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PSFNet: Efficient Detection of SAR Image Based on
Petty-Specialized Feature Aggregation

Peng Zhou ", Peng Wang
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Abstract—With the rapid development of deep learning, con-
volutional neural networks have achieved milestones in synthetic
aperture radar (SAR) image object detection. However, object
detection in SAR images is still a great challenge due to the difficulty
in distinguishing targets from complex backgrounds. At the same
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time, most of the targets in SAR images are small and unevenly
distributed, which makes it challenging to extract sufficient feature
information. To solve these issues mentioned above, an efficient ob-
ject detection network for SAR images based on Swin transformer
and YOLOV7 is proposed in this article. First, we design a novel fea-
ture aggregation module Petty-specialized feature aggregation (PS-
FPN) to enrich small targets’ semantic and spatial features while
keeping the model lightweight. PS-FPN module uses the fusion of
deep and shallow features by using cross-layer feature aggregation
and single-branch feature aggregation to enhance the detection
of small targets. Second, a novel attention mechanism strategy
mix-attention is proposed to find more attention regions. Finally,
we add one more prediction head to extract shallow features that
effectively preserve small targets’ feature information. To verify
the effectiveness of the proposed algorithm, extensive experiments
are carried out on several challenging SAR image datasets. The
results show that, compared with other state-of-the-art detectors,
the proposed method can achieve significant performance based on
lightweight detection.

Index Terms—Feature aggregation, mix-attention, object
detection, synthetic aperture radar (SAR), swin transformer,
YOLOV7.

I. INTRODUCTION

YNTHETIC aperture radar (SAR) is an indispensable and
S vital monitoring tool in the field of remote sensing. The
unique advantage of SAR is that it is not limited by time or
any adverse weather conditions. SAR has the capability of
performing multiview imaging and exhibiting a specific per-
spective ability, which can be widely applied in various remote
sensing fields. Object detection is an essential application of
SAR imagery, which plays a significant role in military and
civil fields, such as maritime surveillance, forestry construction,
and agricultural monitoring. This article focuses on improving
the accuracy of SAR image object detection while maintaining
lightweight performance, which provides help for the above
practical applications.

At present, there is an increasing number of SAR signal
processing and image processing algorithms, which have pro-
vided access to high-quality and large-scale SAR imagery data
[11, [2]. Li et al. [3] proposed an optimal time selection algo-
rithm based on multiscatterer time—frequency analysis, which
improves the azimuth focusing performance of SAR images and
better characterizes the spatial variation of SAR targets’ Doppler
frequencies. Li et al. [4] also introduced a novel time-domain
notched filtering algorithm that demonstrates capabilities in
pulse interference detection and suppression of radio frequency
interference. Chen et al. [5] employed a similar pixel number
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indicator that effectively reflects the differences between pix-
els and filters out speckle noise. These advanced SAR signal
processing algorithms have generated higher quality images,
enabling improved detection performance in SAR image object
detection.

In addition, both high-quality SAR images and excellent
detection algorithms are essential. Suitable detection algorithms
can significantly enhance SAR object detection performance.
Traditional SAR object detection algorithms are mainly divided
into three procedures: region selection, feature extraction, and
classification [6]. The principal purpose of region selection is
to regress the targets. The feature extraction based on region
selection accurately expresses the target region, which is the core
task of object detection. Traditional feature extraction methods
include scale-invariant feature transform [7] and histogram of
oriented gradient [8]. However, the features extracted by tradi-
tional detection methods are ineffective for object detection in
SAR images. Speckle noise and motion blur in SAR images may
cause unnecessary differences between targets, which makes it
difficult for traditional SAR object detection [9]. In the theoreti-
cal research of object detection in SAR images, the constant false
alarm rate (CFAR) detection algorithm is the most widely used
and effective detection method. However, the CFAR algorithm
is greatly affected by the background statistical area. Gener-
ally speaking, increasing the statistical area of the background
increases the accuracy of the target description. However, this
approach may lead to increased background clutter and a higher
false alarm rate [10]. Therefore, it is necessary to address these
issues when using traditional methods for SAR image object
detection.

In recent years, thanks to the development of hardware and
computing power, convolutional neural network (CNN) has
made significant progress in SAR image object detection. Com-
pared with the traditional methods, the method based on deep
learning promotes the development of object detection due to
its excellent feature expression and learning ability. At present,
detection methods based on deep learning are mainly divided
into two types, namely, two-stage and single-stage detectors.

The two-stage detector divides the detection process into
two parts. First, multiple candidate regions that may contain
objects are generated. Then, the detector performs classification
and regression tasks on each candidate region to obtain the
detection results. Typical two-stage object detection methods
include R-CNN series [11], [12], [13]. Although the two-stage
detector performs well in accuracy, processing a large num-
ber of candidate regions will incur additional computational
overhead. Unlike the two-stage algorithm, the single-stage de-
tector directly generates the category and location information
of the target, sacrificing detection accuracy for computational
efficiency. Typical single-stage detectors include YOLO series
[14], [15], [16], SSD series [17], etc. However, due to the
intrinsic locality of convolution operation, it is still difficult for
these methods to extract the global information in space-time
[18]. Therefore, some methods have been proposed to solve this
problem. Chen et al. [19] used ResNet [20] as the backbone
network, Zhang etal. [21] used the dilated convolution to replace
the traditional convolution, and Fang et al. [22] and Peng et al.

[23] used attention mechanism to improve the global feature
extraction ability of the model. Although these methods increase
the receptive field of the network, the ability to extract global
information still fails to achieve satisfactory results in object
detection.

Vaswani et al. [24] proposed the transformer model in 2017,
which is a significant breakthrough in artificial intelligence. In
recent years, many scholars have introduced transformer into
the field of computer vision (CV) [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36]. Due to the amazing se-
mantic representation capability of the transformer, it performs
as well or even better than CNN in various CV tasks, such
as image classification [25], [26], object detection [29], [30],
[31], semantic segmentation [27], [29], [32], image generation
[33], [34], and super-resolution [35], [36], [37]. Unlike CNN
networks, which require attention mechanism modules to focus
on attention features, the vision transformer (ViT) [25] network
can directly extract global attention. In fact, ViT is the first model
to apply the global attention mechanism to image applications,
making it a promising approach for a wide range of CV tasks.
ViT network takes 2-D image patches with location information
and class tokens as input, achieving comparable performance to
CNN-based methods on large-scale image classification tasks.
Although ViT has achieved dazzling breakthroughs in image
feature extraction, its computational overhead makes it chal-
lenging to deploy in practical applications. Therefore, Liu et al.
[28] proposed the Swin transformer network, which uses the
shifted window scheme to calculate the self-attention in the local
window, effectively reducing the computational complexity of
self-attention and acquiring the best results in several CV tasks.
Furthermore, DeiT [26] leverages the transformer network for
efficient image classification and object detection while en-
hancing the model’s robustness and generalization capabilities
through the utilization of knowledge distillation and image
embedding techniques. Given the remarkable performance of
the transformer and its variants in CV tasks, particularly in
image classification, the development potential of these models
in object detection looms large.

However, due to the significant differences in distance be-
tween SAR and targets, targets in SAR images tend to be small
in size and densely packed. Traditional object detection meth-
ods struggle to meet the requirements of practical applications
when detecting densely packed small targets in SAR images,
in terms of detection accuracy and lightweight performance. In
addition, the presence of speckle noise makes the SAR image
background more complex. Therefore, achieving high-precision
and lightweight object detection in SAR images has emerged as a
formidable challenge. To address the above problems, this article
proposes an efficient detection method PSFNet for SAR images
based on Petty-specialized feature aggregation (PS-FPN). First,
the PS-FPN is designed to focus on cross-layer information in
multiscale features and the enhancement of shallow feature in-
formation. Second, a novel attention mechanism mix-attention is
proposed to suppress the interference of SAR image background
in extracting target features, which is more conducive to discov-
ering more target regions. Moreover, a new prediction head with
a smaller receptive field is added at 4 x4 times downsample of
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the network, which will retain more detailed feature information
for small object detection. Our main contributions are as follows.

1) In order to enhance the feature extraction of small targets
in complex SAR scenes while maintaining the model’s
lightweight performance, we have designed a novel fea-
ture fusion module PS-FPN. The PS-FPN performs cross-
layer feature extraction through multiple parallel feature
aggregation paths, extracting deep abstract semantic in-
formation to the shallow layer for fusion. It also uses
single-branch feature aggregation to strengthen the extrac-
tion and fusion of shallow feature information. In addi-
tion, PS-FPN introduces depthwise separable convolution
(DSC) to replace a portion of the convolution in PSFNet.
This effectively reduces the model parameters and com-
putational complexity, resulting in improved lightweight
performance for PSFNet.

2) To further suppress the interference of complex back-
grounds in SAR images, this article proposes a novel
attention mechanism strategy mix-attention. Specifically
designed for the differences in detected targets between
high- and low-level detection layers, mix-attention allo-
cates attention extraction schemes reasonably, effectively
extracting small targets from complex backgrounds. At
the same time, considering the small receptive field of the
shallow detection layer, we add a new detection layer to
the backbone network for more effective detection of small
targets.

3) Furthermore, to validate the effectiveness of our proposed
method, this article conducts a comprehensive experimen-
tal analysis of the algorithm. It compares the impact of
different modules of PSFNet on detection and explores
the advantages of the algorithm. In addition, this article
compares the proposed algorithm with other classical SAR
image detection networks, demonstrating its superiority
and applicability.

The rest of this article is organized as follows. Section Il intro-
duces the related work of object detection. Section III introduces
the proposed model in detail. Section IV describes the contrast
and ablation experimental procedure in detail and displays the
experimental results, respectively. Finally, Section V concludes
the article.

II. RELATED WORK

Object detection is a classic task of CV. Despite ongoing
efforts by researchers to develop more robust object detection
algorithms, the task of detecting objects in both general and spe-
cific contexts remains a formidable challenge. In the following,
we first introduce the relevant methods of general small object
detection, and then review the methods especially used for SAR
images.

A. General Small Object Detection

As GPU computing power has improved, CNN in deep learn-
ing has increasingly replaced traditional machine learning for
object detection. As a result, many CNN-based object detection

algorithms with excellent detection performance have emerged
in recent years, including Faster R-CNN, YOLOv3, SSD, etc.

However, these algorithms mentioned above cannot achieve
high accuracy in the task of small target detection. Unlike
regular objects, small objects usually have less feature map
information, which makes general object detection algorithms
unable to extract enough feature information. Many researchers
have attempted to enhance the performance of algorithms due
to the negative impact of small object characteristics. Image
pyramid and feature pyramid methods are the commonly used
techniques to achieve this goal, as they are particularly effective
in improving the detection of small objects. Image pyramids
have the capability to take images of different sizes, which
can improve model’s performance in detecting small objects.
However, the use of multiscale training strategies in image
pyramids can lead to extreme differences in scale. To overcome
this issue, the SNIP method was proposed [38]. During gradient
backpropagation, SNIP only provides monitoring signals for
objects within a specific scale range, ignoring those too large
or too small. This approach effectively prevents extreme scale
changes.

Although image pyramid can improve the detection of small
objects, its computational load is deemed unacceptable. Conse-
quently, object detection algorithms usually rely on feature pyra-
mids, which employ the high-resolution feature map to predict
small objects and the low-resolution feature map to predict large
objects. This approach facilitates the encoding of multiscale
features akin to image pyramids, circumventing the issue of
excessive computational burden. However, the limited represen-
tation ability of shallow feature maps will restrict the detection
performance of small objects. To address this problem, the
feature pyramid network (FPN) [39] was developed. FPN allows
information transfer between feature maps of different scales,
thereby significantly improving the detection performance of
small objects. Based on this foundation, several variants of FPN
have been created, including path aggregation network [40],
bidirectional FPN [41], and neural architecture search FPN [42].

B. SAR Image Object Detection

At present, with the advancement of SAR imaging technol-
ogy, researchers have been able to generate high-quality SAR
datasets, such as MSAR-1.0 [43], SSDD [44], and SAR-Ship-
Dataset [45]. This has made SAR object detection a current
research hotspot. Most traditional SAR object detection methods
focus on the classical CFAR algorithm, which is a method based
on gray features. Among them, the two-parameter CFAR method
is a classical local adaptive object detection method [46]. This
method achieves object detection by traversing the SAR image
through a preset sliding window and comparing the pixel gray
level in the window with an adaptive threshold to distinguish
targets from clutter. Ai et al. [47] proposed a CFAR detection
method based on bilateral fine-tuning statistics, which uses a
strategy based on the bilateral threshold to eliminate outliers and
improve detection performance in ocean scenes automatically.
Notwithstanding their efficacy, these methods are constrained
by their reliance on high contrast between targets and clutter in
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SAR images, which is necessary to conform to the statistical
distribution of clutter. Moreover, their adaptability to complex
background scenes in object detection is limited. Therefore, Huo
et al. [48] used the maximum-stable extreme region algorithm
to select candidate regions for detection and obtain the threshold
to detect the target in SAR images. On the other hand, Shi
et al. [49] utilized the directed gradient histogram for feature ex-
traction to achieve ship-background separation. However, these
methods are commonly constrained by their inability to adapt to
background transformations in large datasets and their limited
capacity for autonomous feature learning.

In recent years, the increasing improvement in hardware
computing power has led to the wider use of deep learning
techniques. Compared with traditional methods, CNN methods
have several advantages. They can achieve high accuracy in
object detection tasks without designing complex feature ex-
traction methods. Chen et al. [50] proposed an effective detec-
tion network algorithm that can detect multiscale SAR ships
in complex scenes with the use of an attention mechanism.
MSRIHL-CNN proposed by Ai et al. [51] combines low-level
texture edge features and high-level depth features. Cui et al.
[6] introduced the spatial shuffle-group enhance module into
CenterNet [52] to extract stronger semantic features while sup-
pressing some noise. Sun et al. [53] proposed an anchor-free
method for ship target detection in high-resolution SAR images.
This method combines the fully convolutional one-stage object
detection network with a category-position module to detect
ship targets. Kang et al. [54] combined a high-resolution region
proposal network with an object detection network featuring
contextual features to enhance the detection performance of
ships. By integrating deep semantic and shallow high-resolution
features, they achieved improved ship detection performance. At
the same time, some researchers have investigated the impact
of ground truth proximity to the target on the performance
of SAR object detection. Sun et al. [55] proposed a novel
SAR rotated ship detector, named BiFA-YOLO, based on the
YOLO framework. This detector incorporates bidirectional fea-
ture fusion and angular classification techniques to enhance the
detection performance of arbitrary-oriented ships. Furthermore,
research works on algorithm lightweighting are also necessary.
Zhou et al. [56] designed a lightweight and scattering feature
extraction backbone that is more suitable for SAR image data
and a new multiscale feature fusion neck for the multiscale
feature discrepancy. Ma et al. [57] introduced Light-YOLOv4,
a new lightweight object detection network that achieves model
lightweight design by applying L1 regularization to channel
scaling factors and performing network channel pruning. Addi-
tionally, knowledge distillation is employed to enhance detection
accuracy through model retraining.

CNN-based methods are not good at effectively extracting
long-term global features, which limits the detection perfor-
mance of object detection algorithms. Inspired by the success
of transformer in vision tasks, more scholars have devoted
themselves to the research of SAR object detection based on
transformer. Zhou et al. [58] introduced a new aggregation mod-
ule AggregationS to achieve high-precision detection of SAR
images. This module was achieved by encoding support and

query features into the same feature subspace. Zhou et al. [59] in-
troduced overlapping block embeddings and hybrid transformer
encoder modules, which overcome the impact of target density
and insufficient data on detection accuracy. Then, the normal-
ized Gauss—Wasserstein distance loss is used to suppress the
influence of the scattered interference from the ship boundary.
However, both CNN-based and transformer-based networks face
the challenge of achieving the best performance balance between
detection accuracy and model lightweight when detecting small
targets in SAR images. Therefore, this article combines the Swin
transformer and YOLOV7 to explore the algorithm that can better
handle the detailed features of SAR images.

III. METHOD
A. Framework Overview

Swin transformer is one of the most popular CV models due to
its global attention view, which both convolutions and attention
mechanisms lack. Therefore, we choose it as the backbone of our
network. In addition, considering that YOLOv7 [16] has better
feature extraction ability and speed advantages in model infer-
ence, we decide to incorporate some modules of YOLOvV7 for
prediction. Specifically, we have employed the spatial pyramid
pooling and convolutional spatial pyramid pooling and extended
efficient layer aggregation network. Consequently, we propose
an efficient object detection method for SAR images based on
PS-FPN.

The overall framework of the proposed method is illustrated
in Fig. 1, where the backbone consists of Swin transformer
blocks. The neck is responsible for fusing multiscale features
and enhancing the details of small targets via the PS-FPN and
mix-attention. In this section, we present the overall process
and highlight the key technical points of our proposed method.
Subsequently, each branch of the proposed method is described
in detail.

B. Swin Transformer

Due to the complex background interference in SAR images,
extracting representative target features using common convo-
lutional structures becomes challenging. Therefore, this article
utilizes Swin transformer to extract global information and allo-
cate attention, significantly enhancing the algorithm’s ability to
extract features from SAR images. Furthermore, when compared
to other transformer-based models, window based multihead
self-attention (W-MSA) and shifted window based multihead
self-attention (SW-MSA) modules within the Swin transformer
demonstrate a remarkable ability to reduce computational com-
plexity while maintaining high-performance feature extraction.
This characteristic is crucial for ensuring that our model remains
lightweight. The following is a detailed description of W-MSA
and SW-MSA modules.

1) W-MSA Module: The ViT [25] and DeiT [26] use the
standard MSA module, which calculates global self-attention on
the entire feature map. However, their computational complexity
is proportional to the input size squared, resulting in a notable
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computational burden. To address this issue, the Swin trans-
former [28] introduced the W-MSA module, which performs
local self-attention calculation in each window. The W-MSA
module partitions the input feature map into multiple nonover-
lapping windows of size MxM. As a result, the computational
complexity of the W-MSA module is linearly proportional to the
input size, reducing the computational overhead. The formulas
for the computational complexity of the MSA and W-MSA
modules are presented in (1) and (2), respectively

Q(MSA) = 4hwC? + 2(hw)*C
QW — MSA) = 4hwC? + 2M*hwC

ey
©))

where h and w represent the height and width of the feature map,
C represents the number of channels, and M represents the size
of the window.

2) SW-MSA Module: Due to the W-MSA module performing
self-attention only in local windows, there is no connection
between each window, which makes it challenging to capture
the global features comprehensively. Therefore, Liu et al. [28]
proposed the SW-MSA module to alleviate this drawback. The
SW-MSA module window is offset by (M/2), (M/2) relative to
the W-MSA module window. Within the Swin transformer, the
W-MSA module alternates with the SW-MSA module to enlarge
the network’s receptive field.

C. Petty-Specialized Feature Aggregation

Compared to traditional optical images, SAR images tend to
contain a larger number of small targets, which typically convey
less information. Furthermore, due to the repeated downsample
performed by the convolution and pooling layers, the pixel
values corresponding to small targets in the feature map may
gradually vanish, leading to more challenges in object detection.
To address this issue, many existing object detection algorithms
extract multiscale features via the backbone network. In this
approach, the low-level feature maps possess higher resolution
and more fine-grained features that enable accurate regression
of detection coordinates. Therefore, utilizing low-level feature
maps is more effective for predicting small objects. However,

Fig.2. Brief model structure of the PSFNet. PS-FPN structure in the neck fea-
ture fusion module of PSFNet. The dotted line represents the partial structure of
the preserved PAN [40] module, whereas the solid line represents the innovation
of this article in PS-FPN.

due to the limited semantic information in low-level feature
maps, the classification ability of the model may be inadequate
[60].

In addition, due to the lack of spatial information, the high-
level feature map may not be able to predict the location of
objects precisely. To address these issues mentioned above,
many detection networks employ feature fusion techniques in
the neck layer, such as FPN and PAN, to fuse feature maps
at different scales and facilitate deep semantic information and
shallow regression information. These fusion structures use top-
down and bottom-up fusion paths to transfer and fuse semantic
information from high-level feature maps and spatial location
information from shallow feature maps, resulting in improved
feature fusion in general object detection scenarios. However, in
SAR images, the presence of speckle noise and a large number
of small targets may hinder the effective extraction of feature
information by general neck feature fusion networks.

Therefore, as shown in Fig. 2, we propose the PS-FPN mod-
ule, which mainly consists of cross-layer feature aggregation and
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single-branch feature aggregation. The structure of the cross-
layer feature aggregation is shown in Fig. 3(a). This module
retains the bottom-up transfer branch of the PAN module. In
addition to the bottom-up feature information stitching from
layer i+1 to layer i after feature extraction by convolution, we
also add feature information stitching from layer i+1 to layer
i before the convolution operation. These features extracted by
convolution operation generally represent the original feature
map. Still, they may lose some original details crucial for small
targets with less feature information. Therefore, using the cross-
layer feature aggregation module can better retain the detailed
information of small targets and strengthen the feature extraction
ability of small-sized and medium-sized targets. Similarly, the
structure of the single-branch feature aggregation is shown in
Fig. 3(b). In this structure, a residual is added to the tail of
the neck module in the layer i. This can effectively retain the
original feature details of each layer and prevent them from being
covered by the stacked convolution layers and pooling layers. In
addition, this approach helps to enrich the feature information
of the detection branch and effectively prevents the degradation
of the network [20].

The PS-FPN structure generally consists of four detection
layers. We introduce a detection layer at the 4x4 downsample
stage of the Swin transformer, enhancing the network’s capa-
bility to detect small-sized and medium-sized targets in SAR
images. This enhancement is achieved by utilizing the high
adaptability of the receptive field in the shallow feature layers
to effectively adapt to small target sizes. PS-FPN preserves
the bottom-up feature fusion of the FPN architecture while
introducing a top-down feature fusion between the 4 x4 times
downsample and the 8 x 8 times downsample. These approaches
effectively flow information between the shallow feature layers
and enrich the shallow feature information.

In a word, the cross-layer feature aggregation and single-
branch feature aggregation structures play a vital role in the
PS-FPN structure. We use two cross-layer feature aggregation
and single-branch feature aggregation structures between de-
tection layer 1 and detection layer 2, and one cross-layer fea-
ture aggregation structure between other deep detection layers.
The shallow feature layer in our model is characterized by a
large size feature map and small receptive field. It is primarily
responsible for detecting small- and medium-sized targets in
SAR images. In the PS-FPN framework, a bottom-up structure is
utilized to transmit deep semantic information upward, ensuring
the preservation of detailed features from deeper layers. This

CA

—
I‘ CBAM
i -~

Structure of the mix-attention.

Fig. 4.

approach effectively addresses the problem of lacking shallow
feature information related to small targets, thereby significantly
improving overall performance. Furthermore, in order to address
the potential model degradation caused by increasing the number
of layers and complexity of the structure, the single-branch
feature aggregation is incorporated in detection layer 1 and
detection layer 2. It is worth mentioning that the proposed FPN-
based structure for SAR images mainly focuses on enhancing the
feature information of shallow feature layers 1 and 2. The aim
of this approach is to emphasize the crucial feature information
extracted by the Swin transformer in the shallow layers, thereby
improving the detection ability of small- and medium-sized
targets.

To keep the network lightweight, DSC [61] is used instead
of convolution in PS-FPN to extract feature information more
efficiently. DSC involves two processes: depthwise convolution
(DW) and pointwise convolution (PW). DW convolution cap-
tures channel-specific spatial information, whereas PW convo-
lution integrates cross-channel information and reduces com-
putational complexity. They enable feature extraction and fu-
sion within each channel, effectively reducing the parameters
involved in the operation. Moreover, compared to other feature
fusion modules, such as the PAN module, our approach signifi-
cantly simplifies the module’s processing of deep feature maps,
resulting in minimal impact on SAR image detection accuracy
while maintaining the model’s lightweight.

D. Novel Attention Mechanism Strategy Mix-Attention

SAR images have a scattering imaging mechanism, which
makes it difficult to effectively distinguish between background
and targets. In addition, the presence of speckle noise further
complicates object detection networks used for SAR image de-
tection. To overcome these difficulties, we propose a new method
that utilizes attention mechanisms to effectively suppress the
network’s interference from the noise and background in SAR
images. Specifically, we introduce a novel attention mechanism
mix-attention, which is tailored to the characteristics of different
detection layers. Mix-attention is composed of two components,
namely CA [62] and CBAM [63], both of which possess vi-
tal feature focusing capabilities and lightweight plug-and-play
characteristics.

The structure of the mix-attention is shown in Fig. 4. To
improve the detection accuracy of small objects, we use the
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Fig. 5.  Structure of the coordinate attention (CA).

CA attention mechanism on the first two shallow detection
layers of the model. This approach helps to enhance the precise
localization ability of the shallow feature layer. Next, we apply
the CBAM attention mechanism on the two deep detection layers
to compensate for the lack of spatial information. This process
enhances the concentration and extraction of deep feature in-
formation, facilitating the transmission of more comprehensive
feature details to the shallow layer. As a result, the detection of
small targets is significantly strengthened.

In summary, to improve the position regression ability of
the shallow layer for small targets, we use CA to fuse the
target’s position information into the feature information. In
addition, the deep detection layer possesses abundant semantic
information, a compact feature map size, and a wealth of channel
information. Therefore, we use CBAM to enrich the feature
information. These enhancements effectively improve the net-
work’s detection ability for SAR images while incurring almost
no computational overhead. Following is a brief introduction to
the structure of CA and CBAM.

1) CA: Recentresearch in mobile network design has shown
that channel attention can significantly boost model perfor-
mance. However, these approaches often neglect location infor-
mation, which is critical for generating spatially selective atten-
tion maps. To address this issue, Hou et al. [62] proposed a CA
that combines channel attention with location information. As
is shown in Fig. 5, this technique captures remote dependencies
along one direction and preserves precise location information
along another. The resulting feature maps are then encoded into
a pair of direction-aware and location-sensitive attention maps,
respectively. These maps can be applied to the input feature
maps to enhance the representation of the attention object. The
formula is as follows:

Spatial attention M,

Channel attention M,
e ‘
b 6——®

Input Feature

Refined Feature

Fig. 6. Structure of the convolutional block attention module (CBAM).
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where z represents the input feature Fiypy € RV *# ¢ 2% and

z¥ represent the output result of AvgPool, F} represents concat
and convolution operation,d and o represent BN and activation
function, respectively, " andg"™ represent focus results of the
feature in x and y directions, respectively, and y.represents the
output result of the CA.

2) CBAM: CBAM is asimple and effective attention module
for feedforward CNNs, as shown in Fig. 6. Given an intermediate
feature map, CBAM infers the attention map along two inde-
pendent dimensions: channel and space. The resulting attention
map is then multiplied by the input feature map to modify the
features adaptively. CBAM effectively combines spatial and
channel information in the feature map, enhancing the network’s
detection performance. As a lightweight and versatile module,
CBAM can be seamlessly integrated into any CNN architecture
with minimal overhead. The formula for CBAM is as follows:

F'= M,(F) x F ©)

F" = M,(F') x F’ (10)
M.(F) = o(MLP(AvgPool(F))) + MLP(MaxPool(F))
(11

My (F) = o(f™7([AvgPool(F); MaxPool(F)])) (12)

where F' represents the input feature Fypy € RV *H*C and
M. and Mj represent the spatial attention module and channel
attention module, respectively.

IV. EXPERIMENTS

In order to evaluate the performance of the proposed algorithm
in SAR image object detection task, experiments were carried
out on three SAR image datasets, i.e., MSAR-1.0 [43], SSDD
[44], and SAR-Ship-Dataset [45]. As shown in Fig. 7, we list
the number of each category in the three datasets. The detailed
information about these datasets is described in Section IV-A.
Section IV-B describes the relevant settings of the experiment.
Section IV-C presents the evaluation criteria used in this ar-
ticle. Section IV-D provides a comprehensive analysis of the
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Fig. 7. Number of labels of each category on different datasets.

comparative results achieved on MSAR-1.0, SSDD, and SAR-
Ship-Dataset. Section IV-E presents the results of the ablation
experiment on MSAR-1.0.

A. Datasets Introduction and Processing

1) MSAR-1.0: The MSAR-1.0 dataset [43] comprises a to-
tal of 28449 images captured by the Hysi-1 satellite and the
Gaofen-3 satellite. This dataset encompasses diverse scenarios
such as airports, ports, nearshore areas, islands, offshore regions,
urban areas, etc. In addition, the dataset has four label categories,
namely aircraft, tank, bridge, and ship. Specifically, the dataset
contains 1851 bridge instances, 39858 ship instances, 12319
tank instances, and 6368 aircraft instances. Most images of
the MSAR-1.0 dataset have a resolution of 256x256 pixels,
whereas bridge instances are presented at a higher resolution of
2048 %2048 pixels. To specifically assess the detection perfor-
mance of small- and medium-sized targets in SAR images, we
apply a preprocessing step on the MSAR-1.0 by excluding the
larger bridge targets. Subsequently, the dataset is divided into
training, validation, and test sets following a ratio of 6:2:2.

2) SSDD and SAR-Ship-Dataset: The SSDD [44] includes
1160 images captured by SARs labeled with bounding boxes
and a predefined category as ship. We adjust the resolution of
the SSDD dataset to 416x416 pixels. The SAR-Ship-Dataset
[45] includes 39729 images that are captured by SARs and
labeled with bounding boxes and a predefined category of ship.
The resolution of the dataset is 256x256 pixels. To further
assess the effectiveness of our method in detecting small and
densely packed targets of SAR images, we perform a selection
process on the SAR-Ship-Dataset. Specifically, we process this
dataset exclusively comprising images that contain two or more
ships, thereby focusing on challenging scenarios with dense
target arrangements. The final dataset consists of 4918 images
and labels. SSDD and SAR-Ship-Dataset are divided into the
training set and validation set with the ratio of 8:2. In addition,
the validation set is generated as the test set. The validation and
test set are only used for model evaluation and do not participate
in the model training process.

B. Implementation Details

The proposed method is implemented on Pytorch 1.10.0,
CUDA 11.3 and CUDNN 8.2.1 with Intel(R) Core (TM) i7-
12700 @ 2.10 GHz CPU and a NVIDIA GeForce RTX 3070Ti
GPU. The operations of random flips, random scaling (between
0.6 and 1.3), crop, color dithering, and mosaic are used for data
enhancement, and the Adam operation is used to optimize the
overall goal. The learning rate of the network is set to le—3 for
the first 200 iterations and 1e—4 for the last 100 iterations. The
weight delay is 0.0005 and the momentum is 0.937.

C. Evaluation Criteria

In order to accurately quantify the detection performance of
the proposed model on SAR images, this article employs the
highest recognized evaluation index of multiple object detection
tasks: mean average precision (mAP). AP is the process of
calculating the average accuracy of 10 IoU thresholds from 0.5 to
0.95 in steps of 0.05 for each class. AP50 is the average accuracy
calculated with an IoU threshold of 0.5. mAP is the average of
AP of all categories, and mAP50 is the average accuracy of mAP
calculated with the IoU threshold of 0.5. The calculation process
of mAP is as follows:

o TP
Precision = m (13)
TP
- 14
Recall = 5 FN (1
1 n .
MmAP = - E s J(Precision, Recall)k (15)

where TP (true positive) represents real examples, FP represents
false positive examples, FN represents false negative examples,
n represents the number of categories, and J(Precision, Recall)y,
represents the average precision (AP) function.

D. Comparative Experiments

In order to verify the robustness of the proposed method,
experiments were carried out on MSAR-1.0, SSDD, and SAR-
Ship-Dataset with 256x256, 416x416, and 256x256 pixels,
respectively. Table I compares the detection performance of
the baseline model and the proposed algorithm on MSAR-1.0,
SSDD, and SAR-Ship-Dataset, including mAP, Parameters,
GFLOPS, and frames per second (FPS). The baseline model
is YOLOv7 with Swin transformer as the backbone network.
Meanwhile, the detection AP of both the baseline model and our
algorithm for each category within the three datasets is listed in
Table I.

As shown in Table I, compared with the experimental results
of the baseline network on the MSAR-1.0 dataset, the detection
AP of the proposed algorithm on aircraft, ship, and tank is
increased by 23.2%, 4.8%, and 6.4%, respectively, and the total
mAP is increased by 11.6%. The results demonstrate a sub-
stantial improvement in the detection accuracy of the proposed
algorithm within the MSAR-1.0 dataset. Particularly noteworthy
is the significantly higher accuracy growth observed for small
objects such as aircraft and ships, as compared to larger objects
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TABLE I
MAP (%) OF EACH CATEGORY OF OBJECTS IN VALIDATION SET OF MSAR-1.0, SSDD, AND SAR-SHIP-DATASET

0,
Dataset Method mAP50 (%) Airorafl APSSl?i; %) Tank Parameters GFLOPS FPS Input-size
Baseline 60.9 17.6 78.1 87.2 52.2M 20.405G 24.7
MSAR-1.0 PSFNet 72.5 40.8 82.9 93.6 40.2M 24.208G 23.5 2367236
Baseline 90.8 90.8 52.2M 47.729G 15.4
SSDD PSFNet 92.7 ! 92.7 / 40.2M 57.767G 14.3 416x4t6
-Ship- Baseline 87.9 87.9 52.2M 20.405G 24.7
S;A)I;t:::tp PSFNet 90.9 ! 90.9 / 40.2M 24.208G 234 2367236
The significance of bold values means the results of our proposed method.
TABLE II
COMPARISON RESULTS OF DIFFERENT METHODS ON MSAR-1.0
Method Backbone m/?of/tjo Airoraft Ship AP0 (%) Tank Parameters GFLOPS
YOLOV4 [15] Darknet53 46.3 9.6 62.7 66.6 63.9M 22.636G
YOLOV5 CSP-DarkNet53 56.7 6.3 76.9 86.9 46.6M 18.284G
YOLOV7 [16] CSP-DarkNet53 51.8 3.1 76.4 80.7 37.2M 16.824G
YOLOV8 CSP-DarkNet53 64.6 21.1 824 90.3 43.6M 26.466G
Retinanet [64] Resnet50 473 0.1 60.4 81.5 55.4M 36.023G
SSD [17] VGG16 46.2 6.7 63.4 68.3 23.9M 61.006G
EfficientDet [65] Efficientnet 45.2 0.1 58.9 76.5 33.4M 10.431G
Faster Renn [13] Resnet50 523 23 72.1 82.4 136.8M 184.890G
Centernet [52] Resnet50 65.5 10.3 90.2 96.2 32.7M 17.554G
TPH-YOLOVS5 [60] CSP-DarkNet53 69.1 334 822 95.2 45.4M 51.267G
SGEA [6] Resnet50 66.6 10.4 92.9 96.5 342M 17.574G
Our method Swin transformer 72.5 40.8 82.9 93.6 40.2M 24.208G

The significance of bold values means the results of our proposed method.

such as tanks. Experimental results on SSDD and SAR-Ship-
Dataset datasets show that the proposed algorithm improves the
mAP by 1.9% and 3.0%, respectively. It further demonstrates
the superior detection performance of the improved model on
small objects.

In addition, after analyzing Table I, it is evident that our
proposed network exhibits desirable lightweight performance.
Specifically, there is almost no change in the amount of GFLOPS
and FPS when compared to the baseline network, whereas the
number of parameters is significantly reduced. This indicates
that our proposed innovations in this network yield a highly
efficient and effective performance.

Moreover, to comprehensively evaluate the effectiveness of
the proposed algorithm and its detection capability on SAR
images, we have performed comparative analyses with other
state-of-the-art (SOTA) algorithms on the MSAR-1.0, SSDD,
and SAR-Ship-Dataset.

1) Detection Results on MSAR-1.0: In Table II, we present
a comparative analysis of the detection results achieved by
the proposed algorithm and other SOTA algorithms on the
MSAR-1.0. The evaluated algorithms include YOLOv4 [15],
YOLOVS5, YOLOvV7 [16], YOLOVS, Retinanet [64], SSD [17],
EfficientDet [65], Centernet [52], Faster R-CNN [13], TPH-
YOLOVS5 [60], and SGEA [6]. According to the results presented
in Table II, the proposed method achieves the highest AP among
other representative detectors. Specifically, the mAP of our
approach reached 72.5%, which is a 20.7% improvement over
YOLOv7. Moreover, our method achieves higher detection AP
than YOLOV7 in each category, demonstrating the effectiveness

of our innovations combined with YOLOv7 for SAR image
detection. Furthermore, compared to the current SOTA algo-
rithms, our method outperforms most algorithms in detecting
medium-sized targets like ships and large targets like tanks,
with similar precision to Centernet, TPH-YOLOVS5, and SGEA.
However, when it comes to detecting small targets like aircraft,
PSFNet’s detection precision surpasses other SOTA algorithms
by asignificant margin. Not only does it outperform Centernet by
7.4% in precision but it also exceeds other SOTA algorithms by
more than 30%. This further demonstrates the unique advantage
of PSFNet in detecting small- and medium-sized targets in SAR
images. At the same time, the proposed method maintains a
similar number of parameters and GFLOPS compared to these
networks, providing excellent lightweight performance. Sacri-
ficing lightweight performance for detection accuracy is avoided
and a well-balanced model is achieved, which performs well in
terms of both accuracy and efficiency of SAR object detection.
It is worth noting that, to ensure a fair comparison, we only
selected models with strong lightweight performance and did
not include larger networks in the same model series.

In Fig. 8, we illustrate the detection results of the proposed
method alongside SOTA models. The results showcase the su-
perior detection performance of our method, particularly on
small objects in SAR scenes. In the first row of the results,
it is evident that PSFNet successfully detects all tanks, which
are considered large-size targets in the MSAR-1.0, accurately
regressing their coordinates. Conversely, YOLOv7 exhibits nu-
merous false detections, and its regression of target coordinates
is inaccurate. In the second row, we analyze the detection results
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Fig. 8.

(d) (e) ()

Different model detection results based on the MSAR-1.0 dataset. (a) Ground truth. (b) Detection results of YOLOVS. (c¢) Detection results of YOLOV7.

(d) Detection results of Faster RCNN. (e) Detection results of Centernet. (f) Detection results of our method. The number in the detection box represents the
confidence of the target. The targets in the blue boxes are ships, tanks in green, and aircraft in red.

for medium-sized targets. It is worth noting that compared to
other models, PSFNet achieves fewer false detections in this
category. This superior performance can be attributed to the
network’s utilization of mix-attention strategy, which enables
a more concentrated focus on targets being detected. In the third
and fourth rows of Fig. 8, we present the detection results of our
proposed method and compare them with SOTA algorithms for
small-sized target ships. Our algorithm demonstrates superior
performance in terms of detection accuracy, exhibiting fewer
false detections and missed detection rates compared to other
SOTA algorithms. These results highlight the effectiveness of
our proposed method for small target detection in SAR images.
Notably, YOLOV7 shows relatively poor performance in detect-
ing small targets, with a significant number of ships going unde-
tected. This further emphasizes the effectiveness of our innova-
tive additions to the YOLOV7 network. To further demonstrate
the robustness of our network’s detection capabilities, a heatmap
analysis is performed on MSAR-1.0 dataset. Heatmap divides
the data into many small regions and assigns colors to represent
the relative values or weights of each region, which enables
a clear and intuitive representation of the data distribution. In
Fig. 9, we present the heatmap analysis results of our model
on the test set. The heatmap vividly demonstrates the excellent
performance of our model in accurately locating small target
aircraft. To assess the practicality of the proposed algorithm,
we evaluate its detection performance on high-resolution SAR
images. In Fig. 10, we demonstrate the detection results of

Fig. 9. Heatmap visualization of our mix-attention-based method on the
MSAR-1.0 dataset.

our network on an image with 2048 x2048 resolution from the
MSAR-1.0 dataset. It is evident that our algorithm maintains
its superior detection performance even on large-sized images.
Partial detection results of PSFNet are presented in Fig. 11.

2) Detection Results on SSDD and SAR-Ship-Dataset: As
the detection of small target ships remains a hot research
topic in SAR images, we employed the SSDD to assess the
detection capability of our algorithm on small target ships.
Table III illustrates the performance comparison between the
proposed method and several SOTA detectors, i.e., YOLOv4
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TABLE III
COMPARISON RESULTS OF DIFFERENT METHODS ON SSDD AND SAR-SHIP-DATASET

SSDD SAR-Ship-Dataset
Method Backbone Parameters
mAP50 (%) GFLOPS mAPS50 GFLOPS
YOLOV4 [15] Darknet53 84.5 59.967G 76.2 22.636G 63.9M
YOLOVS CSP-DarkNet53 91.1 48.416G 90.4 18.284G 46.6M
YOLOV7 [16] CSP-DarkNet53 91.3 44.425G 84.9 16.824G 37.2M
YOLOVS CSP-DarkNet53 86.7 69.760G 89.7 26.466G 43.6M
Retinanet [64] Resnet50 54.8 95.311G 71.2 36.023G 55.4M
SSD [17] VGG16 62.8 115.787G 86.8 61.006G 23.9M
EfficientDet [65] Efficientnet 87.3 41.128G 70.8 10.431G 33.4M
Faster Renn [13] Resnet50 87.4 252.631G 79.7 184.890G 136.8M
Centernet [52] Resnet50 83.3 46.354G 88.9 17.554G 32.7M
TPH-YOLOVS5 [60] CSP-DarkNet53 92.0 102.400 G 90.2 51.267G 45.4M
SGEA [6] Resnet50 88.2 46.397G 90.3 17.574G 342M
Our method Swin transformer 92.7 57.767G 90.9 24.208G 40.2M

The significance of bold values means the results of our proposed method.

Fig. 10.  Results in large-scale SAR images on MSAR-1.0. The targets in the
blue boxes are ships, tanks in green, and aircraft in red.

[15], YOLOvS5, YOLOvV7 [16], YOLOvVS, Retinanet [64], SSD
[17], EfficientDet [65], Centernet [52], Faster RCNN [13], TPH-
YOLOVS [60], and SGEA [6], using the SSDD dataset. These
experimental results demonstrate that the proposed algorithm
achieves a mAP of 92.7%, surpassing the performance of SOTA
methods.

To further validate our method’s detection ability for small
and dense targets in SAR images, we evaluated its performance
on the SAR-Ship-Dataset. Table III presents a performance
comparison of the proposed method with several SOTA detec-
tors mentioned above on the SAR-Ship-Dataset. Experimental
results show that the mAP of the proposed algorithm reaches
90.9%, outperforming the SOTA methods. Furthermore, Fig. 12
presents selected detection results on SSDD and SAR-Ship-
Dataset, providing additional evidence of the effectiveness of
our proposed method.

In summary, the performance of the proposed algorithm was
evaluated using three different types of SAR image datasets.
The results demonstrate that the algorithm achieves satisfac-
tory detection performance on various types of SAR image
targets, including general targets, small targets, densely arranged
small targets, and super-resolution image targets. These findings

provide strong evidence for the effectiveness of the proposed
algorithm.

E. Ablation Study

To objectively assess the influence of the proposed innova-
tions on the detection performance, ablation experiments were
conducted on the MSAR-1.0 dataset under identical experimen-
tal conditions. Table IV presents the results of the ablation ex-
periments, followed by a comprehensive analysis of the obtained
results.

1) Effect of Swin Transformer Combined With YOLOv7: We
propose a novel object detection network that combines Swin
transformer and YOLOV7 in this article, aiming to enhance fea-
ture extraction and accelerate inference capabilities. As shown
in Table IV, the mAP of the YOLOV7 network on the MSAR-1.0
dataset is 51.8%. However, after replacing the YOLOvV7 back-
bone with Swin transformer, the mAP significantly improved,
reaching 60.9%, which is a significant improvement of 9.1%.
Furthermore, we observed that the detection accuracy (AP50)
for small target aircraft in the MSAR-1.0 increased from 3.1%
to 17.6%, showing a growth of 14.5%. This indicates that the
combination of Swin Transformer and YOLOV7 can effectively
enhance the SAR object detection accuracy, particularly for
small targets. The enhanced detection capability is mainly at-
tributed to the global attention mechanism of Swin Transformer,
which enables better capture of target feature information and
enhances the algorithm’s feature extraction capability.

2) Effect of New Layer: To improve the detection accuracy
of small targets in SAR images, a new detection layer was
incorporated at the 4x4 downsample layer of the network’s
backbone. The results in Table IV clearly demonstrate the effec-
tiveness of the added detection layer in improving the detection
performance of small targets. Specifically, the proposed method
achieves a significant 5.6% increase in mAP compared to the
baseline network. Furthermore, the detection accuracy of small
target aircraft increased by 9.9%. This highlights the crucial role
of the additional layer in enhancing the accuracy of small object
detection in SAR images.
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Fig. 11.  Detection results of PSFNet on MSAR-1.0. The targets in the blue boxes are ships, tanks in green, and aircraft in red.

TABLE IV
ABLATION EXPERIMENT ON MSAR-1.0

YOLOv7pan  Swin Transformer New layer FPN PS-FPN Mix-attention mAP50 (%)  Aircraft (AP50 %)  Parameters GFLOPS
v 51.8 3.1 37.2M 16.824G
v v 60.9 17.6 52.2M 20.405G
v v v 61.2 20.2 45.0M 18.872G
v v v 64.3 225 46.3M 22.144G
v v v 62.5 20.3 52.9M 20.409G
v v v v 65.5 25.2 46.9M 22.148G
v v v 66.5 27.5 52.8M 22.730G
v v v v 65.9 25.4 45.2M 20.425G
v v \ v 70.5 40.0 39.5M 24.203G
v v v v v 72.5 40.8 40.2M 24.208G

The significance of bold values means the results of our proposed method.
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Fig. 12.

Detection results of PSFNet on SSDD and SAR-Ship-Dataset. The number in the detection box represents the confidence of the target. The targets in

the red boxes are ships in the SSDD and the targets in the purple boxes are ships in the SAR-Ship-Dataset.

3) Effect of PS-FPN: PS-FPN structure enables bottom-up
propagation of deep feature information to shallow layers, re-
sulting in enriched feature representations of small targets. To
evaluate the effectiveness of PS-FPN, we conducted ablation
experiments to compare the detection performance of the base-
line network with and without the PS-FPN architecture. In
addition, we compared the performance of the baseline net-
work augmented with a new layer to that of the same network
with PS-FPN incorporated. The experimental results demon-
strate a notable improvement in detection accuracy after the
incorporation of our proposed approach PS-FPN. Specifically,
compared with the two networks without PS-FPN, the mAP
increases by 1.8% and 4.0%, respectively. Given the need to
keep the model lightweight, some modules within the PS-FPN
architecture utilize DSCs in lieu of regular convolutions, which
sacrifice a negligible loss of accuracy in exchange for a signifi-
cant reduction in model parameters. As shown in Table IV, the
parameters of the model with PS-FPN are significantly reduced
by 12.5% compared with the baseline network, demonstrating
its lightweight and efficiency.

To further validate the effectiveness of the PS-FPN module,
this article conducted experiments and analyzed the results using
FPN, PAN, and PS-FPN in ablation experiments. It is worth
noting that the default feature fusion module in YOLOvV7 is PAN,

so the baseline network used PAN module. Both the baseline
network and the baseline combined with the new layer network
replaced PAN with FPN and PS-FPN. From Table IV, it can be
seen that the model using PS-FPN achieved the highest mAP of
64.3% and 70.5%, and the AP for aircraft also outperformed
the other two modules, reaching 22.5% and 40.0%. At the
same time, the algorithm using the PS-FPN module did not
bring significant changes in parameters and GFLOPS, remaining
lightweight like FPN and PAN. This indicates that PS-FPN does
not sacrifice model complexity for detection accuracy but rather
improves network design performance while maintaining model
complexity and enhancing SAR small target detection accuracy.

4) Effect of Mix-Attention: The mix-attention strategy is a
technique used in SAR image detection to alleviate the in-
terference of speckle noise and improve the detection accu-
racy of small targets. To assess the effectiveness of the mix-
attention strategy, three experiments were conducted using dif-
ferent network architectures. Comparisons were made between
networks equipped with this module and those without it to
evaluate their performance. The results, shown in Table IV,
demonstrate that after using the mix-attention strategy, the de-
tection accuracy mAP was further improved, reaching 62.5%,
65.5%, and 72.0%, respectively. Furthermore, the results of
our three mix-attention experiments indicate that the network
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TABLE V
ATTENTION EXPERIMENT ON MSAR-1.0

Method mAP 50 (%) - AP0 (%) Parameters GFLOPS FPS
Aircraft Ship Tank

A (base-net) 70.5 39.6 79.2 92.7 39.5M 24.203G 24.5

B (CA+none) 71.0 40.2 80.1 92.7 39.5M 24.205G 23.8

C (none+tCBAM) 68.5 30.2 82.5 92.7 40.2M 24.206G 23.9

D (CA+CA) 67.0 27.2 80.6 93.2 39.8M 24.212G 234

E (CBAM+CBAM) 68.5 33.7 80.3 92.1 40.3M 24.209G 23.5

F (SE+SE) 68.8 332 80.0 93.1 39.7M 24.206G 253

G (ECA+ECA) 65.8 24.8 80.5 92.1 39.5M 24.206G 23.8

Our method 72.5 40.8 829 93.6 40.2M 24.208G 23.5

The significance of bold values means the results of our proposed method.

incorporating mix-attention shows a minimal increase of less
than 1% in the number of parameters and a negligible increase
of 0.1% in GFLOPS. This finding provides evidence that mix-
attention also delivers lightweight performance, which is highly
desirable for efficient and effective network architectures.

To further assess the effectiveness of the mix-attention strat-
egy, we conducted experiments on our proposed network, ex-
ploring various combinations of attention mechanisms. Specifi-
cally, we utilize the network architecture proposed in this article
as the base-net for each experiment, excluding the mix-attention
component. For brevity, we used A, B, C, D, E, F, G to denote
the base-net network, with CA applied to the first two detection
layers of the baseline network, CBAM applied to the last two de-
tection layers, CA applied to all detection layers, CBAM applied
to all detection layers, SE-Net (SE) [66] applied to all detection
layers and ECA-Net (ECA) [67] applied to all detection layers.
The results presented in Table V demonstrate that our integration
of attention mechanisms achieves the highest detection accuracy,
providing evidence for the superior performance of the mix-
attention method compared to other combinations of attention
mechanisms for SAR images. In addition, we observed that
the mAP in method A outperformed the attention mechanism
experiments in methods C, D, E, F, and G. This indicates
that attention mechanisms should not be blindly added to the
network, as it may not only fail to improve network performance
but also potentially decrease the algorithm’s detection accuracy.
This indirectly demonstrates the rationality and effectiveness
of using CA and CBAM in mix-attention for addressing issues
related to small detection layer size and precise localization of
small targets in shallow and deep feature focus, respectively.

V. CONCLUSION

Object detection in SAR images is a challenging task. In this
article, a novel detection algorithm based on Swin transformer
and YOLOvV7 for SAR images is proposed. First, in order to
enrich the semantic and spatial features of small targets, an in-
novative feature aggregation module PS-FPN is proposed. This
module not only improves the semantic and spatial information
of small targets but also strengthens the detailed information
needed by small targets while maintaining lightweight structure
of the network. Second, we propose a novel attention mechanism
mix-attention to identify more attention regions in scenarios
with dense objects. In addition, we add one more prediction

head to extract shallow features that effectively preserve small
targets’ feature information. To verify the effectiveness of the
proposed algorithm, extensive experiments are carried out on
several challenging SAR image datasets. The experimental re-
sults demonstrate that our method outperforms other SOTA de-
tectors in terms of detection accuracy and computation efficiency
in various SAR scenarios. In summary, our approaches address
these challenges of SAR image detection and provide promis-
ing results for real-world applications. However, the proposed
algorithm requires more time in the training process and a larger
dataset to maintain its detection advantage, a challenge we will
try to solve in the future.
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