputs and models
evaluated are shown in Fig. 11 and zoomed in to focus on areas
of substantial variation within each scene. The first column of
the figure shows the Sentinel-2 imagery, the middle column
visualizes differences between the global models (GISA and
GMIS based outputs) and the Esri model. The right column
visualizes differences between the GISA global model, scene
model, and GISA global model without beach bare ground
sampling and the annual NDVI standard deviation composite.
The results produced some interesting observations. Within all
six scenes, the GISA and GMIS based output capture roads and
highways that are not located within settlement areas and are
missed by the Esri model. Small areas of false positive AIS by
GISA and GMIS outputs can be observed in the US-OG and U.K.
scenes in wetlands and croplands, with GMIS outputs appearing
to have more. Large areas of false positive AIS can be observed
over water and hills in EG. Whereas, in US-MA, the Esri model
appears to have a buffer around AIS areas leading to large false
positive rate. Interestingly, the errors by the Esri LC model tend
to be close to AIS areas and could often be considered as an
urban land use, but typically cover non-AIS land covers such
as grasses, trees, and other low vegetation. For the IN scene,
the Esri LC model appears to capture false positive AIS in a
similar manner as the US-MA scene, but to a lesser degree. For
the QA scene, the Esri model is visualize capturing low-density
AIS that was missed by the GMIS and GISA based outputs.
The right-side column visualizing differences between GISA

Fig. 11. (a), (b) Areas of significant variation between the three main global
and local models (GISA2016, GMIS2010, and Esri).

global, GISA scene, and GISA global model without NDVI
standard deviation or beach sampling shows some interesting
patterns. Both arid scenes appear to be the most impacted by the
exclusion of beach bare ground and NDVI standard deviation.
In EG the exclusion of these results in AIS false positives in
the sparsely vegetated hills, and in QA it leads to AIS false



310 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 12. Percentage of area mapped as AIS for each scene compared among
the different models.

positives seen in bare ground adjacent to AIS as well as in areas
adjacent to water. However, in the QA scene, the exclusion also
led to increased and more accurate detection of AIS as seen in
the green pixels. Minimal variation was observed in the US-MA
and IN scenes. The US-OG scene visualizes a small town where
the GISA scene model detects significantly more AIS than the
GISA global model. In the U.K. scene, a few extra tracts of
shoreline are falsely detected as AIS than in the GISA models.
The use of the NDVI standard deviation layer and beach layer
had the least effect on the three temperate sites (U.K., US-MA,
US-OG).

I. Quantitative Intercomparison of All AIS Models

While the maps from Fig. 11 provide examples of variation
between the different models, they do not quantify the results
across the entire scene. The AIS areal variation between the
different layer is shown in Fig. 12. In general, the Esri model
detected more AIS than the GISA global model in the U.K.,
US-MA, and U.K. site, but it detected substantially less AIS in
EG and QA, the two arid sites. Here we can see that mapped areas
are very similar between the different models for the US-OG
scene, but we see a massive difference in the US-MA scene
between Esri and the GISA and GMIS based outputs.

The top of Fig. 13 shows the pixel agreement between the
GISA-based global output, GMIS-based global output, and Esri
models for each scene. One interesting trend to note is the US-
MA scene has approximately 54% of AIS pixels detected only
by the Esri model (many false positives), and around 30% of
AIS pixels detected by all three models. The QA and IN scenes
appear to have the lowest percentage of AIS pixels where all
three models agree. The US-OG scene has the highest percentage
of GMIS-model only AIS pixels.

Fig. 13. Pixel agreement for AIS pixels between the three main global models
(top facet) and the three variations on the GISA2016 model (bottom facet).

The bottom of Fig. 13 shows the pixel agreement variation
between the GISA-based global, GISA-based scene, and GISA-
based global without NDVI standard deviation and beach bare
ground models. For the US-OG, US-MA, U.K., and IN scenes
more than 65% of AIS pixels are in agreement between the
models. For the QA scene, more than 40% of AIS pixels are
from the GISA model without the NDVI standard deviation.

V. DISCUSSION

Although the results produced similar accuracy levels as
previous studies, our approach offers a way to generate AIS
extent maps on-demand for current years without manual train-
ing data labeling. We created an automated training data and
image classification approach and evaluated it using different
existing AIS layers as input (GMIS and GISA) produced at
different spatial resolutions and time periods, as well as the use of
region and climate based optimal NDVI threshold combinations
when generating training data. The evaluation was carried out
across six broad, international geographic regions using a robust
and balanced accuracy assessment scheme encompassing the
entirety of the Sentinel-2 granule. In comparison to other studies
mapping AIS using Sentinel-2, we had similar accuracy. One
study using unsupervised classification with spectral indexes
on one Sentinel-2 scene centered on Wuhan, China had 92.6%
overall accuracy [75], whereas our study’s most accurate single
scene was US-MA with 93.4% (global threshold) and 94.7%
(scene threshold). One study evaluated automatic training data
selection for AIS using an NTL dataset and Sentinel-2 imagery
in Paris, Harbin, and Beijing with a high overall accuracy above
97.0% [76].

Another study in Xiamen City using decision tree classifi-
cation with optimized thresholds on Sentinel-2 and Landsat
imagery found an overall accuracy of 94.5% [77]. One study
conducted on a time series of Sentinel-2 imagery in Jinan
City, China using an encoder–decoder deep learning framework
achieved an F1 score of 0.87 which was higher than 4/6 of
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the scenes evaluated in our study [78]. Several other studies
evaluated scene-optimized spectral index thresholds with strong
accuracy (>90%) on individual subscenes of Sentinel-2 imagery
[7], [79]. One recent study used fusion of Sentinel-1 SAR and
Sentinel-2 time series with manual training data and a random
forest achieving an accuracy of 94.8% over the Yellow River
Delta [80]. Another used Sentinel-2 imagery with CNNs and
automated training data selection across 12 international cities
to map human settlement extent had overall accuracies ranging
from 81.8% to 94.8% [38]. This result was similar to the accu-
racies found in our study; however, their F1-scores were higher
than those in this study. Other recent studies have leveraged time
series of SAR and multispectral imagery for impervious surface
extent mapping with accuracies above 94%, often with various
deep learning models [53], [81], [82], [84]. One of the mentioned
studies found SAR typically enhances overall accuracy by about
2%. Ultimately, the studies reported in the literature have a range
of accuracy with many of the recent studies yielding slightly
higher overall accuracies or F1-scores than our study. However,
this increased accuracy often requires a time series of SAR
and/or optical imagery, manual training data, or more intensive
deep learning models. Whereas, this study relies only on two
dates of imagery, a random forest model, and automatically
generated training data.

Interestingly, our study’s results were similar in accuracy to
the Esri Land Cover dataset which was generated using much
more intensive methods using a full time series of imagery and
manually labeled data fed into a CNN. However, the Esri model
had significantly higher accuracy in the two arid scenes (Qatar
and Egypt), but significantly lower accuracy in the United States
Massachusetts scene. The remaining scenes had similar accu-
racy levels. This difference is interesting and may be indicative
of the advantages of contextual, deep learning models in regions
where AIS spectral signature is similar to nontarget land cover
(e.g., rocky terrain and bare ground which are prevalent in the
arid scenes).

Because our accuracy assessment included equalized random
sampling with 228 points per scene, it is possible that this method
captures more errors than a standard simple random or stratified
random sampling approach found in some of the previous stud-
ies. Some of the previous studies focus on one or two test sites
or areas with majority AIS pixels which reduces the chances
to capture false positives in areas such as cropland, wetland,
etc. This variation in evaluated scenes and areas, compounded
by variation in accuracy assessment methods, makes it difficult
to equitably compare metrics. Comprehensive reviews of results
and accuracies of other AIS studies are available [18], [84], [85],
[86].

This study’s results indicated that using climate region-based
NDVI thresholds often yielded substantial improvements to the
F1-score and modest increases to overall accuracy. With half of
the scenes divided into the temperate climate NDVI threshold
model, this yielded an overall accuracy of 88.5% and F1-score of
85.1%, and with the remaining half into the tropics group, this
yielded an overall accuracy of 85.8% and F1-score of 76.2%.
The globally optimized threshold model, meanwhile, was a
compromise between the regions and had an overall accuracy

of 86.9% and F1-score of 80.2%. Although this is better than
the tropics model, the average is raised due to the temperate
scenes, and performance of the individual tropics scenes is
lower. Interestingly, there was only about a 2% reduction in
overall accuracy and 3% reduction in F1-score when using the
globally-optimized model compared with the individual scene-
optimized models. The global thresholds perform well in all
sites except QA, where accuracy is reduced by about 6%. This
study also evaluated using two different AIS layers generated
from different data sources, time periods, and resolutions with
GMIS from 2010 Landsat imagery at 30 m resolution and GISA
from 2016 Sentinel-1/2 imagery at 10 m resolution. The overall
accuracies were unsurprisingly higher for GISA-trained output
due to its higher resolution and newer date and achieved an
overall accuracy that was about 4% higher than GMIS-trained
output, and 3% higher F1-score. However, the results clearly
indicate that GMIS can still be accurately used even though it is
from imagery more than ten years outdated.

There are several important limitations to mention from this
study. While this study used robust accuracy assessments as
guided by the literature [73], we were only able to evaluate six
different international sites. While diverse, it did not include any
high latitude locations or extremely mountainous terrain. While
there are several globally available AIS layers, the two analyzed
layers were useful for comparison spanning two sensors and
different map dates (2016 versus 2010) and additional layers
would likely not add much to the findings. Furthermore, the
GMIS and GISA datasets which were modified and used as
training data, contain their own data errors (e.g., false positive
AIS) which can be carried over into the output produced from
this study. The GMIS dataset was produced from 30 m Landsat
imagery which has different pixel alignment and size than the
20 m Sentinel-2 used in this study. While effort was taken to
resample and align, this discrepancy could have led to some
errors. While this study used stepwise thresholds on NDVI and
texture layers to reduce this, it is likely these errors played a
role in this study’s accuracy. While this study did evaluate the
utility of using outdated AIS layers to capture current AIS extent,
it did not analyze AIS change over time for a given location,
or how mapping multiple years of change may result in varied
accuracies. These topics would be beyond the scope of the article
but would be of interest to explore in future research.

VI. CONCLUSION

This study developed methods to extract AIS using Sentinel-2
20 m imagery with automatically generated training data for
subsequent image classification using a random forest classifier.
The AIS mapping framework used logical decision functions
based on Euclidean distances and spectral index values to create
binary masks of nontarget land cover such as water, wetlands,
and bare ground. Target AIS binary masks were created using
existing global masks generated from years prior and with step-
wise optimized thresholds (e.g., NDVI thresholds). Specifically,
the study evaluated the use of GMIS (2010) and GISA (2016).
First, intermediate AIS extent maps were generated across the
six Sentinel-2 granule-sized international test sites based on the
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GISA and GMIS-based output and selected initial thresholds.
Then, 1368 equalized random accuracy points were generated
to evaluate 115 thresholds applied to the GMIS dataset such
as minimum Euclidean distance of bare ground data from the
AIS layer, minimum distance of AIS from water, and percent-
age pixel imperviousness, etc., to reduce commission errors in
the training sets. Subsequently, the GISA stepwise thresholds
were evaluated with 729 different NDVI minimum and maxi-
mum combinations for low- and high-density AIS classes. The
thresholds were optimized based on different climate regions.
Specifically, scene-based (thresholds optimized individually per
scene) and global thresholds (thresholds optimized based on
all six scenes combined) were evaluated first and found that
global-based thresholds still yield overall accuracy that was only
about 2% lower, suggesting a global model can accurately map
AIS. For the climate regions, the temperate region group found
promising overall accuracies of 88.5% (±2.2%) and F1-score of
85.1%, while the tropics region group found overall accuracies
of 85.8% (±2.1%) and F1-score of 76.2%. Ultimately, the results
suggested climate region-based thresholds yield higher accura-
cies than a global model. The study found that both GMIS and
GISA datasets can be used to generate current-year AIS extent
maps. However, the GISA-based output had higher accuracy
at 86.9% (±1.7%) than GMIS-based output at 82.7% (±2.3%)
using globally optimized thresholds for each. Differences be-
tween the GISA-based output’s optimal NDVI thresholds were
observed across different regions. The dense AIS NDVI winter
maximum of 0.15 and light AIS NDVI winter maximum of 0.45
were both key for high accuracy in the arid and tropical sites.
Whereas, for temperate and nonarid regions the light density
AIS NDVI winter maximum of 0.65 showed up in the major-
ity of the 90th percentile of most accurate stepwise threshold
outputs. The analysis of the beach bare ground sampling layer
and annual composite of NDVI standard deviation indicated
modest improvements or negligible change at all but the EG
site, suggesting these ancillary inputs could be excluded.

Lastly, comparison against a more data intensive, manually
labeled CNN, found that overall accuracy and F1-score were
not too different overall (86.9% GISA vs 88.6% Esri), except in
the two arid sites (EG, QA) where Esri’s CNN had significantly
superior performance, and one US site where this study had
significantly superior performance.

This automated training data generation framework can pro-
duce AIS extent layers relevant to recent time periods. This
method is ideal for end-users who require a reproducible frame-
work to quickly generate AIS extent maps with low data in-
tensity, minimal manual input, and robust performance over a
variety of international landscapes. Future work could explore
the evaluation of this workflow in mountainous and snowy
terrain where additional challenges would need to be overcome.
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