
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024 2133

CLDRNet: A Difference Refinement Network Based
on Category Context Learning for Remote

Sensing Image Change Detection
Ling Wan , Ye Tian , Wenchao Kang , and Lei Ma

Abstract—In recent years, change detection (CD) of optical re-
mote sensing images has made remarkable progress through using
deep learning. However, current CD deep learning methods are
usually improved from the semantic segmentation models, and
focus on enhancing the separability of changed and unchanged
features. They ignore the essential characteristics of CD, i.e., dif-
ferent land cover changes exhibit different change magnitudes,
resulting in limited accuracy and serious false alarms. To address
this limitation, in this article, a category context learning-based
difference refinement network (CLDRNet) based on our previous
work is proposed. Considering the semantic content differences
of heterogeneous land covers, a category context learning mod-
ule is designed, which introduces a clustering learning procedure
to generate an overall representation for each category, guiding
the category context modeling. The clustering learning process is
differentiable and can be integrated into the end-to-end trainable
CD network, so it considers the semantic content differences from
the CD perspective, thereby improving the CD performance. In
addition, to address the magnitude differences of different land
cover changes, a two-stage CD strategy is introduced. The two
stages correspond to difference map learning and difference map
refinement, aiming at ensuring high detection rates and revising
false alarms, respectively. Finally, experimental results on three
CD datasets verify the effectiveness of our CLDRNet in both visual
and quantitative analysis.

Index Terms—Category context learning (CCL), clustering
learning (CL), difference map refinement (DMR), optical remote
sensing image, change detection (CD).

I. INTRODUCTION

CHANGE detection (CD) is a technique to qualitatively
or quantitatively discriminate change information from

multitemporal images acquired over the same geographical area
at different times [1]. With the rapid development of satellite
sensor technology, remote sensing image CD has been providing
important support for many applications, such as environmental
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monitoring, agricultural survey, urban research, and disaster
emergency management [2].

Generally, CD is a pixel-to-pixel task that takes multitemporal
images as input and predicts “where” the change occurs [3]. As
early as the 1960s, scholars have carried out research related to
CD in remote sensing images. Traditional CD methods usually
analyze the spectral information of the image first, and then
select the threshold to accomplish the CD task. Representative
methods include the arithmetic operations-based methods [4],
[5], and the image transformation-based methods [6], [7], [8],
[9]. Later, with the development of machine learning, model-
based methods, such as support vector machine (SVM) [10],
extreme learning machine [11], and decision tree [12] are applied
to CD tasks. However, the abovementioned methods rely on
expert domain knowledge. With the continuous improvement
of the spatial resolution of remote sensing images, the features
extracted by manual design are not enough to represent the
key information of the images, and cannot meet the accuracy
requirements.

Compared with the traditional models, the deep learning
models can extract informative deep-level features. With the
remarkable achievements of deep learning in remote sensing
image interpretation, recently, many deep learning models have
been applied to CD task, including stacked autoencoder, deep
belief network, recurrent neural network (RNN), long short-
term memory (LSTM) [13], generative adversarial network
(GAN) [14], and transformer [15], [16], [17].

Although existing deep learning-based CD models have
achieved remarkable detection results in some scenarios, their
network structures are usually modified from the semantic
segmentation models, ignoring the essential characteristics of
CD [18]. Specifically, it is manifested in two aspects as follows.
1) CD task needs to consider the heterogeneity of multitype,
multiscale, and multishape land covers by using heterogeneous
feature extractors. However, existing “relation-attention” is usu-
ally achieved by global max or average pooling operations,
which treat all pixels equally, resulting in insufficient discrim-
ination of semantic content differences. 2) CD task requires
to consider the different change magnitudes of different land
cover changes. Because pre- and postchange images are usually
acquired at different imaging angles, the geometrical properties
of the targets in images are changed, which means the mul-
titemporal images cannot be perfectly registered for all pixels.
However, different land covers have different sensitivities to this
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Fig. 1. Illustration of different land cover changes representing different
change magnitudes. (a) Prechange image. (b) Postchange image. (c) Ground
truth. (d) DM obtained by mean-differencing operation on spectral domain.
(e) DM obtained by differencing operation on deep features (ResNet50 trained
with ImageNet). Example I are aerial images with 0.5 m resolution. Example II
are satellite images with 2 m resolution.

misalignment. As shown in Fig. 1, buildings usually exhibit high
spatial heterogeneities, resulting in high difference indexes even
for unchanged regions. And these difference indexes are even
higher than some changed regions, meaning a fixed threshold
cannot produce satisfactory CD performance. However, existing
methods usually focus on enhancing the separability of changed
and unchanged features, which ignore the effect of thresholds
and lead to serious false alarms in CD results.

To tackle the abovementioned problems, in our previous
work [18], a category-awareness-based difference-threshold
alternative learning network (D-TNet) is proposed for re-
mote sensing image CD. First, D-TNet introduces a category-
awareness attention (CAA) mechanism to enhance the feature
discrimination of heterogeneous land covers by learning a pixel-
to-category relation. Second, D-TNet consists of a difference
map (DM) learning path and a threshold map learning path,
realizing self-adapting thresholds selection by assigning each
pixel a unique threshold. However, D-TNet remains some prob-
lems should be reformulated: 1) The CAA mechanism is guided
by the category-awareness descriptors (CA-DESCs), which are
learned with conducting K-means on the feature maps pretrained
on ImageNet. The K-means is computed only once, and the
centroid-features are kept fixed during the network training.
Thus, the learned CA-DESCs may lead to suboptimal adaptation
performance. 2) The essence of two learning paths is to solve
the problem of false detections and misdetections by assigning
each pixel a unique threshold. However, the selection of change
threshold is a complicated process, which is not only related
to the land cover changes, but also related to the imaging
conditions, such as illumination conditions and imaging angles.
Therefore, the negative influence of the unknown imaging con-
ditions is difficult to avoid, making it difficult to alleviate both
false detections and misdetections problems simultaneously.

To address these limitations, in this article, a category context
learning-based difference refinement network (CLDRNet) is
proposed for remote sensing image CD. CLDRNet inherits the
advantages of D-TNet and improves D-TNet in two aspects.
First, to enhance the feature discriminations of heterogeneous
land covers, a category context learning (CCL) module is pro-
posed, which learns an overall representation of each category by

clustering learning (CL) instead of K-means. The CL process is
differentiable, and thus the mining of discriminative CA-DESCs
and the CD task can be unified into one single framework.
Therefore, the leaned CA-DESCs are adaptive to the CD task.
Second, to address the magnitude differences of different land
cover changes, a two-stage CD strategy is introduced. The two
stages correspond to DM learning and DM refinement, aiming
at ensuring high detection rates and revising false alarms, re-
spectively.

The contributions of this article are summarized as follows.
1) A CL procedure is introduced to generate the CA-DESCs,

which guides CCL. This process is differentiable, and can
be integrated into the end-to-end trainable CD network.

2) A two-stage CD strategy is designed, corresponding to
DM learning and DM refinement, aiming at ensuring high
detection rates and revising false alarms, respectively.

3) Extensive experiments on three CD datasets verify the ef-
fectiveness of the CLDRNet in both visual and quantitative
analysis.

II. RELATED WORKS

According to whether the feature is extracted manually, CD
methods can be divided into traditional methods and deep
learning-based methods.

A. Traditional Change Detection Methods

Generally, traditional CD methods can be roughly divided
into postclassification comparison (PCC) methods and direct
comparison methods.

PCC methods first classify the multitemporal image data,
and then compare the pixel attributes of the classified images
to obtain the CD results [19]. Many machine learning-based
classifiers, including SVM [10] and decision tree [12] are used
to classify the multitemporal image data. These methods can
minimize the effect of different imaging conditions and obtain
the from–to change types. However, they are highly dependent
on the performance of the classifiers.

The direct comparison methods first generate difference im-
age, and then analyze the difference image to determine whether
the region has changed. The key procedures of these methods are
difference image generation and difference image analysis. For
difference image generation, commonly used methods include
image algebra (e.g., differencing, ratioing, image regression,
and change vector analysis [4]), image transformation [e.g.,
principal component analysis (PCA) [6], multivariate alteration
detection [7], and slow feature analysis]. For difference image
analysis, specific methods include thresholding (e.g., OTSU)
and clustering (e.g., K-means and Markov random field [20]).

However, traditional CD methods rely on traditional manu-
ally designed features, which are insufficient to represent the
informative features of images in various scenarios.

B. Deep Learning-Based Change Detection

With the remarkable achievements of deep learning, it shows
the potential to deal with various changes in remote sensing.
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In the beginning, due to the lack of large-scale CD datasets,
unsupervised and self-supervised methods were first employed
to determine whether a region has changed or unchanged. The
unsupervised methods first use the available pretrained CNN
model to obtain multiscale deep features, and then employ fea-
ture selection strategy to select the most discriminative features,
and finally identify the changed pixels by comparing pixelwise
features [21], [22]. However, the performance of these methods
depends on the discriminability of the selected features. The
self-supervised methods first employ traditional CD methods to
generate pseudolabels, and then use the pseudolabels to train
a CNN [23], [24], [25], realizing detecting changes. However,
these methods are sensitive to the pseudolabels, and the ac-
curacy of the pseudolabels directly effects the performance of
CD.

With the increasing availability of CD datasets [26], [27],
[28], [29], supervised methods have received much attention.
These methods take advantage of deep learning models to extract
discriminative features to improve the CD performance. Fully
convolution network (FCN) is the mainstream architecture for
CD tasks. According to the input form of image data, FCN-
based methods can be divided into one-stream methods and
two-stream methods. The one-stream methods first concatenate
multitemporal images on channel dimension, and then send
the stacked images into networks to accomplish CD. The two-
stream methods take the Siamese network architecture as en-
coder, and then analyze the differences between the bitemporal
features to obtain change maps. Typically, Daudt et al. [30]
designed three FCN-based end-to-end CD architectures, they
are fully convolutional early fusion (FC-EF), fully convolu-
tional Siamese-concatenation (FC-Siam-conc), and fully con-
volutional Siamese-difference (FC-Siam-Di).

To improve the CD performance, researchers usually employ
dense connection, multilevel aggregation and receptive field
expansion to consider the multiscale characteristics of changed
targets, and add attention mechanism to enhance the feature
extraction capability. For example, Zheng et al. [31] proposed a
cross-layer convolutional neural network, which adopts Unet
structure as the backbone and embeds cross layer blocks to
enhance the multiscale and multilevel feature extraction capa-
bilities. Jiang et al. [32] proposed an efficient self-weighted
spatial–temporal attention network, which introduces a multi-
core channel-aligning attention module to aggregate multiscale
context information. Chen et al. [29] proposed a Siamese-
based spatial–temporal attention neural network, which em-
ploys the spatial–temporal attention mechanism to exploit the
global spatial–temporal relationship. Ke et al. [33] proposed
a cross-Siamese CD network based on hierarchical-split atten-
tion, which captures cross-dimensional long-range relationship
between channel with height, channel with width, and channel
with channel. Zhang et al. [34] proposed an attentive differential
high-resolution CD network, which designs the backbone with a
differential pyramid module to extract multilevel and multiscale
substantive changed features.

In addition, other state-of-the-art deep learning models, such
as LSTM [13], GAN [14], and transformer [15], [16], [17] are
also applied to detect changes. Chen et al. [13] proposed a deep

Siamese convolutional multiple-layers recurrent neural network,
which introduces a multiple-layers RNN module stacked by
LSTM units to learn the spectral, spatial, and temporal feature
representation. Liu et al. [14] proposed a superresolution-based
CD network, which overcomes the resolution difference be-
tween bitemporal dates through adversarial learning. Recently,
many scholars have applied transformer to the field of CD, and
have achieved comparable performance with the CNN-based
methods. Chen et al. [15] first employed transformer to realize
CD, and verified the potential semantic representation capability
of the transformer in differences extraction. Later, Bandara et
al. [17] presented a transformer-based Siamese network archi-
tecture (ChangeFormer), which adopts hierarchically structured
transformer encoder and multilayer perception decoder to cap-
ture multiscale long-range details. Liu et al. [16] proposed a
CNN-transformer network with multiscale context aggregation
(MSCANet), which combines the CNN and transformer archi-
tecture to capture and aggregate hierarchical context informa-
tion.

However, existing deep learning-based methods simply treat
the CD task as the semantic segmentation task, and ignore the
essential characteristics of CD, thus limiting their applications.

III. METHODOLOGY

The overall architecture of CLDRNet is illustrated in Fig. 2.
CLDRNet mainly contains four parts: backbone feature extrac-
tion (BFE) module, CCL module, DMG module, and difference
map refinement (DMR) module.

CLDRNet starts with BFE module, which follows the Siamese
structure, processing the multitemporal images in parallel and
capturing the multitemporal feature maps. Then, the feature
maps are fed into the CCL module, which uses the pixel-to-
category relation to calibrate the feature maps response and
obtains the category context features. After that, DMG module
decodes the multitemporal category context features to calculate
the DM. Finally, DMR module focuses on the most interesting
category information to refine the change map obtained by DMG
module.

A. Backbone Feature Extraction

The backbone network follows our previous work D-TNet,
and adopt the ResNet50 with feature pyramid network (FPN)
structure as the basic feature extractor branch.

The structure of the BFE module is shown in Fig. 3. First, for
each temporal image (t represents the prechange or postchange),
the multiscale features {Et

i|i = 2, 3, 4, 5} are extracted from the
last four stages of the modified ResNet50, whose sizes are 1/4,
1/8, 1/16, and 1/32 of the input size, and the channels is 256,
512, 1024, and 2048, respectively. Then, the FPN structure is
implemented through top–down pathway and lateral connec-
tions, which comprehensively utilizes shallow high-level spatial
information and deep strong semantic information to generate
the enhanced multiscale features, denoted as {Ft

i|i = 2, 3, 4, 5}.
The size of Ft

i is 1/2i of the input size, and the channel is 32.
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Fig. 2. Overview of the proposed CLDRNet architecture.

Fig. 3. Illustration of BFE module.

B. Category Context Learning

To enhance the feature discrimination of heterogeneous land
covers, in our previous work [18], a CAA mechanism is in-
troduced, which first learns CA-DESCs to provide an overall
representation of each category, and then uses CA-DESCs to
guide the pixel-to-category relation learning. However, CA-
DESCs are learned with conducting K-means on the feature
maps pretrained on ImageNet. The K-means is computed only
once, and the centroid-features are kept fixed during the network
training, making the learned CA-DESCs may lead to suboptimal
adaptation performance.

In this article, a CL is introduced, which uses convolution
operation to simulate the K-means process. On the one hand,
each image obtains its own CA-DESCs through convolution
operation, which has self-adaptability. On the other hand, the CL
process is differentiable, and thus the mining of discriminative
CA-DESCs and the CD task can be unified into one single
framework. In addition, a category context modeling (CCM)
module is designed, which employs the transformer decoder
to model the category context. It exploits the pixel-to-category
relation by assigning the category relevant information to each
pixel, thereby enhancing the representation of the feature maps.

1) CA-DESC Learning: We use convolution operations to
predict the category of each pixel, and then calculate the centroid
and the descriptor of each category by representation mapping,
thereby obtaining the CA-DESCs of each image.

Fig. 4. Illustration of CA-DESC learning process. (a) CL. (b) CA-DESCs
refinement.

The CA-DESCs learning process is shown in Fig. 4. For each
temporal image, the deep features extracted by BFE module is
first encoded to reduce the feature dimension, generating the
pixel representation. The specific formulas are as follows:

Vt = φWE
(Et

5) (1)

where φWE
(·) is a 1 × 1 convolutional layer, and WE is

learnable parameter. The pixel representation for the ith pixel
is represented as vti ∈ RD, where D is the number of feature
dimensions.

Then, category prediction is performed on Vt through con-
volution layers and a softmax function

Pt = Softmax
(
φWV

(
BR(Vt)

))
(2)

where BR( · ) is a batch normalization operation followed by
ReLU function; φWV

(·) is a 1× 1 convolutional layer, andWV

is learnable parameter. The membership probability for the kth
category is denoted as ptik, and

∑K
k=1 p

t
ik = 1 for any pixel i

and K is the number of groups. All membership probabilities
form the matrix Pt.
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Fig. 5. Illustration of CCM process.

Next, the pixel representations Vt are mapped to category
representation by averaging inside each category

ctk =

∑N
i=1 v

t
i · ptik∑N

i=1 p
t
ik

(3)

where N is the number of pixels. All category representations
form the CA-DESCs, denoted as Ct ∈ RK×D.

The inverse mapping from category to pixel representations
is achieved by assigning the category features to pixels using the
soft pixel-category associations

V̂t = (Pt)T ×Ct. (4)

The soft pixel-category association is differentiable, thus the
desirable CA-DESCs Ct can be obtained by minimizing the
difference between the pixel representations Vt and the recon-
structed pixel representations V̂t.

The advantages of the CA-DESCs learning are two folds. On
the one hand, the CA-DESCs learning process is differentiable,
and thus can be easily integrated into the end-to-end trainable CD
network. On the other hand, the learnability of the CA-DESCs
makes it adaptive for each image.

However, the CA-DESCs generated by the CL are indepen-
dent of different temporals. To exploit the space–time relation-
ships, the information in multitemporal descriptors is interacted
and aligned semantically by a concatenate-split operation, as
shown in Fig. 4(b). So far, the enhanced CA-DESCs can be ob-
tained, which contain compact high-level category information,
denoted as ξ1 and ξ2.

2) Category Context Modeling: CCM module is proposed to
model the category context, enhancing the discrimination of the
pixel-space features extracted by the BFE module.

As shown in Fig. 5, the pixel-to-category relation is modeled
by transformer decoder, which assigns the category relevant
information to each pixel, making the refining pixel-space fea-
tures more discriminative and reducing misjudgments caused by
different imaging conditions.

The Transformer decoder is consisted of a multihead cross-
attention (MCA) block and a feed-forward network (FFN).
First, Ft

i is rearranged into the feature sequence F
t
i with shape

[b, (H2i × W
2i ), 32], where b is the minibatch size and [H,W ] is

the input size. Then, inspired by [15], the MCA block treats F
t
i

as queries, and ξt as keys and values. For the hth head, the query,
key, and value can be calculated as⎧⎨⎩Qh = LN(F

t
i)W

q
h

Kh = LN(ξt)Wk
h

Vh = LN(ξt)Wv
h

(5)

where LN denotes LayerNorm [35];Wq
h,W

j
h,W

v
h ∈ RC×d are

the learnable parameter matrices for linear projection; d is the
dimension of each attention head and set to 64.

MCA block can be formulated as

MCA(F
t
i, ξ

t) = Concat(head1, . . . headHn
)WO (6)

and

headh = Att(Qh,Kh,Vh) (7)

Att(Qh,Kh,Vh) = σ

(
QhKh

T

√
d

)
Vh (8)

where WO ∈ Rhd×C are the learnable parameter matrices; Hn

is the number of attention heads and set to 8; σ(·) is the soft-
max function conducted on the channel dimension. The feature
sequence processed after MCA block is denoted as F̂t

i.
Then, FFN is operated on LN(F̂t

i). FFN consists of two linear
projection layers and a GELU activation layer

FFN
(
LN(F̂t

i)
)
= W2 ·GELU

(
W1 · LN(F̂t

i)
)

(9)

where W1,W2 are the learnable weights. In addition, the resid-
ual connections are applied to enhance the stability of MCA and
FFN.

Apply the pixel-to-category relation process to all levels
features {Ft

i|i = 2, 3, 4, 5}, and derive the category-awareness
features, denoted as {At

i|i = 2, 3, 4, 5}.

C. Change Detection Strategy

To tackle the different change magnitudes of different land
cover changes, in our previous work [18], a threshold map
learning path is introduced to alleviate error detections by as-
signing each pixel a unique threshold. However, the change
threshold selection is a complicated process, which is not only
related to the land cover changes, but also related to the imaging
conditions. Nevertheless, the negative influence of the unknown
imaging conditions is difficult to avoid, making it difficult to
alleviate both false detections and misdetections problems si-
multaneously.

In this article, a two-stage CD strategy is introduced, as illus-
trated in Fig. 6. First, CLDRNet is trained with DMR module
frozen, and generate the change map by comparing DM with 0.5.
At this stage, CLDTNet is optimized under the premise of high
detection rates, i.e., few misdetections. Next, DMR module is
added to the training. Specifically, all parameters in CLDRNet
are fixed except DMG and DMR modules. At this stage, the
change map is obtained by comparing DM and the output of
DMR module (denoted as threshold map, TM). That is, the
determination of the changed region requires that the DM value
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Fig. 6. Illustration of two-stage change detection strategy. (a) Architecture of
DMG module. (b) Architecture of DMR module.

Algorithm 1: Training Process of CLDTNet.
Input: a set of image pairs and corresponding ground truth;
parameters include learning rates [Stage-1: lr1; Stage-2:
lr2], batch sizes [Stage-1: n1; Stage-2: n2], training
epochs [Stage-1: Ep1; Stage-2: Ep2], number of groups
K and number of feature dimensions D in Section III-B1.

Output: change maps
1) Stage— 1
for Ep ∈ [1, Ep1] do

Freeze the parameters in DMR module, and minimize
the objective function in (14) using the
back-propagation algorithm to train the BFE, CCL,
and DMG modules.

end for
2) Stage— 2
for Ep ∈ [1, Ep2] do

Fix all parameters in CLDTNet except DMG and DMR
modules, and minimize the objective function in (20)
using the back-propagation algorithm.

end for
3) Determine the changed region where the DM value is
greater than 0.5 and also greater than the TM value.

is greater than 0.5 and also greater than the TM value. Thus, the
CD results can be improved by reducing the false detections.
Training details are shown in Algorithm 1.

1) Difference Map Generation: The architecture of DMG
module is shown in Fig. 6(a). A light decoder is operated on
A1

i and A2
i to generate the DM. First, a difference feature map

T is calculated by averaging all scale difference features that

computed by the elementwise absolute of the subtraction of the
two temporal category-awareness features

T = Avg {F (X2) + UF(X3) + UF (UF(X4))

+UF [UF (UF(X5))]} (10)

where Xi = |A1
i−A2

i |; F ( · ) denotes a 3 × 3 convolution—
batch normalization—ReLU layer with 16 output channels;
UF( · ) isF ( · ) function followed by a bilinear upsampling with
a scale factor of 2.

Then, the DM is generated with a 1 × 1 convolutional layer,
two dense upsampling convolutional layers [36] and a sigmoid
function.

2) Difference Map Refinement: The architecture of DMR
module is shown in Fig. 6(b). First, elementwise maximization
operation is applied to A1

2 and A2
2, defined as

A = Max(A1
2,A

2
2). (11)

Elementwise maximization operation makes the feature max-
imum tensor contain the most interesting category information
within the temporal domain, which is useful for analyzing the
sensitivity of different land covers to pseudochanges caused
by factors, such as imaging conditions. In addition, only the
category-awareness features with the highest spatial resolution
are used, because high spatial resolution features preserve more
location information, which is helpful for refining the boundaries
of CD results.

Then, an upsampling layer, a CBR block, a channel attention
(CA) block and a sigmoid function are sequentially operated on
A, obtaining the threshold features

Th = δ
(
CA

(
F
(
U(A)

)))
(12)

where U( · ) denotes the bilinear upsampling with a scale factor
of 2;F ( · ) is a 3× 3 convolution—batch normalization—ReLU
layer with 16 output channels; δ(·) is the sigmoid function;
CA(·) is the channel attention operation, defined as

CA(Fin) = δ[CRC(AvgPool(Fin))]⊗ Fin (13)

where AvgPool( · ) aggregates spatial information by average
pooling operator, and AvgPool(Fin) ∈ R1×1×C ; CRC( · ) is a
FC–ReLU–FC layer with four hidden channels; ⊗ is the ele-
mentwise multiplication operation; δ(·) is the sigmoid function.

Finally, an upsampling layer, a CBRC block (1 × 1
convolution—batch normalization—ReLU layer –1 × 1 con-
volution with 16 hidden channels) and a sigmoid function are
sequentially operated on Th, producing the TM with one chan-
nel.

3) Loss Functions. Stage one: At stage one, DM and CA-
DESCs are optimized together by minimizing a hybrid loss

L1 = LDM + LDA. (14)

As described in Section III-B1, LDA measures the difference
between the pixel representations and the reconstructed pixel
representations

LDA =
2∑

t=1

[
1

N

N∑
i=1

||vti − v̂ti ||2
]

(15)
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TABLE I
ANALYSIS OF THE FOUR CASES OF TP, TN, FN, AND FP

where t represents pre- or postchange image; N is the total
number of pixels; || · ||2 is the Euclidean distance.
LDM composes of cross-entropy loss, contrastive loss, and

Tversky loss. The formula is as follows:

LDM = Lce + Ltver + Lcontra (16)

and

Lce = − 1

N

N∑
n=1

[Gn logPn + (1−Gn) log(1− Pn)]

(17)

Lcontra =

N∑
n=1

[
1

2
(1−Gn)(Pn)

2 +
1

2
Gn{max (0,m− Pn)

2}

(18)

Ltver = 1−
∑N

n=1 GnPn∑N
n=1 GnPn + α

∑N
n=1 Gn(1− Pn)

+ (1− α)
∑N

n=1 (1−Gn)Pn

(19)

where Lce is the cross-entropy loss. Gn and Pn are the label and
DM value for the nth pixel, respectively.
Lcontra is the contrastive loss. The changed pixels affect the

loss function only when their DM values are within the margin
m. We set m = 0.5 to train the DM value of changed and
unchanged pixel separated from 0.5.
Ltver is the Tversky loss [37]. α is a hyperparameter that

controls the tradeoff between recall and precision. To ensure
a high detection rate of the changed regions at stage one, α is
set to 0.9.

Stage two: At stage two, DMG and DMR modules are jointly
trained to reduce false alarms without breaking the correctly
detected changed regions

L2 = LDM + LTM. (20)

LDM is calculated as (16). For LTM, according to the four
cases of true positive (TP), true negative (TN), false negative
(FN), and false positive (FP) of the CD results of the stage one,
the specific analysis is shown in Table I.

The following can be concluded from Table I.
1) For the changed pixel, DM value should be greater than

0.5 and greater than TM value.

2) For the unchanged pixel, DM value should be smaller than
0.5 or smaller than TM value.

3) To revise the false alarms, let the TM value greater than
DM value.

4) We further optimize the DMG module to make the DM
value greater than 0.5.

Based on the abovementioned analysis, LTM is calculated by
referring to the form of cross-entropy loss and contrast loss. The
formula is defined as

LTM = LC + LUC + LFP + LFN (21)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LC = 1
N

∑N
n=1

[
Gn ·

(
{max (0, PTn − Pn)

2}

+ {max (0,m− Pn)
2}
)]

LUC = 1
N

∑N
n=1

[
(1−Gn){max (0, Pn − PTn)

2}
]

LFP = 1
N

∑N
n=1

[−(1−Gn) · I[Pn>0.5] · log(PTn−Pn+1
2 )

]
LFN = 1

N

∑N
n=1

[
Gn · I[Pn≤0.5] · (− log(Pn))

]
(22)

where PTn is the TM value for the nth pixel; I[·] is a char-
acteristic function that returns 1 if the condition is met, and 0
otherwise.

The final change map is calculated as CM = (DM > 0.5) and
(DM > TM).

IV. EXPERIMENTS

A. Datasets Description

Learning, vision, and remote sensing change detection
(LEVIR-CD) [29] is a building CD dataset covering building
types in various urban scenarios, including residential, com-
mercial, and industrial areas. This dataset contains 637 pairs
of optical images collected from Google Earth platform with
0.5 m resolution and 1024 × 1024 size. We follow its default
dataset split and cut the images into 512 × 512 size nonover-
lapping patches, deriving 1780/256/512 pairs of patches for
training/validation/test.

Building change detection dataset (BCDD) [27] is a building
CD dataset, covering an area where a 6.3-magnitude earthquake
occurred in February 2011 and rebuilt in the following years.
This dataset contains two aerial images with 0.3 m resolution
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and 32 507× 15 354 size. We process the images into 512× 512
size nonoverlapping patches, and randomly divided them into
three parts: 924/318/585 for training/validation/test.

Change detection dataset (CDD) [26] is a public CD dataset
covering various change information, including cars, tanks,
forests, roads, buildings, etc. This dataset contains 16 000 pairs
of optical images collected from Google Earth platform with
3–100 cm resolution and 256 × 256 size. We follow its default
dataset split and derive 10 000/3000/3000 pairs of patches for
training/validation/test.

B. Experimental Setup

1) Evaluation Metrics: Five evaluation metrics are adopted
to make quantitative analysis: Recall, precision, F1-score, in-
tersection over union (IoU) of the change category, and overall
accuracy (OA). The definitions are as follows:

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

F1 = 2 · Precision · Recall/(Precision + Recall)

IoU = TP/(TP + FN+ FP)

OA = (TP + TN)/(TP + TN+ FN+ FP) (23)

where TP, FP, FN, and TN are the numbers of true positives,
false positives, false negatives, and true negatives, respectively.

2) Implementation Details: All experiments are imple-
mented on a computing server equipped with an Intel Core
i9-10900X and an NVIDIA GTX 3090 GPU. Our model is
conducted under the PyTorch deep-learning framework, and
normal data augmentation methods are employed to the training
data, including flipped horizontally and vertically. The stochastic
gradient descent with momentum is applied for optimization,
and the momentum is set to 0.99 and the weight decay is set to
0.0005. The learning rates are initially set to 0.01 and 0.001
for the first and the second training stages, respectively. We
adopt the poly policy to gradually reduce the learning rate,
that is, the learning rate is multiplied by (1− epoch

Epn
)power with

power = 0.8, where Epn is the total training epochs, and we
set Ep1 = 200, Ep2 = 100 for the first and the second training
stages, respectively. The batch size is set to 8 for LEVIR-CD
and BCDD, and 32 for CDD. In addition, in the CCL module,
the number of groups K is set to 8 according to D-TNet [18],
and the feature dimensions D is set to 3. Validation is conducted
after each training epoch, and the best model on the validation
set is used for evaluation on the test set.

C. Comparison to State of the Art

Eight methods are implemented for comparison purposes: the
purely convolutional-based methods, including FC-EF [38], FC-
Siam-Di [38], and FC-Siam-Conc [38], and related state-of-the-
art methods in recent years, including the deep metric learning
change detection network (CDNet) [14], the bitemporal image
transformer-based model (BIT S4) [39], the transformer-based
Siamese network (ChangeFormer) [17], a CNN-transformer
MSCANet [16], and our previous work D-TNet [18].

FC-EF [38]: A U-Net structure-based method that first con-
catenates bitemporal images and then feeds them to the FCN.

FC-Siam-Di [38]: A Siamese FCN-based method that first
extracts each temporal features, and then feeds the feature dif-
ference to the decoder.

FC-Siam-Conc [38]: A Siamese FCN-based method that first
extracts each temporal features, and then feeds the connected
features to the decoder.

CDNet [14]: A deep metric learning-based method that em-
ploys the stacked attention module to extract features, and then
uses the metric learning-based change decision module to obtain
the change map.

BIT S4 [39]: A transformer-based method that first employees
the transformer encoder to express the bitemporal images as
context-rich tokens, and then uses the transformer decoder to
feed the tokens back to the pixel-space to refine the original
features.

ChangeFormer [17]: A transformer-based Siamese network
that uses the hierarchical transformer encoder to extract mul-
tiscale features, and then employs the multilayer perception
decoder to fuse the multilevel feature differences and predict
the CD mask

MSCANet [16]: A CNN-transformer network that first uses
the CNN-based feature extractor to capture hierarchical features,
and then employs the transformer-based block to encode and
aggregate context information.

D-TNet [18]: A D-TNet that introduces a CAA mechanism to
enhance the feature discrimination and uses difference-threshold
learning to realize self-adapting thresholds selection.

For the comparison methods, we use their public codes with
default hyperparameters.

1) Qualitative Analysis: Figs. 7, 8, and 9 provide the visu-
alization comparisons of different methods for LEVIR, BCDD,
and CDD datasets, respectively. For a more intuitive comparison
of the results, we use white for TP, black for TN, red for false
detections, and green for misdetections.

As shown in Fig. 7, for the LEVIR-CD dataset, CLDRNet
achieves better performance than the competing methods. For
example, as shown in Fig. 7(a), the newly constructed buildings
in the postchange image have similar spectral characteristics
with the surrounding environment, and we can see that the fully
convolutional-based methods, including FC-EF, FC-Siam-Di,
FC-Siam-Conc, suffer from serious misdetections, thus their
feature extraction abilities are insufficient to distinguish the
change information. In addition, the multitemporal images con-
tain dense building changes, and there are some adhesions in
CDNet. We can also see that there are some false alarms in BIT
S4, ChangeFormer, MSCANet, and D-TNet. In contrast, the pro-
posed CLDRNet can alleviate the abovementioned phenomena
to a certain extent. Observing Fig. 7(b), the newly constructed
buildings in the postchange image exhibit different spectral and
size characteristics, especially the buildings in the red circle
have similar spectral features to the surrounding land, leading to
misdetections in most methods. However, our proposed CLDR-
Net effectively avoids the misdetection phenomenon, benefiting
from the CCL that can distinguish multiscale and multishape
buildings. Observing Fig. 7(c), because the feature differences
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Fig. 7. Change detection results on LEVIR-CD. Legend: white for TP, black for TN, red for false detections, and green for misdetections.

Fig. 8. Change detection results on BCDD. Legend: white for TP, black for TN, red for false detections, and green for misdetections.

of the changed regions between multitemporal images are obvi-
ous, all methods can successfully detect the building changes.
However, our CLDRNet is closest to the ground truth, reflecting
that CLDRNet is robust to the pseudochanges caused by building
shadows. As shown in Fig. 7(d), there are multiscale, dense and
irregular shape building changes between multitemporal images.
In comparison, CLDRNet shows the best visual performance
with fewer error detections, complete building structures and
clear building boundaries. As shown in Fig. 7(e), the multitem-
poral images contain small size building, as well as surrounding
car changes, making it difficult to accurately detect building
changes. We can see that our CLDRNet obtains the best result
with the fewest misdetections in comparison.

Fig. 8 shows the CD results of different methods on BCDD
dataset. Compared with LEVIR-CD, the images in BCDD have a
higher resolution, and at the same time, the size of the city build-
ings is larger, making the texture of the roof to be relatively clear.
Thus, the CD results are prone to contain salt-and-pepper noise
for unchanged buildings, and incomplete building structures for
changed buildings. However, in comparison, we observe that
our CLDRNet achieves the most satisfactory results with fewer
error detections and higher internal compactness. Specifically,
observing Fig. 8(a), there contains a building to building changed
areas but with similar spectral and texture features (in green
circle), and an unchanged area but with the roof color changed (in
blue circle), making it difficult to detect the changes of interest.
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Fig. 9. Change detection results on CDD. Legend: white for TP, black for TN, red for false detections, and green for misdetections.

We can see that the fully convolutional-based methods suffer
from serious false detection and misdetections, and the CDNet
contains false detections. In addition, although BIT S4, Change-
Former, and MSCANet have the semantic context modeling
capabilities, they are difficult to identify the change information
with the same semantic. D-TNet and CLDRNet benefit from the
category-awareness information learning, which can distinguish
multiscale and multishape buildings. However, CLDRNet is
more satisfactory than D-TNet with more complete building
structures, since the centering learning process makes the CA-
DESCs more representative and adaptive. As shown in Fig. 8(b),
all methods can successfully detect the main body of the changed
area. But comparatively, our CLDRNet contains fewer error de-
tections, which effectively overcomes the problem that the spec-
tral characteristics of the newly constructed buildings are close to
the surrounding land. Observing Fig. 8(c) and (d), the multitem-
poral images contain seasonal changes, atmospheric condition
changes and nonbuilding changes (such as cars). Our CLDRNet
obtains the most satisfactory result, successfully overcoming the
interference of pseudochanges, and other comparison methods
exist error detections in the building areas. As shown in Fig. 8(e),
there is no change between the multitemporal images, and our
CLDRNet has no false alarm, reflecting that the CLDRNet is
robust to the appearance differences caused by different imaging
conditions.

Fig. 9 shows several challenging and representative results on
CDD dataset. Compared with LEVIR-CD and BCDD, CDD is
also concerned with the changes caused by cars, tanks, forests,
roads, etc., in addition to building changes. As shown in Fig. 9(a),
because the changed areas have obvious appearance differences
between multitemporal images, most methods can successfully
detect the changes. But in contrast, CLDRNet has more accurate
result with higher internal compactness. Observing Fig. 9(b),
we can see that our CLDRNet can effectively counter against
the pseudochanges caused by seasonal differences, that is,
CLDRNet has fewer false alarms and fewer misdetections

compared with other eight methods. As shown Fig. 9(c), there
are obvious differences in imaging conditions between multi-
temporal images, and the sizes of the changed cars in postchange
image are very small, making it difficult to accurately detect the
changes. CLDRNet detects all changed targets, while the com-
peting methods all suffer from misdetections. In addition, jointly
observing Fig. 9(a) and (c), our approach is able to detect both
small and large changed cars, reflecting that CLDRNet focuses
on the multiscale characteristics of remote sensing images. Ob-
serving Fig. 9(d), the newly constructed buildings in postchange
image have obvious shadow phenomenon, which has a greater
impact on the fully convolutional-based methods method, and
other methods have certain robustness to this. In addition, jointly
observing Fig. 9(d) and (e), there are very narrow road changes.
We can see that the fully convolutional-based methods are com-
pletely useless for this phenomenon, which indicates that their
feature extraction ability is insufficient to distinguish narrow
change information. For the transform-based methods, including
BIT S4, ChangeFormer, and MSCANet, the CD results are
incomplete and contain salt-and-pepper noises. This may be
due to the loss of spatial details during tokens embedding and
feature reconstruction. In comparison, D-TNet and CLDRNet
are more satisfactory, because their TM maps are generated from
the feature maps with the highest spatial resolution, which have
a refinement effect on the boundaries. However, the TM map
generation process of CLDRNet considers the misdetection and
false detection problems separately, making the CD map more
accurate.

2) Qualitative Analysis: Table II provides the quantitative
analysis on three test sets. We can see that our CLDRNet always
outperforms the competing methods in F1 and IoU scores, which
is consistent with the visual inspection. Specifically, the fully
convolutional-based methods, including FC-EF, FC-Siam-Di,
FC-Siam-Conc, have lower recall and precision scores
compared with other methods. ChangeFormer and MSCANet
have relatively high F1 and IoU scores, but their precision
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TABLE II
QUANTITATIVE ANALYSIS ON THREE DATASETS

values are much higher than their recall values. However, in the
CD task, recall is usually more important. BIT S4 has similar
problems in BCDD and CDD dataset. CDNet is also unable
to strike a balance between recall and precision. The proposed
CLDRNet is an improvement of our previous work D-TNet,
and they achieve a relative balance between false detections
and misdetections, compared with other methods. However,
CLDRNet is more satisfactory in terms of recall/prescion/F1
values, benefiting from the CL and DM refinement
processes.

3) Model Efficiency: As shown in Table II, the number of
parameters (Params.) and the floating-point operations per sec-
ond (FLOPs) for each image are used to compare the model
efficiency of different methods. We can see that the fully
convolutional-based methods have fewer parameters and lower
FLOPs, but their CD performance is limited. Among the other
six methods, CLDRNet has a moderate number of parameters
and relatively low FLOPs. Therefore, our CLDRNet achieves
the best F1/OA scores at an acceptable computational cost.

D. Discussion

1) Effect of CA-DESC Learning: We perform ablation on the
effect of CL process by replacing it with the centroid-features

learning process described in D-TNet. That is, the comparison
method obtains CA-DESCs through feature maps extraction
with ResNet50 pretrained on ImageNet, PCA, and K-means
process.

As shown in Table III, we can see that the CA-DESCs gener-
ated by CL process are more effective for CD. The CL process
unifies the CA-DESCs prediction into the CD framework, which
considers the semantic content differences from the CD perspec-
tive, making the learned CA-DESCs more adaptable to CD task.
Therefore, it can effectively improve the CD performance.

In addition, we display the high-level category-awareness
features in Fig. 10, where yellow and blue color denote higher
and lower attention values, respectively. We can see that the
category-awareness maps obtained with the CL are more com-
pact and have higher information density than the ablation
method, indicating that the CA-DESCs generated by the CL can
promote the effective extraction of change information, which
is consistent with theoretical analysis.

2) Effect of DMR: We perform ablation on the effect of DMR
by removing DMR module from the CLDRNet, i.e., the CD
result of Stage 1. In addition, because CLDRNet is an improved
method based on D-TNet, we also perform ablation by replacing
the DMG module with the TMG module in D-TNet, and the CD
map is obtained by comparing DM and TM.
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TABLE III
ABLATION STUDY OF THE CL PROCESS

TABLE IV
ABLATION STUDY OF THE DMR

Fig. 10. Category-awareness feature visualization on the LEVIR-CD, BCDD,
and CDD test sets. (a) Pre- or postchange image. (b) High-level category-
awareness feature map with PCA. (c) Three selected high-level category-
awareness feature maps. (d) DM.

As shown in Table IV, we can see that both TMG and DMG
can improve the CD performance in terms of the balance between
false alarms and misdetections. For TMG, although it aims at

correcting misdetections and false alarms, it obtains a lower re-
call value than “remove DMR.” The selection of change thresh-
old is a complicated process, making it difficult to alleviate both
false detections and misdetections problems simultaneously. In
particular, the recall of “remove DMR” is high, so it is difficult to
further improve. Therefore, TMG improves the main problem of
“remove DMR,” i.e., false alarms. However, DMG is more effec-
tive than TMG. First, DMG achieves a better balance between
recall and precision than TMG. Second, the changed regions
account for a small proportion than the unchanged regions, so a
high precision usually leads to a high F1-score within a certain
range. However, in CD tasks, recall is usually more important.
We can observe that DMG obtains higher Recall and F1-score
than TMG. Thus, although DMG does not specifically correct
misdetections, it corrects false alarms while constraining the
correctly detected changed areas, which is more effective than
TMG that corrects false alarms and misdetections at the same
time.

In addition, Fig. 12 provides the visual comparisons to make
a deeper understanding of the DMG module. On the one hand,
we can see that TMG corrects the false alarms by reducing
the DM value to less than 0.5, while DMG corrects the false
alarms by making the TM value greater than DM value. In other
words, the DMG assigns high TM values to the pseudochanged
regions, which is more effective in refining false alarms than
the TMG. This is because the changed and the pseudochanged
regions usually exhibit lower TM values for TMG and higher
TM values for DMG. The loss function of TMG optimizes
Pn − PTn for changed regions and optimize PTn − Pn for
unchanged regions, so the optimization procedure will expand
the distance betweenPn andPTn, i.e., the distance between DM
and TM values. The loss function of DMG uses the contrastive
loss to prevent the correctly detected changed and unchanged
regions from being destroyed, and optimize PTn − Pn for false
alarms, so the optimization procedure may pay more attention to
the indistinguishable samples. On the other hand, TMG corrects
false alarms and misdetections at the same time, which may
lead to confusion, for example, in Fig. 12(b), the correctly
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TABLE V
PARAMETER ANALYSIS OF FEATURE DIMENSIONS D ON THREE DATASETS

Fig. 11. Examples of DM and threshold map visualization.

detected changed regions are instead determined as unchanged
regions. Whereas, DMG focus on correcting the false alarms
while constraining the correctly detected changed areas, which
is more effective than TMG.

Furthermore, Fig. 11 gives more examples of DM and TM.
We can see that the DMG module is effective for correcting false
alarms. However, although we continue to train the DM learning
path in the Stage 2, it is difficult to further optimizing the DM [see
Fig. 11(d) and (h)]. This is because we first train the DM learning
path, and when the training stabilizes, join the TM learning path
to correct the false alarms. Thus, DM learning has been stabilized
in Stage 1, and it is difficult to further distinguish between the
changed and unchanged areas through the DM training in Stage
2. In addition, we can observe that TMs usually exhibits higher
values for the pseudochanged regions, including the misaligned
regions [e.g., the roads in Fig. 11(a) and (k)], the targets that
sensitive to imaging conditions [e.g., the cars in Fig. 11(i) and
(k), and the edges of buildings], and the seasonal variations
[e.g., the seasonal changes of vegetation in Fig. 11(a)–(c)].
Apart from the design of the loss function, this also benefits
from the elementwise maximization operation of the DMG
module, which makes the TM focus on the most interesting
category information that are sensitive to pseudochanges within
the temporal domain. Therefore, TM can effectively correct the
false alarms by assigning high values to the indistinguishable
unchanged regions.

3) Parameter Analysis: In addition to the parameters related
to network training, including learning rates, batch sizes, and
training epochs, there is another parameter in CLDRNet, i.e.,
feature dimensions D.

As described in Section III-B1, D is the hidden feature di-
mension before the category prediction layer, which is directly
expressed as the feature dimension of CA-DESCs. Table V
provides the parameter analysis ofD on the LEVIR-CD, BCDD,
and CDD datasets. We can observe that the F1-score starts to
decrease when D is larger than 6. The reason may be that the
CL is achieved by measuring the difference between the pixel
representations and the reconstructed pixel representations, as
shown in (15), and thus a higher dimension D would increase
ambiguity rather than discriminability to disturb the training
process. Besides, the selection of D affects the number of
parameters for CADL and CCM modules. Comprehensively
evaluate the results of the three datasets, we set D = 3.
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Fig. 12. Effect of DMR on the three datasets.

TABLE VI
EXPERIMENTAL COMPARISON OF DIFFERENT INPUT SIZES

4) Analysis of the Input Sizes: To analyze the effect of in-
put size on network performance and behavior, we conduct
a comparative analysis by varying the input sizes. Table VI
provides the quantitative analysis on LEVIR-CD and BCDD
with input sizes of 512 × 512, 256 × 256, and 128 × 128.
For network performance, we can observe that all input sizes
achieve satisfactory results. However, the results of 512 × 512
outperform 256 × 256 and 128 × 128 in comparison, which
is consistent with theoretical analysis, i.e., 512 × 512 patches
maintain target integrity better than 256 × 256 and 128 ×
128 patches. In addition, we can see that the smaller the input

size, the lower the computational complexity, but the number of
parameters is not affected by the input size.

V. CONCLUSION

In this work, a CLDRNet is proposed for remote sensing
image CD. CLDRNet improves on our previous work D-TNet,
and focuses on the essential characteristics of CD, i.e., different
land cover changes exhibit different change magnitudes. On the
one hand, to characterize the semantic content differences of
heterogeneous land covers, a CL procedure is introduced into the
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CCL module, which generates an overall representation for each
category to guide the CCM. The CL process is differentiable and
can be unified into the CD network, so it considers the semantic
content differences from the CD perspective, thereby improving
the CD performance. On the other hand, to adaptively address
the magnitude differences of different land cover changes, a two-
stage CD strategy is introduced for DM learning and DMR. The
optimizations of DM and TM learning paths are aimed at ensur-
ing high detection rates and revising false alarms, respectively.
Extensive experiments on three CD datasets verify the effective-
ness of the CLDRNet in both visual and quantitative analysis.

However, CLDRNet enhances the representations of different
land covers through CL procedure, which is supervised by the
reconstruction loss, i.e., to minimize the difference between
pixel representations and reconstructed pixel representations.
Therefore, CLDRNet deals with the binary change detection
task. In the further, we will extend CLDRNet to the semantic
change detection, which can determine both change extents and
change types. The semantic labels will produce supervision for
CL, improving the feature discriminations of heterogeneous land
covers.
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