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Abstract—This article presents a postprocessing-based spectral–
spatial classification (SSC) approach for hyperspectral (HS) im-
ages. The approach effectively overcomes the limitations of tra-
ditional pixel-based classifiers by integrating spectral and spa-
tial information to achieve improved classification results. Specif-
ically, the proposed method uses principal component analysis to
transform the HS images and the Naive Bayes (NB) classifier to
quickly derive spectral-posterior probabilities. Spatial-posterior
probabilities are then computed using an adaptive fast Fourier
transform (AFFT) and a probabilistic closeness function. These
probabilities are then combined to generate a precise SSC map.
The proposed approach is available in two distinct styles: the con-
ventional NB–AFFT–SSC method and the proposed iterationwise
variable sequencing based NB–AFFT–SSC (IVS–NB–AFFT–SSC)
method, which classifies one designated class in each iteration. In
addition, two wrapper-based feature selection methods are pro-
posed to obtain a set of principal components (PCs) for each class of
the HS image, significantly improving classification accuracy. The
approach’s efficacy is demonstrated through extensive experimen-
tation on three real HS datasets, including Washington DC Mall,
Salinas-A, and Botswana. The generality of the approach has been
proven through the use of other well-known machine-learning al-
gorithms, such as support vector machine and K-nearest neighbor,
as wrappers in the approach. The results confirm that the proposed
approach is highly effective, with the IVS approach helping users
concentrate on a particular set of PCs for the class of interest.

Index Terms—Adaptive fast Fourier transform (AFFT),
hyperspectral (HS) image, spectral–spatial classification (SSC),
iterationwise variable sequencing (IVS), Naive Bayes (NB).

I. INTRODUCTION

HYPERSPECTRAL (HS) images are rich in informa-
tion and are essential in land cover, land use, climate,

and environmental applications. Classification is one of the
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significant tasks in HS image processing. The methods that uti-
lize the spectral signature to determine class belongingness are
called pixel-based classifiers, for example, Bayesian estimation
methods [1], K-nearest neighbor (KNN) classifiers [2], kernel-
based techniques [3], neural networks [4], and decision trees
[5]. The performance of pixel-based classifiers is limited due to
high heterogeneity within the same class and relatively more ho-
mogeneity between pixels of different classes of the HS image,
which arise due to high spatial resolution [6], natural spectrum
variations, unwanted shade and shadow, atmospheric effects,
incident illumination, and instrument noises [7] during the image
acquisition. Therefore, the classification maps produced by the
pixel-based classifiers exhibit salt and pepper noise. Moreover,
the classification performance of pixel-based classifiers has a
strong relationship with the quality of training pixels [8]. As
pixel-based classifiers do not consider spatial information, they
cannot alone constitute good classifiers. Therefore, the need
for spectral–spatial classification (SSC) arises. In the literature,
based on the fusion stage, three categories of SSC were proposed
for HS images, such as preprocessing techniques as in [9] and
[10], where the spatial information is pre-extracted before being
fed to the classifier, integrated techniques [11], [12], where
spatial information and spectral information are simultaneously
used without explicit separation, and postprocessing techniques
[13], [14], [15], [16], [17], where spectral information via a
classifier and spatial information mostly using Markov random
fields are extracted, which lead to computational overhead and
over smoothening.

Recently, the focus of SSC of HS images has been shifted to
deep learning (DL)-based methods and has become the main-
stream [18], [19]. The advantage of DL methods is that they
do not require dimensionality reduction, feature selection (FS),
or a combination of spatial–spectral information exclusively
for the SSC of HS images. Due to this advantage, a series of
DL methods have emerged for HS image classification [20].
For example, the two-dimensional convolutional neural network
(2-DCNN) method is used for SSC of HS images, which suffers
from significant performance degradation as the training data
drop from 20% to 3%, as shown in [21]. Another DL method
that is widely used and considered a state-of-the-art (SOTA)
is the 3-DCNN, which extracts both spectral and spatial infor-
mation, and it offers better execution speed and performance
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than 2-DCNN [21], [22], [23]. In addition, various CNN-based
methods with the combination of 2-DCNN and 3-DCNN are
being explored for better classification accuracy of HS images.
A common need for all these methods is the requirement of
a higher percentage of training data for a reasonably good
classification performance.

Unlike conventional image processing applications, it is well
known that in HS image processing, there is a scarcity of
availability of sufficient training data or one cannot have the
luxury or leverage of using a higher percentage of available data
for training purposes alone [24]. The labeling of pixels in HS
images is particularly time-consuming and expensive. The task
requires experts to obtain ground-truth data by field sampling.
Therefore, exploring an HS image classification methodology
for good performance with few labeled samples becomes par-
ticularly significant [25]. Further in DL methods, generative
adversarial networks (GANs) that combine the benefits of CNNs
and the generative models are used to improve classification
performance with few labeled samples [26]. However, the GANs
suffer from the class imbalance problem due to the uncontrolled
generation of synthetic training samples. In the context of the
limited availability of training samples and the high dimensional
nature of HS image data, DL methods perform quite ineffective
in generalizing the distribution of HS image data. In addition,
DL methods require excessive adjustment at the training stage,
while the performance on the test data is generally poor with a
low percentage of training data [20]. Moreover, the block box
nature of the training of DL models makes the interpretation
of internal dynamics quite hard. Further, the stacking of layers
in DL methods does not guarantee desirable improvement in
classification accuracy. This forces the users to carefully select
the DL methods that best suit the HS image data. This involves
a proper selection of the DL architecture, learning strategy,
and improvement strategies that best fit the HS image data,
which makes them dataset-specific, handcrafted, and complex.
In addition, a high computational burden due to a large number
of parameters that need to be maintained in a DL architec-
ture demands computationally expensive and memory-intensive
methods [27]. Hence, the exploration of the SSC approach
devoid of DL models that work with a low percentage of training
data for improved classification accuracy of HS images is the
main focus of the article. It may be noted that the HS image and
HS dataset are interchangeably used in the article.

The proposed SSC approach adopts the postprocessing-based
approach, which is widely used among the three categories for
the classification of HS images mainly due to higher classifi-
cation accuracy and also attempts to address the computational
overhead issue. Initially, the given HS image is transformed into
a lower dimension using principal component analysis (PCA),
as this is a widely used dimensionality reduction technique for
HS images [17]. The rationale for the choice of PCA is that the
usage of Naive Bayes (NB) insists on conditional independence
of features to be fed as an input. In the proposed SSC approach,
the spectral information in terms of posterior probabilities is
obtained by the NB classifier, which is selected due to its inherent
advantages, such as implementation ease, execution speed, and

less complexity [28], [29], whereas the spatial information in
terms of posterior probabilities is obtained through the applica-
tion of an adaptive fast Fourier transform (AFFT) on a defined
spatial window. The window-based method is an effective and
widely used method to describe spatial information [30], [31]. In
the proposed method, spectral posterior probabilities and spatial
posterior probabilities are combined to obtain spectral–spatial
posterior probabilities to construct the SSC map.

The proposed SSC approach has been implemented in two
ways: 1) the conventional approach of classification, where the
classification of all classes of the HS image is carried out at
one shot and the method is named NB–AFFT–SSC; and 2)
the proposed iterationwise variable sequencing (IVS) approach,
where only one designated class of the HS image is classified in
each iteration and the method is named as IVS–NB–AFFT–SSC.
The proposed IVS approach is iterative and each iteration is
designated with a class index as per the predefined class selection
sequence. In addition, each iteration is wrapped with a predeter-
mined classifier (NB classifier), which produces a classification
map. The pixels from the classification map that match with the
iteration class index are extracted and the remaining pixels are
then fed to the next iteration, and this process continues until all
classes in the given HS image are classified. The proposed novel
IVS approach serves the dual purpose of FS and classification of
HS images. The proposed IVS approach obtains a set of principal
components (PCs) for each class of the HS image when used for
FS, and performs the classification using these PCs to improve
the classification accuracy. In addition, two FS methods, namely
include discard based feature selection (IDFS) and IVS–FS are
proposed. The IDFS method wraps a classifier (NB classifier)
and employs the sequential forward selection (SFS) to obtain a
set of PCs for all classes of the HS image based on a defined
criterion.

In contrast, the IVS–FS method is iterative and it wraps the NB
classifier in each iteration and employs the SFS search strategy to
obtain a set of PCs for each class of the HS image. The IVS–FS
method helps the user select a set of relevant PCs for a class
of interest for further processing, such as classification. The
PCs obtained by IDFS are used for the classification using the
NB–AFFT–SSC method, whereas a set of PCs for each class
is used for the classification using the IVS–NB–AFFT–SSC
method. To the best of our knowledge, there is no attempt toward
the SSC of HS images using “a set of PCs for each class” or
“classwise PCs.” Experiments conducted on three widely used
real HS datasets, namely Washington DC Mall (WDC-M) [32],
Salinas-A [33], and Botswana [34], substantiate the effective-
ness of the proposed SSC method in terms of classification
accuracy of the HS datasets.

The major contributions of the article are as follows.
1) The IDFS method with an improved objective criterion

for the selection of PCs for all classes of HS image is
illustrated.

2) A unique IVS–FS method for classwise PC selection of
HS images is introduced.

3) A flexible postprocessing-based SSC approach both in the
conventional classification approach and IVS approach,
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with an explanation related to concepts behind the deriva-
tion of spectral information (using NB) and spatial in-
formation (by the proposed closeness function through
AFFT), is presented.

4) The generality of the proposed SSC approach using other
machine-learning (ML) algorithms, such as the widely
used support vector machine (SVM) [35] and KNN [36],
is demonstrated.

5) A comparison of the proposed SSC approach based meth-
ods along with other competitive SSC methods to sub-
stantiate the effectiveness of the proposed SSC approach
is also presented.

The rest of this article is organized as follows. Section II intro-
duces the details of the proposed FS algorithms for the proposed
SSC approach with NB classifier as wrapper. Section III presents
the conceptual basis and formulation of the proposed SSC
approach with NB classifier as wrapper. Section IV describes
the datasets used for all simulations including other well-known
ML algorithms, such as SVM and KNN, to prove the general-
ization ability of the proposed approach. Section V presents the
experimental results followed by a detailed discussion on the
obtained results. Finally, Section VI concludes this article.

II. IMPLEMENTATION OF PROPOSED FEATURE SELECTION

ALGORITHMS FOR THE PROPOSED SSC APPROACH

In a traditional sense, the selection of PCs is based on the
cumulative variance of PCs. In classification algorithms, the
class discrimination aspect is neglected in the selection of the
number of PCs, and this in turn leads to poor classification re-
sults. Hence, the class discrimination aspect cannot be neglected
in the selection of the number of PCs. The imposition of the
threshold for the initial dominant PCs is aimed as a pragmatic
measure to overcome the absence of the class discrimination
aspect. The proposed FS algorithms, such as IDFS and IVS–FS,
address these problems by searching for PCs beyond the first few
PCs, while maintaining classification accuracy. The proposed FS
algorithms use SFS as a search strategy. In SFS-based FS, the
objective function considers only the overall accuracy (OA) for
FS leading to the issue of nonconsideration of class imbalance.
However, in IDFS and IVS–FS, the objective function is derived
based on the confusion matrix. This in turn overcomes the
prevalent class imbalance in the FS algorithms. This section
introduces the implementation details of the proposed FS algo-
rithms with the NB classifier as a wrapper in IDFS and IVS–FS
to obtain a set of PCs for all classes of the HS image and to
obtain a set of PCs for each class of the HS image, respectively.

A. IDFS

This section presents the proposed IDFS method (wrapped
with NB classifier), which uses the SFS strategy.

For the illustration of the algorithm, let the PCA-transformed
HS image be given by

P = {pz}Zz=1 (1)

where pz is the zth PC of the HS image, Z is the total number
of PCs, and P is the set of PCs.

Algorithm 1: Pseudocode for IDFS Method.
Inputs:

Principal Components : P = {pz}Zz=1

Training data : train
Holdout test data : htest

Method:
Initialize feature set R to zero and a variable η to �
for (z = 1; z ≤ Z; z ++)
Update feature set Rz = {R ∪ pz};
Execute the NB_classifier(train, htest, Rz)
Compute ψRz

using (3)
if z > 1

if (ψRz
< η)

Update R = {Rz};
Update η = ψRz

;
else

Update R = {Rz − pz};
end

else
Update η = ψRz

;
Update R = {Rz};

End
end
Assign R = R;

Output:
A set of PCs: R

The IDFS decision metric to either add a PC or discard a
PC requires the confusion matrix. The confusion matrix for the
holdout test set using the NB classification map with the zth
candidate PC set (Rz) is given by

WRz
=

⎡
⎢⎢⎢⎣
w11 w12 w13 . . . . . . w1k

w21 w22 w23 . . . . . . w2k

...
...

...
...

. . .
...

wk1 wk2 wk3 . . . . . . wkk

⎤
⎥⎥⎥⎦ (2)

wherew11 is the first class pixels correctly classified as first class,
w21 represents the second class pixels incorrectly classified as
first class, and wkk is the kth class pixels correctly classified as
kth class.

The decision metric for the zth candidate PC set (Rz), de-
noted by ψRz

, using (2), can be given by

ψRz
=

∑K
k=1, k �=j wkj∑K

k=1 wkk

. (3)

The set of PCs that minimizes (3) will be given by

R = argmin
Rz ⊆ P, z={1,2,3,...,Z}

ψRz
(4)

where R will have a set of PCs for all classes of the HS image.
The pseudocode of the proposed IDFS method is shown in

Algorithm 1 for a better understanding of the method.
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B. IVS–FS

This section presents the details of the proposed IVS–FS
method. The IVS–FS is an iterative approach that uses the NB
classifier as a wrapper in each iteration, employs the SFS search
strategy, and requires a sequence of classes to obtain classwise
PCs for each defined class of the HS image. The input image to
the method is the PCA-transformed HS image. The output is the
classwise PCs for each defined class of the HS image.

For the kth class iteration, using the zth candidate PC set
(Rk

z ), a classification map is produced by the NB classifier.
However, for the computation of the confusion matrix, only the
pixels that match with the kth class index are considered, and
the resultant confusion matrix is given by

WRk
z
=

[
w00 w01

w10 w11

]
(5)

wherew00 is the 0th class pixels correctly classified as 0th class,
w01 denotes the 0th class pixels incorrectly classified as first
class, w10 represents the first class pixels incorrectly classified
as 0th class, and w11 is the first class pixels correctly classified
as first class.

The IVS–FS decision metric at the kth class iteration and for
the zth candidate PC set (Rk

z ) using (5) can be given by

ψRk
z
=

∑1
i=0, i�=j wij∑1

i=0 wii

. (6)

The set of PCs that minimizes (6) for the kth iteration class
will be given by

Rk = argmin
Rk

z ⊆ P, z={1,2,3,...,Z}, k={1,2,3,...,K}
ψRk

z
(7)

where Rk represents a set of PCs for the kth class (classwise
PCs). The pseudocode of the method is shown in Algorithm 2.
To the best of our knowledge, obtaining classwise PCs has not
yet been explored. Hence, the proposed IVS–FS method adds a
major contribution to the article.

III. PROPOSED SSC APPROACH—CONCEPTUAL BASIS AND

FORMULATION

The proposed SSC approach considers both the spatial and
spectral information separately. It employs the NB classifier
to produce a spectral classification map using the spectral in-
formation. For accounting the spatial information, an AFFT-
based probabilistic closeness function is developed. The spectral
posterior probabilities produced by the NB classifier and the
spatial posterior probabilities obtained using the AFFT are used
to generate spectral–spatial posterior probabilities, which are
subsequently used for developing the final SSC map. The test
pixel which has the highest posterior probability for a class
will be assigned to the class. The proposed SSC approach
is implemented in two classification approaches, namely the
conventional approach (where the classification of all constituent
classes is performed at a time) and the IVS approach (where
the classification is carried out by a predefined class sequence).
The proposed SSC approach implemented in the conventional

Algorithm 2: Pseudocode for IVS-FS Method.
Inputs:

Principal Components : P = {pz}Zz=1

Class selection sequence index : k
Total number of classes : K
Training data with class labels : train
Hold out test data : htest

Method:
Initialize R to zero and a variable η to �

Loop1: for (k = 1; k ≤ K; k ++)
Loop2: for (z = 1; z ≤ Z; z ++)

Update Rk
z = {R ∪ pz};

Execute NB_classifier (train, htest, Rk
z )

Compute ψRk
z

using (6)
if z > 1

if (ψRk
z
< η)

Update R = {Rk
z};

Update η = ψRk
z
;

else
Update R = {Rk

z − pz};
end

else
Update η = ψRk

z
;

Update R = {Rk
z};

end
end: Loop2
Assign Rk = R;
Update train to consist of only (K− k) classes
Update htest by removing classified pixels belonging to
kth class
Update R to zero
end: Loop1
Output:
Class-wise PCs for each class index k: Rk

approach is named as NB–AFFT–SSC and that in the IVS
approach is designated as IVS–NB–AFFT–SSC.

A. NB–AFFT–SSC Method

This section presents the NB–AFFT–SSC method. In this
method, the NB classifier is used to generate spectral posterior
probabilities, and then the AFFT on a defined spatial window is
used to compute spatial posterior probabilities. The NB–AFFT–
SSC method is depicted in Fig. 1.

For the PCA transformed HS image withK number of classes,
the spectral posterior probabilities using the NB classifier for the
kth class, given a data vectorxq = {xz}Zz=1, where z is the index
to denote the zth PC and q is the pixel number, can be obtained
by

pspec(k|xq) =
[p (k)× p (xq|k)]∑K
k=1[p (k)× p(xq|k)]

(8)

where k is the index to denote kth class (k = {1, 2, . . . ,K}),
pspec(k|xq) represents the posterior probability of the pixel vec-
torxqbelonging to the kth class, and p(k) is the priori probability



1104 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 1. Schematic of the proposed NB-AFFT-SSC method.

of the kth class. According to (9), each test pixel of the input
HS dataset is assigned the class with which it has the highest
posterior probability, and it can be given by

H(xq) = argmax
k Є {1 to K}

pspec (k|xq) (9)

where H(xq) is the classification map of the class index for xq .
Using (9), a binary mask by comparing the center pixel (xq)

with the neighboring pixels of the defined spatial window is
generated, which is multiplied element by element with the cor-
responding input PCA transformed HS image and then averaged
over the selected PCs.

The FFT is applied adaptively on the averaged PCA trans-
formed HS image of the size of spatial window, and the vector of
test spectral magnitudes is denoted by fTest(ω), where ω denotes
the frequency component. A vector of FFT spectral magnitudes
for training data, denoted by fTr(ω, k), is computed for each class
k. The closeness function/metric for the kth class can then be
calculated from [37]

ƥ (k|xq) =

∣∣∣∣ fTr (ω, k)

fTest (ω)
− fTest (ω)

fTr (ω, k)

∣∣∣∣ . (10)

In (10), the value of ω is taken to be 1 (dc component) to
reduce computational complexity. The ideal value for ƥ(k|xq)
is zero. The value of ƥ(k|xq) can be any real value greater than
zero (>0). Hence, it should be normalized as shown in (11),
which is also called as probabilistic closeness function

ƥnorm(k|xq) =
ƥ(k|xq)∑K
k=1 ƥ(k|xq)

(11)

where k = 1 to K such that
∑K

k=1 ƥnorm(k|xq) = 1.

The spatial posterior probabilities can be given by

pspat(k|xq) =

(
1− ƥnorm (k|xq)∑K

k=1 (1− ƥnorm (k|xq))

)
. (12)

Using (8) and (12), the spectral–spatial posterior probabilities
can be computed using

ƥss(k|xq) = pspec(k|xq)× pspat(k|xq) (13)

where ƥss(k|xq) represents the spectral–spatial posterior proba-
bilities of the kth class given the pixel xq .

The SSC map can be obtained from

𝓗(xq) = argmax
k Є {1 to K}

ƥss (k|xq) (14)

where 𝓗(xq) is the SSC map of the predicted class index for
xq.

B. IVS–NB–AFFT–SSC Method

This section presents the details of the IVS–NB–AFFT–SSC
method, which uses the NB–AFFT–SSC method as a wrapper
and uses classwise PCs obtained using the IVS–FS method.
The schematic of the IVS–NB–AFFT–SSC method is shown
in Fig. 2.

For example, if there are K number of classes, the integers in
the class selection sequence will be 1 ≤ i < K, implying that
there are only (K− 1) steps of successive classification. The
classification map at an iteration, for example, ith iteration, will
be written as

CK−i+1
i = CB (train (K− i+ 1), test (K− i+ 1),

R∗
i , NB − AFFT − SSC) . (15)
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Fig. 2. Schematic of the proposed IVS–NB–AFFT–SSC method.

Let p = K− i+ 1 to simplify (15), which leads to

Cp
i = CB (train (p) , test (p) , R∗

i , NB − AFFT − SSC)
(16)

where p denotes the number of classes that are present, train(p)
represents the training data comprising p number of classes,
test(p) represents the test data comprising p number of classes,
R∗

i represents a set of PCs at ith iteration, and the NB–AFFT–
SSC method is a wrapper classifier. Now, the class index (i.e.,
k) corresponding to the ith iteration will have to be extracted
from the classification map Cp

i in (16). The classification map
of extracted kth class pixels is given by

Hk =

{
Ck

i ⊂ Cp
i | k ∈ Cp

i , 1 ≤ k ≤ K, for p > 2
Ck

i = Cp
i , otherwise

(17)

where Hk is the classification map of kth class pixels. The
classification map of the IVS–NB–AFFT–SSC method is given
by

HIVS−NB−AFFT−SSC =

K∑
k=1

Hk. (18)

The iterative sequence of the classes can be either in ascend-
ing, descending, or predetermined order. The training data for
both FS using the IVS–FS method and classification using the
IVS–NB–AFFT–SSC method are the same.

IV. DATASETS

The HS image datasets used for simulations are WDC-M [32],
Salinas-A [33], and Botswana [34].

The actual size of WDC-M after the removal of water ab-
sorption bands is [1208 × 307 × 191]. The spatial resolution of

the HS image is 2.5 m. We have considered a subscene of the
WDC-M of size [99 × 306 × 191], which has seven classes,
namely grass, water, street, roofs, trees, path, and shadow [32].
It is a challenging dataset due to the heterogeneity in the spectral
signature of the roofs class and the low interclass spectral vari-
ability between the water–shadow, trees–grass, and roofs–street
classes [38].

A subscene, named Salinas-A, of the Salinas scene cap-
tured by the AVIRIS sensor is another dataset used for
simulations. The size of Salinas-A is [86 × 83 × 204].
The spatial resolution of Salinas-A is 3.7 m. There are six
classes in Salinas-A HS image, which are named Brocoli_
green_weeds_1, Corn_senesced_green_weeds, Lettuce_roma
ine_4wk, Lettuce_romaine_5wk, Lettuce_romaine_6wk, and
Lettuce_romaine_7wk [33].

The third dataset used for simulations is the Botswana dataset
from the NASA Earth Observing-1 satellite of the Okavango
Delta, Botswana. After the noisy and water absorption band
removal, the size of the image is [1476 × 256 × 145], which
has 14 classes, namely, water, hippo grass, floodplain grasses1,
floodplain grasses2, reeds1, riparian, firescar2, island interior,
Acacia woodlands, Acacia shrublands, Acacia grasslands, short
mopane, mixed mopane, and exposed soils [34].

V. SIMULATION RESULTS AND DISCUSSION

This section presents the FS results of IDFS and IVS–FS
methods, and the classification results of various representative
algorithms along with SOTA and the proposed SSC methods
for three real and widely used HS datasets, such as WDC-M,
Salinas-A, and Botswana. A personal computer installed with
MATLAB R2022a is used for all simulations on the datasets,
with the following configuration: Processor: Intel(R) Core (TM)
i3-4170 CPU @ 3.70 GHz, RAM: 4 GB, System type: 64-bit
operating system with ×64 based processor. The selection of
training pixels is random. However, one has the choice to decide
the training data by selecting either uniformly or empirically for
each class of the given HS dataset. The remaining pixels other
than the training pixels of the HS image are used as testing pixels.
The choice of the proportion of training data should be such that
the classification method will be able to perform very well with
the attribute of class discrimination feature in the dataset.

For simulations, a randomly selected training data of 2.5%
for each HS dataset is used as shown in Table I for WDC-M,
Salinas-A, and Botswana datasets. Five-fold cross-validation
has been carried out for NB [29], SVM [35], and KNN [36].
The KNN with three nearest neighbors and the SVM with linear
kernel are considered for simulations. For 3-DCNN [21], [22],
[23], three 3-D convolutional layers are used. Each convolutional
layer contains filter sizes 8, 16, and 32. The learning rate and
epochs of 3-DCNN are set to 0.005 and 100, respectively.

A. Results of Proposed Feature Selection Algorithms

This section presents the details of the set of PCs obtained
using both IDFS and IVS–FS methods with the NB classifier
and also with other prominent ML algorithms, such as SVM
and KNN alongside their execution times for the three HS



1106 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE I
DATASETS USED FOR EXPERIMENTS

TABLE II
PCS OBTAINED BY PROPOSED FEATURE SELECTION ALGORITHMS WITH VARIOUS CLASSIFIERS FOR WDC-M HS DATASET

TABLE III
PCS OBTAINED BY PROPOSED FEATURE SELECTION ALGORITHMS WITH VARIOUS CLASSIFIERS FOR SALINAS-A HS DATASET

datasets. The results of the proposed IDFS and IVS–FS methods
have been shown in Tables II–IV for WDC-M, Salinas-A, and
Botswana HS datasets, respectively.

For the WDC-M dataset as shown in Table II, the total number
of PCs obtained IDFS method using SVM, NB, and KNN as
wrappers are 9, 9, and 3, respectively. In contrast, the IVS–FS

method is able to obtain a set of PCs for each class of WDC-M
dataset. The total number of PCs obtained with the IVS–FS
method using SVM, NB, and KNN as wrappers, respectively,
can be for each class, such as grass (5, 10, 3), water (1, 2,
4), street (17, 15, 3), roofs (4, 13, 5), trees (2, 2, 3), path (1,
1, 3), and shadow (1, 1, 3). For IVS–FS using SVM, classes,
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TABLE IV
PCS OBTAINED BY PROPOSED FEATURE SELECTION ALGORITHMS WITH VARIOUS CLASSIFIERS FOR BOTSWANA HS DATASET

namely water, path, and shadow, require only 01 PC, whereas the
maximum number of PCs (17 PCs) is required for the street class.
For IVS–FS using NB, path and shadow classes are associated
with the minimum number of PCs (01 PC), and the street class
is associated with the maximum number of PCs (15 PCs).
Similarly, for IVS–FS using KNN, the classes namely grass,
street, trees, path, and shadow require the minimum number of
PCs (03 PCs), whereas the maximum number of PCs (05 PCs)
is associated with the roofs class.

From Table III, for the Salinas-A dataset, the total number
of PCs obtained by the IDFS method using SVM, NB, and
KNN as wrappers are 8, 19, and 4, respectively. In contrast,
the IVS–FS method is able to obtain a set of PCs for each
class of the Salinas-A dataset. The total number of PCs obtained
with the IVS–FS method using SVM, NB, and KNN as wrap-
pers, respectively, can be for each class namely Brocoli_green
_weeds_1 (2, 1, 2), Corn_senesced_green_weeds (8, 14, 7),
Lettuce_romaine_4wk (13, 6, 12), Lettuce_romaine _5wk (5, 1,
3), Lettue_romaine_6wk (11, 4, 7), and Lettuce_ romaine_7wk
(11, 4, 7). For IVS–FS using SVM, the Brocoli_green_weeds_1
class requires only 02 PCs, whereas the maximum number
of PCs (13 PCs) is required for the Lettuce_romaine_4wk
class. For IVS–FS using NB, Brocoli_green_weeds_1 and
Lettuce_romaine_5wk classes require only 01 PC, and the
Corn_senesced_green_weeds class is associated with the max-
imum number of PCs (14 PCs). Similarly, for IVS–FS using
KNN, the Brocoli_green_weeds_1 class requires only 02 PCs,
whereas the maximum number of PCs (12 PCs) is associated
with the Lettuce_romaine_4wk class.

From Table IV, for the Botswana dataset, the total number
of PCs obtained by the IDFS method using SVM, NB, and
KNN as wrappers are 8, 9, and 4, respectively. In contrast, the
IVS–FS method is able to obtain a set of PCs for each class of

the Botswana dataset. The total number of PCs obtained with
the IVS–FS method using SVM, NB, and KNN as wrappers,
respectively, can be for each class namely water (3, 2, 2), hippo
grass (11, 11, 6), floodplain grasses1 (9, 13, 4), floodplain
grasses2 (7, 13, 6), reeds1 (10, 12, 3), riparian (15, 13, 5),
firescar2 (9, 4, 4), island interior (11, 15, 6), Acacia woodlands
(9, 16, 5), Acacia shrublands (15, 24, 5), Acacia grasslands (14,
12, 8), short mopane (14, 9, 3), mixed mopane (10, 5, 2), and
exposed soils (10, 5, 2). For IVS–FS using SVM, the water
class requires only 03 PCs, whereas the maximum number of
PCs (15 PCs) is required for the riparian and Acacia shrublands
classes. For IVS–FS using NB, the water class requires only
02 PCs, and the Acacia shrublands class is associated with the
maximum number of PCs (24 PCs). Similarly, for IVS–FS using
KNN, water, mixed mopane, and exposed soils classes require
only 02 PCs, whereas the maximum number of PCs (08 PCs) is
associated with the Acacia grasslands class.

In all three HS datasets, the increase in the number of PCs for
the identification of a class is dependent on the complexity of
the class for the used wrapper classifier. The IVS–FS method is
superior to the IDFS method. The important point noteworthy
here is that classwise PCs obtained by the IVS–FS method are
SOTA to improve the classification results of the HS datasets.
The selection of PCs for each class of the given HS dataset
will be a one-time exercise. Hence, the execution time of the
IVS–FS method is relatively more, which may be acceptable in
the context of offline experiments.

B. Results of Proposed SSC Approach

This section presents the classification results of the proposed
SSC approach obtained by using additional ML algorithms, such
as SVM and KNN, in addition to the NB classifier as a wrapper
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TABLE V
CLASSIFICATION ACCURACIES IN PERCENTAGE FOR DIFFERENT CLASSIFIERS FOR WDC-M HS DATASET

to prove the generality of the approach. The implementation of
the proposed SSC approach in the conventional classification
approach has resulted in methods, such as SVM–AFFT–SSC,
NB–AFFT–SSC, and KNN–AFFT–SSC. These methods are fed
with the PCs obtained by the IDFS method. Similarly, the pro-
posed SSC approach implemented in the proposed IVS approach
has resulted in methods, such as IVS–SVM–AFFT–SSC, IVS–
NB–AFFT–SSC, and IVS–KNN–AFFT–SSC. These methods
are fed with classwise PCs obtained using the IVS–FS method.
The reason for selection of the first three PCs for the classifiers
(SVM, NB, and KNN) is that we considered cumulative variance
of 99% realized through the first three PCs [39]. A comparison
of various classification methods with the first three PCs along
with the SOTA classifier 3-DCNN [21], [22], [23] and the SSC
methods using the proposed SSC approach for three HS datasets
is presented to substantiate the effectiveness of the proposed SSC
approach. It may be noted that a detailed study has been carried
out to address the failure of 3-DCNN with low percentage of
training data (2.5%). With 30% of training data, classification
accuracy of 3-DCNN is comparable to the results obtained
through the proposed SSC methods using only 2.5% of training
data.

The classification results of these classifiers in terms of OA,
average accuracy (AA), Kappa coefficient (K), and individual
class accuracy are presented in Tables V–VII for the WDC-M,
Salinas-A, and Botswana HS datasets, respectively.

From Table V, for the WDC-M dataset, the OA, AA, and
Kappa of the SVM–AFFT–SSC method are slightly higher by
about 0.27%, 3.49%, and 0.37%, respectively, whereas those of
the IVS–SVM–AFFT–SSC method are higher by about 0.39%,
4.77%, and 0.54%, respectively, when compared to those of
the conventional SVM classifier with the first three PCs. The
OA, AA, and Kappa of the NB–AFFT–SSC method are slightly
higher by about 0.08%, 0.28%, and 0.10%, respectively, whereas
those of the IVS–NB–AFFT–SSC method are higher by about
0.13%, 2.46%, and 0.18%, respectively, when compared to those
of the conventional NB classifier with the first three PCs. In a

similar comparison, it is found that the OA, AA, and Kappa of
the KNN–AFFT–SSC method and those of KNN with the first
three PCs are the same, indicating that there is no improvement,
However, the OA, AA, and Kappa of the IVS–KNN–AFFT–SSC
method are higher by 0.15%, 1.96%, and 0.21%, respectively,
when compared with those of the KNN classifier with the first
three PCs.

Similarly, the OA, AA, and Kappa of SVM–AFFT–SSC
are 0.7%, 3.85%, and 0.99%, respectively, higher than those
of 3-DCNN, while the OA, AA, and Kappa of IVS–SVM–
AFFT–SSC are 0.82%, 5.13%, and 1.16%, respectively, higher
than those of 3-DCNN. Similarly, the OA and Kappa of NB–
AFFT–SSC are higher by 0.54% and 0.76%, whereas AA of
NB–AFFT–SSC is lower by 0.22% when compared to those
of 3-DCNN. The OA, AA, and Kappa of IVS–NB–AFFT–
SSC are higher by 0.59%, 1.96%, and 0.84%, respectively,
than those of 3-DCNN. Similarly, the OA, AA, and Kappa of
KNN–AFFT–SSC are 0.42%, 0.23%, and 0.61%, respectively,
higher than those of 3-DCNN, while the OA, AA, and Kappa
of IVS–KNN–AFFT–SSC are 0.57%, 2.19%, and 0.82%, re-
spectively, higher than those of 3-DCNN. The highest improve-
ment in OA (0.82%↑), AA (5.13%↑), and Kappa (1.16%↑) is
achieved by the IVS–SVM–AFFT–SSC method when compared
with 3-DCNN. In addition, the classification accuracy of the
roofs class is significantly improved by about 32.91% with the
IVS–SVM–AFFT–SSC method when compared with the SVM
classifier with the first three PCs. The classification accuracy
of the shadow class is significantly improved by about 18.19%
with the IVS–NB–AFFT–SSC method when compared with the
NB classifier with the first three PCs. Similarly, there is an
improvement in the classification accuracy of the roofs class
by about 6.33% with the IVS–KNN–AFFT–SSC method when
compared with the KNN classifier with the first three PCs.

From Table VI, for the Salinas-A dataset, the OA, AA, and
Kappa of the SVM–AFFT–SSC method are higher by about
0.84%, 0.97%, and 1.06%, respectively, whereas those of the
IVS–SVM–AFFT–SSC method are higher by about 1.36%,
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TABLE VI
CLASSIFICATION ACCURACIES IN PERCENTAGE FOR DIFFERENT CLASSIFIERS FOR SALINAS-A HS DATASET

TABLE VII
CLASSIFICATION ACCURACIES IN PERCENTAGE FOR DIFFERENT CLASSIFIERS FOR THE BOTSWANA HS DATASET



1110 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 3. (a) Portion of WDC-M HS image (RGB). (b) Ground truth, classified images by (c) SVM first three PCs, (d) NB first three PCs, (e) KNN first three PCs,
(f) SVM–AFFT–SSC, (g) NB–AFFT–SSC, (h) KNN–AFFT–SSC, (i) 3-DCNN, (j) IVS–SVM–AFFT–SSC, (k) IVS–NB–AFFT–SSC, and (l) IVS–KNN–AFFT–
SSC.

Fig. 4. (a) Salinas-A HS image (gray scale). (b) Ground truth, classified images by (c) SVM first three PCs, (d) NB first three PCs, (e) KNN first three PCs,
(f) SVM–AFFT–SSC, (g) NB–AFFT–SSC, (h) KNN–AFFT–SSC, (i) 3-DCNN, (j) IVS–SVM–AFFT–SSC, (k) IVS–NB–AFFT–SSC, and (l) IVS–KNN–AFFT–
SSC.

Fig. 5. (a) Botswana HS image (gray scale). (b) Ground truth, classified images by (c) SVM first three PCs, (d) NB first three PCs, (e) KNN first three PCs,
(f) SVM–AFFT–SSC, (g) NB–AFFT–SSC, (h) KNN–AFFT–SSC, (i) 3-DCNN, (j) IVS–SVM–AFFT–SSC, (k) IVS–NB–AFFT–SSC, and (l) IVS–KNN–AFFT–
SSC.

1.48%, and 1.71%, respectively, when compared to those of
the conventional SVM classifier with the first three PCs. The
OA, AA, and Kappa of the NB–AFFT–SSC method are signifi-
cantly higher by about 6.25%, 4.77%, and 7.77%, respectively,
whereas those of the IVS–NB–AFFT–SSC method are signifi-
cantly higher by about 6.32%, 4.86%, and 7.86%, respectively,
when compared to those of the conventional NB classifier with
the first three PCs. In a similar comparison, it is observed that the
OA, AA, and Kappa of the KNN–AFFT–SSC method are higher
by about 0.24%, 0.2%, and 0.3% respectively, whereas those
of the IVS–KNN–AFFT–SSC are higher by 0.92%, 0.89%, and
1.14%, respectively, when compared to those of the conventional
KNN classifier with the first three PCs.

Further, the OA, AA, and Kappa of SVM–AFFT–SSC are
0.10%, 0.30%, and 0.12%, respectively, higher than those
of 3-DCNN, while the OA, AA, and Kappa of IVS–SVM–
AFFT–SSC are 0.62%, 0.81%, and 0.77%, respectively, higher
than those of 3-DCNN. However, the NB–AFFT–SSC and
KNN–AFFT–SSC methods are inferior to 3-DCNN in terms of
classification performance. The OA and Kappa of IVS–NB–
AFFT–SSC are higher by 0.04% and 0.04%, whereas AA
of IVS–NB–AFFT–SSC is lower by 0.13% when compared

to those of 3-DCNN. The OA, AA, and Kappa of IVS–
KNN–AFFT–SSC are higher by 0.08%, 0.13%, and 0.09%,
respectively, than those of 3-DCNN. The highest improve-
ment in OA (0.62%↑), AA (0.81%↑), and Kappa (0.77%↑) is
achieved by the IVS–SVM–AFFT–SSC method when com-
pared with 3-DCNN. In addition, the classification accuracy
of the Lettuce_romaine_7wk class is improved by about 3%
with the IVS–SVM–AFFT–SSC method when compared with
the SVM classifier with the first three PCs. The classifi-
cation accuracy of the Corn_senesced_green_weeds class is
significantly improved by about 20.26% with the IVS–NB–
AFFT–SSC method when compared with the NB classifier
with the first three PCs. Similarly, there is an improvement
in the classification accuracy of the Lettuce_romaine_4wk
class by about 1.62% with the IVS–KNN–AFFT–SSC method
when compared with the KNN classifier with the first three
PCs.

From Table VII, for the Botswana dataset, the OA, AA, and
Kappa of the SVM–AFFT–SSC method are significantly higher
by about 6.81%, 6.80%, and 7.37%, respectively, whereas those
of the IVS–SVM–AFFT–SSC method are tremendously higher
by about 13.43%, 16.17%, and 14.56%, respectively, when
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compared to those of the conventional SVM classifier with the
first three PCs. The OA, AA, and Kappa of the NB–AFFT–
SSC method are higher by about 6.13%, 5.30%, and 6.34%,
respectively, whereas those of the IVS–NB–AFFT–SSC method
are significantly higher by about 12.25%, 11.99%, and 13.28%,
respectively, when compared to those of the conventional NB
classifier with the first three PCs. In a similar comparison, it
is seen that the OA, AA, and Kappa of the KNN–AFFT–SSC
method are higher by about 5.63%, 5.64%, and 6.09%, respec-
tively, than those of the KNN classifier with the first three PCs.
Also, the OA, AA, and Kappa of the IVS–KNN–AFFT–SSC
method are higher by 7.14%, 7.42%, and 7.74%, respectively,
when compared with those of the KNN classifier with the first
three PCs.

Similarly, the OA, AA, and Kappa of SVM–AFFT–SSC are
0.27%, 3.59%, and 0.32%, respectively, lower than those of
3-DCNN, while the OA, AA, and Kappa of IVS–SVM–AFFT-
SSC are significantly higher by 6.35%, 5.78%, and 6.87%,
respectively, than those of 3-DCNN. Similarly, the OA, AA, and
Kappa of NB–AFFT–SSC are, respectively, higher by 1.24%,
0.77%, and 1.03%, when compared to those of 3-DCNN. The
OA, AA, and Kappa of IVS–NB–AFFT–SSC are significantly
higher by 7.36%, 7.46%, and 7.97%, respectively, than those of
3-DCNN. However, the performance of both KNN–AFFT–SSC
and IVS–KNN–AFFT–SSC methods is inferior to 3-DCNN. The
highest improvement in OA (7.36%↑), AA (7.46%↑), and Kappa
(7.97%↑) is achieved by the IVS–NB–AFFT—SSC method
when compared with 3-DCNN. In addition, the classification
accuracy of the exposed soils class is tremendously improved
by about 70.53% with the IVS–SVM–AFFT–SSC method when
compared with the SVM classifier with the first three PCs. The
classification accuracy of the riparian class is significantly im-
proved by about 24.91% with the IVS–NB–AFFT–SSC method
when compared with the NB classifier with the first three PCs.
Similarly, there is an improvement observed in the classification
accuracy of the exposed soils class by about 10.52% with the
IVS–KNN–AFFT–SSC method when compared with the KNN
classifier with the first three PCs.

The execution times of the IVS-based SSC methods (IVS–
SVM–AFFT–SSC, IVS–NB–AFFT–SSC, and IVS–KNN–
AFFT–SSC), as can be seen from Tables V to VII, for the classi-
fication of three HS datasets, are slightly higher when compared
to their conventional counterparts and also the classifiers with
the first three PCs and it is dependent on the number of classes
present in the HS dataset. The RGB/gray scale image, the ground
truth, and the classified images are obtained by various classifi-
cation methods including 3-DCNN and the methods based on the
proposed SSC approach for the WDC-M dataset, the Salinas-A
dataset, and the Botswana dataset are shown in Figs. 3, 4, and
5, respectively.

VI. CONCLUSION

The proposed SSC approach based on the NB classifier and
the AFFT yielded superior classification results for three real HS
datasets. The generality of the approach with the well-known

additional ML classifiers, such as SVM and KNN, has been
demonstrated. It is found that the NB classifier as a wrapper in
the proposed SSC approach continues to exhibit relatively better
performance compared to the SVM and the KNN classifiers
for the Botswana dataset. On the contrary, the SVM classifier
as a wrapper in the SSC approach exhibits relatively better
performance than the NB and the KNN classifiers for WDC-M
and Salinas-A datasets. In the overall sense, the IVS–SVM–
AFFT–SSC method yielded the highest accuracy, achieving
impressive OA, AA, and Kappa (with percentage of increase)
of 99.84% (0.82%↑), 97.79% (5.13%↑), and 99.77% (1.16%↑)
for the WDC-M dataset, 99.57% (0.62%↑), 99.61% (0.81%↑),
and 99.46% (0.77%↑) for the Salinas-A dataset, whereas the
IVS–NB–AFFT–SSC method achieved OA, AA, and Kappa of
93.04% (7.36%↑), 93.50% (7.46%↑), and 92.46% (7.97%↑) for
the Botswana image (when compared to the SOTA 3-DCNN
method). The novel approach of using the IVS–FS method to
obtain classwise PCs contributed significantly to the superior
accuracy achieved by the IVS–NB–AFFT–SSC and IVS–SVM–
AFFT–SSC methods. Notably, this approach not only enhanced
classification accuracy but also provided users with the ability
to concentrate on a specific set of PCs for the class of their
interest, further improving the applicability and usefulness of
the approach.
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