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SSF-Net: A Spatial–Spectral Features Integrated
Autoencoder Network for Hyperspectral Unmixing
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Abstract—In recent years, deep learning has received tremen-
dous attention in the field of hyperspectral unmixing (HU) due to
its powerful learning capabilities. Particularly, the unsupervised
unmixing method based on an autoencoder (AE) has become a
research hotspot. Most of the current AE unmixing networks
mainly focus on information about pixels and their neighborhoods
in images. However, they make insufficient use of information about
spatial heterogeneity and spectral differences of endmembers in
hyperspectral image (HSI) data. To this end, an AE HU network
with the name of SSF-Net is proposed for fusing the spatial–spectral
features. The network first extracts pseudoendmember informa-
tion from the HSI using a regional vertex component analysis algo-
rithm. Then, a dual-branch feature fusion module incorporating a
spatial–spectral attention mechanism is constructed to make full
use of the information in the HSI data, thereby improving the
network’s unmixing performance. It is worth stating that SSF-Net
can fuse spatial–spectral information and utilize different attention
maps to obtain more significant spectral difference information
and more discriminative spatial difference information about the
scene. The experimental results on synthetic and real datasets
demonstrate that the proposed SSF-Net outperforms state-of-the-
art unmixing algorithms.

Index Terms—Attention, autoencoder (AE), deep learning (DL),
feature fusion, hyperspectral unmixing (HU).

I. INTRODUCTION

HYPERSPECTRAL image (HSI) can capture detailed
spectral information of ground objects in hundreds of

continuous bands from visible light to short-wave infrared and
even wider spectral intervals while obtaining spatial distribution
information of ground objects. Because of its rich spectral in-
formation, it has received a great deal of attention, especially
in the fields of military investigation, target tracking, target
identification, environmental monitoring, etc. [1], [2], [3], [4],
[5]. However, due to the limitation of spatial resolution and the
complex diversity of the natural land surfaces, the phenomenon
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of mixed pixels [6] is common in HSI. The mixed pixels are com-
posed of a variety of pure material spectra, and their existence
will have an enormous impact on the accuracy of hyperspectral
remote sensing applications [7]. To better solve this problem,
the hyperspectral unmixing (HU) technique is often used to
decompose the mixed pixels into a series of different pure mate-
rial spectra (endmembers) and the coverage ratio (abundances)
of the endmembers [8]. Currently, HU has been widely used
in mineral detection [9], [10] and agricultural detection [11],
[12].

HU models can simply be classified into two categories: linear
mixing model (LMM) [1] and nonlinear mixing model (NLMM)
[13]. In this regard, the LMM is based on the assumption that
the electromagnetic wave energy received by the sensor does
not undergo secondary scattering during transmission, i.e., the
spectrum of a mixed pixel is a linear combination of multiple
pure spectra (endmembers) of the ground object according to
certain proportions (abundances). Moreover, considering the
physical mechanism in HU, the abundance needs to satisfy
the nonnegative constraint (ANC) and abundance sum-to-one
constraint (ASC) [14]. NLMM is often used to describe the
intricate interactions between scattered light from multiple ma-
terials within a scene [1]. Although the NLMM is more in
line with the actual transmission of electromagnetic waves, it
requires consideration of numerous complex factors in imple-
mentation. Given the explicit physical mechanism and relatively
straightforward solving process of the LMM and the relatively
simple solution process, the simulation of mixed spectra can
be efficiently achieved. Therefore, this study focuses on the
LMM-based HU.

Traditional unmixing methods can be mainly categorized into
geometric-based, statistical-based, and sparse regression-based
unmixing methods. Among the geometry-based unmixing meth-
ods, the typical representatives include N-finder (N-FINDR)
[15] and vertex component analysis (VCA) [16]. N-FINDR em-
ploys the projection of pixels into the feature space to form a sim-
plex, where the endmembers are efficiently selected by identify-
ing the pixel that constitutes the maximum volume simplex. The
VCA does this by iteratively projecting the pixels into a direction
orthogonal to the subspace formed by the already identified end-
members, where the new endmember corresponds to the extreme
of the projection. Due to the complexity and variety of natural
surfaces, it is a formidable challenge to identify the pure pixels in
remote sensing images. Furthermore, geometry-based unmixing
methods tend to fall into local optima in HSI with highly mixed
ground objects. In contrast, statistical-based unmixing methods
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are able to obtain the global optima, such as the unmixing meth-
ods with a Bayesian framework [17] and nonnegative matrix
decomposition (NMF) [18]. Bayesian methods can effectively
incorporate a priori information into the unmixing process, thus
improving the accuracy of unmixing [19], [20]. Due to the advan-
tages of learning part-based representations, NMF has become
a prominent research focus in the field of HU. Notably, NMF
can simultaneously capture the endmembers and abundances of
HSI after completing the unmixing task [21]. Currently, many
NMF-based HU methods have been proposed, mainly focusing
on improving the unmixing accuracy through the incorporation
of regularization constraints or the integration of spectral and
spatial information [22], [23]. Besides, there is also unmixing
by nonnegative tensor factorization [24], [25] to minimize the
information loss in the unmixing process. Furthermore, there
are model-inspired network-based unmixing approaches [26],
[27], [28] that make the unmixing process more physically
interpretable by combining it with a physical model. Finally,
the sparse regression-based unmixing method [29] effectively
estimates the endmembers and their corresponding abundances
in HSI using a priori knowledge of a known spectral library.
Although the sparse regression-based unmixing methods can
mitigate the adverse effects of inaccurate endmember extrac-
tion, they cannot be widely applied to HSI images acquired in
complex environments due to the poor mobility of the spectral
library.

Deep learning has attracted much attention in the field of HU
owing to its powerful feature representation ability. In partic-
ular, the autoencoder (AE) and its variants have been applied
to HU with excellent unmixing results. Up to now, the self-
encoder-based unmixing networks can be simply classified into
two categories: pixel-level unmixing networks and spatial-level
unmixing networks. And the typical representative of pixel-level
unmixing networks includes EndNet [30], uDAS [31], DAEN
[32], MUNet [33], CyCU-Net [34], and EGU-Net [35]. Among
them, EndNet forms an unmixing network through two AEs
and uses spectral angular distance (SAD) and K–L divergence
as loss functions. uDAS reduces the effect of noise on unmixing
by introducing denoising constraints into the AE and enhances
the abundance estimation by introducing the so-called l21-norm
into the decoder [31]. To enhance the robustness of the model,
DAEN first processes the outliers and noise in the data by
using a stacked autoencoder (SAE) and then feeds the processed
data into a variational AE to obtain more accurate unmixing
results. MUNet constructs a multimodal unmixing network by
additionally introducing LiDAR data, which improves the un-
mixing performance by integrating the elevation differences of
the LiDAR data into the HSI. CyCU-Net uses a cyclic consis-
tency network structure with two cycle-connected AEs to reduce
the information loss during image processing, thus enhancing
the unmixing ability of the network. EGU-Net reduces the
influence of spectral variability (SV) on the unmixing results
by introducing pseudoendmembers and utilizes the unmixing
information derived from pseudoendmembers to guide the un-
mixing process to improve network performance. With the rise
of CNNs in the field of computer vision, many spatial-level
unmixing networks have emerged as well. Typically, CNNAEU

[36] introduces CNNs into AE-based unmixing networks, omit-
ting the use of any pooling or upsampling operations to maxi-
mize the retention of spatial information from HSI. SSCC-Net
[37] utilizes both spectral and spatial information to train the
spatial AE networks and spectral AE networks, respectively,
in an end-to-end manner. Particularly, DeepTrans [38] was the
first to use a transformer in combination with the convolutional
AE for HU. Although the above methods perform remarkable
performance in HU tasks, they still have some limitations.
The pixel-level unmixing networks mainly utilize the spectral
information of pixels for unmixing without considering the
spectral differences between pseudoendmembers. The spatial-
level unmixing networks enhance the receptive field by intro-
ducing convolutional operations to capture spatial contextual
information but neglect the spatial differences between different
ground objects. Although these joint spectral–spatial networks
utilize the contextual information of the spectral and spatial
features in HSI, they still do not take into account the effects
of spectral differences between the pseudoendmembers as well
as the spatial heterogeneities of distributed features. Therefore,
how to make full use of the spatial discrepancy in HSI and the
spectral difference between pseudoendmembers to maximize the
accuracy of HU has become an urgent challenge to overcome.

To this end, this article proposes a novel spatial–spectral
features integrated AE HU network, called SSF-Net, which
integrates spectral attention mechanism and spatial attention
mechanism within the AE unmixing framework to effectively
extract the spatial discrepancy in HSI and the spectral differ-
ence between pseudoendmembers in an unsupervised manner.
Compared with the current unmixing methods that only use
spectral information or neighboring pixel information, SSF-Net
can better extract the feature difference information between dif-
ferent ground objects, thus significantly improving the network
unmixing accuracy. Specifically, the main contributions of this
study can be summarized as follows.

1) SSF-Net improves the unmixing performance by exploit-
ing the spatial difference information in HSI and the spec-
tral difference information between pseudoendmembers.
To the best of our knowledge, this study represents the
first utilization of DL to investigate the unmixing task of
multifeature fusion.

2) A two-branch feature fusion module incorporating a
spatial–spectral attention mechanism is built into SSF-Net
to address the problem of underutilization of spatial–
spectral information. This module extracts the relevant
spatial–spectral information by integrating spatial and
channel attention, thus improving the accuracy of the
unmixing.

3) An unsupervised learning approach is adopted, which
makes the training process no longer dependent on
labeled data. The network model is able to learn
and extract features from the data itself autonomously,
thus improving the generalization ability of the
model.

The rest of this article is organized as follows. Sec-
tion II briefly describes the principles of AE-based unmixing.
Section III describes the network structure of SSF-Net in detail.
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Fig. 1. Schematic diagram of an AE. The abstract features are first obtained by
encoding the input data, and then the abstract features are decoded to reconstruct
the input data.

Section IV gives the results of SSF-Net on several datasets.
Finally, Section V concludes this article.

II. AE-BASED UNMIXING MODEL

This section mainly devotes to the introduction of an unmixing
method based on LMM, which can usually be expressed as
follows:

Y = EA+N (1)

where Y ∈ Rl×n is the HSI expressed in the form of a two-
dimensional (2-D) matrix, l is the number of bands, and n is the
number of pixels. Besides, E ∈ Rl×p is an endmember matrix
representing the p endmembers in the HSI, A ∈ Rp×n is the
abundance matrix corresponding to the p endmembers, andN ∈
Rl×n refers to the added noise matrix.

Considering that abundance represents the proportion of dif-
ferent feature types in each mixed pixel, the abundance vector
aj also needs to satisfy the constraints of ANC and ASC{

ai ≥ 0∑p
i=1 ai,j = 1.

(2)

This study primarily focuses on HU based on the AE to
simultaneously obtain the endmember matrix E and abundance
matrix A in an unsupervised manner with the powerful learning
and characterization capabilities of deep neural networks. As
illustrated in Fig. 1, a comprehensive AE typically consists of
an encoder and a decoder.

Encoder: The encoder is typically a multilayer network
structure that converts the input original hyperspectral data
{yi}ni=1 ∈ Rl into a hidden layer data denoted by hi, as for-
mulated in the following equation:

hi = fE (yi) = f
(
W (e)T yi + b(e)

)
(3)

where f( · ) represents the activation function of the encoder,
W (e) represents the weight of the eth layer encoder, and b(e)

represents the bias of the eth layer encoder.
Decoder: The decoder converts the hidden layer data hi back

to the original input data, denoted by {ŷi}ni=1 ∈ Rl, which can
be formulated as follows:

ŷi = fD (hi) = W (d)Thi (4)

Fig. 2. Workflow of AE-based HU.

where W (d) represents the weight of the dth layer decoder.
Conventionally, the metric of mean square error (MSE) stan-

dard formulation (5) is always employed to quantify the recon-
struction error of AE. However, when dealing with hyperspectral
data, additional error metrics, such as the SAD, as depicted
in (6), need to be taken into consideration for evaluating the
reconstruction accuracy

LAE−MSE (ŷi, yi) =
1

n

n∑
i=1

‖ŷi − yi‖2 (5)

LAE−SAD (ŷi, yi) = cos−1

(
ŷTi yi

‖ŷi‖2‖yi‖2

)
. (6)

Considering the inherent advantages of AE, such as a simple
training process, flexible stacking of layers, and unsupervised
learning paradigm, this study adopts the employment of AE for
the HU. By leveraging the encoder to transform the input HSI
data into abstract features and then convert them into abundance
maps according to the ANC and ASC constraints, such opera-
tions ensure that the decoder is fully compliant with the LMM
principle to reconstruct the abundance map back to HSI data. At
this point, the decoder weights can be interpreted as the desired
endmembers. The workflow of AE-based HU is illustrated in
Fig. 2, wherein the network enables the simultaneous estimation
of both abundances and endmembers. It is noteworthy that the
entire AE unmixing process is conducted in an unsupervised
manner, which effectively mitigates the issue of insufficient
labeled samples in HSI data [39].

III. PROPOSED METHOD

In this study, a spatial–spectral features integrated AE net-
work, abbreviated as SSF-Net, is proposed for the HU, with
its overall structure, as shown in Fig. 3. The network consists
of two parts: a spatial–spectral feature fusion encoder and a
decoder. The former component fuses the deep-level features
extracted from both HSI data and pseudoendmembers to fully
exploit the spatial and spectral characteristics inherent in the
original data. The latter component employs a commonly used
decoder architecture to reconstruct the HSI by leveraging the
extracted abundances. It is noteworthy that within the encoder,
the in-depth integration of spectral features and spatial features
is achieved by employing a dedicated module known as the
spatial–spectral fusion module (SSFM). Through the SSFM,
the fused high-level features encompass the intrinsic attributes
from pseudoendmember spectra as well as the spatial global
information from the HSI, which synergistically contributes to
the enhancement of the unmixing accuracy of the network.
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Fig. 3. Network structure of the proposed SSF-Net.

To endow the network with abundant spectral features, the
regional VCA endmember extraction method is employed to
acquire the pseudoendmember spectra from HSI. Specifically,
the HSI data are first partitioned into several subpatches with
a certain overlap rate, and the pseudoendmembers of each sub-
patches are extracted using the VCA algorithm. Subsequently,
the K-means clustering algorithm is utilized to eliminate the
duplicate pseudoendmembers, and all remaining pseudoend-
members are then aggregated into K clusters [35]. And the
pseudoendmembers are then obtained by computing the cen-
ters of each cluster. Notably, the number of subpatches and K
values can be determined by referring to the literature [40]. In
this study, the K value is deliberatively set to about 20% of
all hyperspectral pixels according to several trial experimental
results. It should be noted that the pseudoendmembers obtained
by the above process can reduce the influence of SV on the
unmixing results because they contain rich spectral information
of features, perturbation information, and a certain amount of
noise. The following sections devote to a detailed description of
the SSF-Net framework.

A. Spatial–Spectral Feature Fusion Encoder

To fully exploit the information contained in the HSI data,
the spatial–spectral fusion encoder is ingeniously designed as a
dual-branch structure. The encoder consists of a spectral branch
and a spatial branch, which encode the input data from different
views to capture the high-level spectral features and spatial
features in the HSI. In the spectral branch, the spectral features in
the pseudoendmembers are extracted by using three consecutive
feature extraction blocks. Within each feature extraction block,
a 1× 1 convolution is employed to compress the spectral in-
formation of the pseudoendmembers, and an activation function
(such as Sigmoid, ReLU, or LeakyReLU) is introduced after the
convolution. Since the ReLU activation function may lead to the
problem of neuron invalidation [41], the LeakyReLU activation
function is employed in this network. Moreover, the batch nor-
malization strategy is introduced to alleviate problems, such as
gradient vanishing and gradient exploding, as well as to improve
the overall computational speed of the network. To mitigate

Fig. 4. Framework of SSFM.

overfitting in the network, the dropout is added at the end of
the blocks. The high-level spectral features, denoted as Fspe, are
obtained from the pseudoendmembers through the three feature
extraction blocks in the spectral branch. Moreover, considering
the strong correlation between pixels and their surrounding
scenes in HSI [37], [42], [43], the 3 × 3 convolutions are
incorporated in the feature extraction blocks of the spatial branch
to effectively capture the spatial information of neighboring
pixels. Thus, the high-level spatial features obtained from the
HSI data through these feature extraction blocks are denoted as
Fspa.

To effectively combine the spectral features from the pseu-
doendmembers with the spatial features from the HSI, SSFM
is constructed in this study. This module aims to enhance the
network model’s ability of utilizing and integrating spectral and
spatial information to improve the unmixing accuracy. As shown
in Fig. 4, the overall structure of SSFM contains the channel
attention mechanism and the spatial attention mechanism, which
are described in detail as follows.

1) Channel Attention Mechanism: During the process of HU,
the pseudoendmembers are remarkably high resemblance
to the pure endmembers. Therefore, in the absence of
the pure endmembers, the spectral differences between
different pseudoendmembers can be used as a substitute
for the spectral differences between the pure endmem-
bers. In view of this, a channel attention mechanism is
introduced to enhance or suppress the channel features
that are responsive to the differences between different
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Fig. 5. Framework of attention mechanism. (a) Channels attention. (b) Spatial
attention.

pseudoendmembers to improve the accuracy of abundance
estimation during HU. The workflow of the channel atten-
tion module is shown in Fig. 5(a).

First, the input spectral feature Fspe ∈ Rl×H×W is processed
using the global average pooling and global maximum pooling
operations to obtain the average pooling feature F c

avg ∈ Rl×1×1

and the maximum pooling feature F c
max ∈ Rl×1×1, respectively.

Then, to capture the association information between F c
avg and

F c
max, they are separately put into a shared multilayer perceptron

(MLP) and the outputs are summed. Finally, the channel atten-
tion map is output MC(Fspe) by virtue of the sigmoid function.
To reduce the number of parameters, the hidden layer size in the
MLP is set to l/r, where r is the compression ratio. Through
multiple sets of experiments, it is found that when r is 16, the
weight operator corresponding to the entire channel attention
module can significantly improve the representation ability of
the network model for abundance.

The channel attention module can be expressed as follows:

MC (Fspe)

= δ [MLP (Maxpool (Fspe))⊕ MLP (Avgpool (Fspe))]

= δ
[
MLP (F c

max)⊕ MLP
(
F c

avg

)]
(7)

where δ represents the sigmoid function, and ⊕ refers to the
operation of elementwise addition.

2) Spatial Attention Mechanism: The complex distribution
of real-world environments and the susceptibility of the
HSI imaging process to interference from external factors
cause the spectral profiles of pixels in the HSI to be af-
fected by SV [44], [45], resulting in significant differences
in the contributions to the unmixing of HIS pixels from
different regions. The SV can often lead to deviations
between the spectral curves of some pixels in the HSI and
the ideal spectral curves, thereby affecting the accuracy
of HU. To this end, the spatial attention mechanism is
introduced to enhance or suppress the importance of pixels
in different regions during the HU process to improve
the unmixing ability of the network. The workflow of the
spatial attention mechanism is shown in Fig. 5(b).

First, the input spatial features Fspa ∈ Rl×H×W are subjected
to the operations of global average pooling and global max
pooling, which results in the average-pooled feature F s

avg ∈
R1×H×W and the max-pooled featureF s

max ∈ R1×H×W , respec-
tively. Then, these two feature maps are merged together by con-
catenation operation along the channel dimension, yielding the
fused feature F s

A−M ∈ R2×H×W , which serves for calculating
the spatial weights. Subsequently, the fused feature F s

A−M is
further processed by a 2-D convolution with a kernel size of
7 × 7, yielding the spatial weight operator. Finally, this spatial
weight operator is converted to a spatial attention mapMS(Fspa)
using the sigmoid activation function.

The spatial attention module can be formulated as follows:

MS (Fspa)

= δ
[
f7×7 (Concat (Maxpool (Fspa) ;Avgpool (Fspa)))

]
= δ

[
f7×7

(
Concat

(
F s

max;F
s
avg

))]
(8)

where f7×7 denotes the 2-D convolution with a kernel size of
7 × 7. Concat represents the concatenation operation of verti-
cally stacking the feature maps along the channel dimension,
and δ refers to the sigmoid function.

3) Fusion of Spectral–Spatial Features: SSFM facilitates
the comprehensive mining and utilization of spectral and
spatial information by synchronizing the fusion of fea-
tures using the channel attention mechanism and spatial
attention mechanism, thus significantly improving the
unmixing accuracy. The former mechanism evaluates the
importance of channels based on the spectral features to
improve the abundance estimation accuracy, while the
latter mechanism focuses on elevating the significance
of different pixels in space to obtain better endmember
extraction results. The fusion process of SSFM can be
formulated as follows:

Ffused = MC (Fspe)⊗ [Fspa ⊕ (Fspa ⊗MS (Fspa))] (9)

where ⊗ and ⊕ denote the operations of element-by-element
multiplication and addition, respectively; and Ffused refers to the
fused features.

Furthermore, the abundance maps are obtained by employing
a 3 × 3 convolutional operation upon the Ffused, where the
number of abundance maps is consistent with the number of
endmembers. In the end, a softmax function is used immediately
after the convolution layer to ensure that the abundance results
satisfy the ANC and ASC constraints.

B. Decoder

The decoder reconstructs the input pixels by integrating the
estimated abundances and the corresponding endmembers. Such
a process can be expressed as follows:

ŷi = f
(
W (d)âi

)
= Êâi. (10)

In the equation above, {ŷi}ni=1 ∈ Rl is the reconstructed
pixels, and Ê ∈ Rl×p represents the estimated endmember
matrix. {âi}ni=1 ∈ Rp denotes the generated abundance vector.
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Notably, to reduce the training time, the method of VCA is
employed to initialize the weights W (d) of the decoder.

C. Objective Function

To achieve the best possible training results, the loss function
of the SSF-Net model is designed to consist of SAD and MSE.
The SAD exhibits spectral scale invariance as it evaluates the
similarity between two spectral curves by calculating the angle
between the target spectrum and the reference spectrum. And
a smaller angle between the two spectral curves indicates more
similarity. The calculation formula of SAD is given as follows:

JSAD =
1

n

n∑
i=1

arccos
〈ŷi, yi〉

‖ŷi‖ · ‖yi‖ (11)

where yi and ŷi denote the input and reconstructed pixel data,
respectively. n denotes the total number of pixels.

Although SAD can improve the accuracy of endmember
extraction, it is prone to larger errors in abundance estimation
as it only considers the scale invariance of endmembers. To this
end, the MSE is also introduced into the objective function to
ensure that the network can obtain more accurate abundance

JMSE =
1

n

n∑
i=1

‖ŷi − yi‖2. (12)

To strive for better unmixing results, the overall loss function
of the network in this study is defined as a weighted combination
of SAD error and MSE error, as shown in the following equation:

L = αJSAD + βJMSE. (13)

Here, α and β represent the hyperparameters of the loss
function.

IV. EXPERIMENTS

In this section, a comparatively experimental analysis is
carried out with the state-of-the-art HSI unmixing methods
to demonstrate the superiority of the SSF-Net network. The
algorithms selected for comparison include three classical meth-
ods: fully constrained least-squares unmixing (FCLSU) [14],
multilayer nonnegative matrix factorization (MLNMF) [46],
spatial group sparsity regularized nonnegative matrix factoriza-
tion (SGSNMF) [47], SNMF-Net [48], and four deep-learning-
based methods: uDAS [31], DAEU [49], CNNAEU [36], and
CyCU-Net [34]. These methods are widely recognized and
highly represented in the field of HU. To ensure fairness in the
experiments, the VCA [16] is first adopted for generating the
initial endmember for all the comparison algorithms.

A. Data Description

1) Synthetic Dataset: The synthetic dataset is composed of
five randomly selected spectral curves from the ASTER spectral
library, as curated by Jin et al. [50]. This dataset consists of
60 × 60 pixels, with a total of 200 spectral bands spanning from
0.4 to 14 μm. The abundance maps follow a Dirichlet distribu-
tion. To simulate the endmember variability in real HSI data,
this dataset is made by using asphalt as the background color

Fig. 6. RGB image of four datasets. (a) Synthetic. (b) Samson. (c) Jasper.
(d) Urban.

and the remaining four endmembers are randomly scattered in
the corners. Moreover, to enhance the realism of the synthetic
hyperspectral data, Gaussian noise with different signal-to-noise
ratios (SNRs) was introduced to the synthetic dataset. The data
contain a total of five endmembers: limestone, conifer, basalt,
concrete, and asphalt. Fig. 6(a) shows the RGB true color image
corresponding to this data area.

2) Samson Dataset: The Samson dataset is acquired using
the SAMSON sensor. The image consists of 952 × 952 pix-
els with a total of 156 spectral bands ranging from 0.401 to
0.889 μm. Considering that the size of the original image is
too large, an area of 95 × 95 pixels is cropped out starting
from the position of (252,332) pixels in the original image as
the experimental data. Specifically, the cropped data contain
three endmembers: Soil, Tree, and Water. Fig. 6(b) presents the
corresponding RGB true color image of these data.

3) Jasper Dataset: The Jasper data were collected by the
airborne visible infrared imaging spectrometer sensor. The im-
age is 521 × 614 pixels and contains 224 bands with a spectral
range from 0.38 to 2.50 μm. Since the original image was too
large, only a cropped subimage containing 100 × 100 pixels is
used in this experiment, with its first pixel starting from the po-
sition of (252,332) pixels in the original image. After removing
some of the bands affected by high water vapor concentration
and atmospheric effects, only 198 channels are retained in these
data, which contain four endmembers: Road, Soil, Water, and
Tree. Fig. 6(c) shows the RGB true color image corresponding
to this data area.

4) Urban Dataset: The Urban data were obtained from the
hyperspectral digital image collection experimental sensor for
the urban area of Copoas, Texas, USA. The image consists of
307 × 307 pixels and contains 210 bands with a spectral range
from 0.4 to 2.5 μm. Only 162 bands are retained after removing
bands affected by high water vapor concentrations and atmo-
spheric effects. In these HIS data, there are five endmembers:
Asphalt, Grass, Tree, Roof, and Dirt. Fig. 6(d) presents the
corresponding RGB true color image of these data.

B. Experimental Settings

1) Hyperparameter Settings: The implementation of the
SSF-Net model in this study is based on the PyTorch framework
with an i9-9900K CPU and an NVIDIA 2080 8GB GPU as
the hardware platform. During the training process, the Adam
optimizer is used to update the network parameters, where the
learning rate is set to 1 × 10−3. To further improve the network



WANG et al.: SSF-NET: SPATIAL–SPECTRAL FEATURES INTEGRATED AE NETWORK FOR HU 1787

TABLE I
QUANTITATIVE RESULTS FOR THE SYNTHETIC DATASET

Fig. 7. Abundance maps of five materials from the synthetic data obtained by different algorithms.

accuracy, the learning rate decay strategy is adopted, that is, the
learning rate is decayed once every 40 epochs of training, and
the maximum number of iterations is set to 800.

2) Evaluation Metrics: To evaluate the network unmixing
performance, the following two metrics are introduced into the
experiments: root-mean-square error (RMSE) and SAD, which
are defined as follows:

LRMSE (ai, âi) =

√
1

N

∑N

1
‖âi − ai ‖22 (14)

LSAD (mi, m̂i) = arccos

( 〈mi, m̂i〉
‖mi‖2‖m̂i‖2

)
(15)

where ai and âi represent the true abundance vector and gener-
ated abundance vector, respectively. mi and m̂i denote the true
endmember and extracted endmember, respectively.

C. Experimental Result and Analysis

1) Synthetic Dataset: The quantitative results of the RMSE
as well as the SAD for each endmember on the synthetic dataset
by the different algorithms are presented in Table I. Meanwhile,
Figs. 7 and 8 show the abundance maps and corresponding
endmember results extracted by different algorithms on the
synthetic dataset. In the synthetic dataset, SGSNMF achieves
better unmixing results than FCLSU and MLNMF. SGSNMF
uses spatial information to divide the HSI into spatial groups
and incorporates a sparsity constraint of spatial group into
nonnegative matrix factorization, which results in a superior
decomposition structure. Although SNMF is constructed based
on a nonnegative matrix model with L–p sparse constraints,
its failure to take the spatial information into account results
in unmixing performance in synthetic data without significant
advantages. The uDAS algorithm achieves promising results in
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Fig. 8. Comparison of endmembers between SSF-Net (blue curves) and the corresponding GT (red curves) on the synthetic dataset.

TABLE II
QUANTITATIVE RESULTS OF MEAN_RMSE AND MEAN_SAD FOR THE SYNTHETIC DATASET UNDER DIFFERENT NOISES

TABLE III
QUANTITATIVE RESULTS FOR THE SAMSON DATASET

abundance estimation by incorporating denoising constraints
and attaching certain physical constraints. The DAEU, on the
other hand, only focuses on spectral information and ignores
spatial information. Although CNNAEU and CyCU-Net con-
sider spatial information, they ignore the inter-SV, which leads
to their unsatisfactory performance on synthetic datasets. The
experimental results of these algorithms demonstrate the im-
portance of taking both spectral and spatial information into
consideration to obtain accurate HU results. In contrast, the
proposed SSF-Net achieves superior results on synthetic data,
which proves its superiority in the unmixing task.

To verify the robustness of the proposed SSF-Net network, the
varying SNR values from 20 to 40 dB are added to the synthetic
dataset. Correspondingly, the quantitative experimental results
are presented in Table II. In general, the unmixing accuracy
of these algorithms tends to decrease as the noise increases.
The classical algorithm SGSNMF exerts good performance on
the synthetic dataset. Benefiting from denoising processing, the
uDAS network exhibits minimal variation in unmixing accuracy
under different noise conditions. In contrast, the models of
SNMF, CNNAEU, and CyCU-Net perform poorly in high-noise
situations. Particularly important, the proposed SSF-Net has
obtained remarkable accuracy in both abundance estimation and

endmember extraction under varying noise levels, which fully
demonstrates its effectiveness and robustness.

2) Samson Dataset: The results of the RMSE and SAD
quantification for each endmember on the Samson dataset by
the different algorithms are presented in Table III. Figs. 9 and 10
show the abundance maps and corresponding endmember results
extracted by different algorithms on the Samson dataset. The
Samson dataset is characterized by a relatively uniform spatial
distribution of different materials, making it widely regarded as
a relatively simple unmixing dataset. In general, the algorithms
have all achieved relatively excellent results. However, despite
the promising results obtained by the algorithm of SGSNMF
on synthetic datasets, its performance on the Samson dataset is
subpar. The reason for this discrepancy can be attributed to the
distribution complexity of ground objects and the non-Gaussian
nature of noise distribution in real scenes. Moreover, the unmix-
ing accuracy of all classical algorithms is lower than that of deep
learning models. Specifically, the proposed SSF-Net algorithm
achieves the best results in terms of RMSE for each land cover
category, and it also outperforms all other methods in terms of
the overall mean endmember accuracy of SAD.

3) Jasper Dataset: The results of the RMSE and SAD quan-
tification for each endmember on the dataset of Jasper by the
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Fig. 9. Abundance maps of three materials from the Samson data obtained by different algorithms.

Fig. 10. Comparison of endmembers between SSF-Net (blue curves) and the corresponding GT (red curves) on the Samson dataset.

TABLE IV
QUANTITATIVE RESULTS FOR THE JASPER DATASET

different algorithms are presented in Table IV. Figs. 11 and 12
show the abundance maps and the corresponding endmember
results extracted by different algorithms on this dataset. The
distribution of ground objects in the dataset of Jasper exhibits a
higher level of complexity compared with the Samson dataset.
As shown in Fig. 11, the unmixing algorithms, such as FCLSU,
MLNMF, SGSNMF, SNMF, and uDAS, have deficiencies in
accurately extracting all the roads, which is manifested in the
fact that some of the roads are misclassified as water bodies,
which affects the final unmixing accuracy. In contrast, deep
learning algorithms are better able to identify roads and, thus,
generate more accurate abundance maps. As can be seen in
Table IV, the proposed SSF-Net network achieves excellent
results in the Jasper dataset. The quantification results show that

all accuracy evaluation metrics, except for SAD_Tree, achieve
optimal accuracy levels, indicating that SSF-Net has excellent
performance in the unmixing task.

4) Urban Dataset: The results of the RMSE and SAD quan-
tification for each endmember on the Urban dataset by the
different algorithms are presented in Table V. Figs. 13 and
14 show the abundance maps and corresponding endmember
results extracted by different algorithms on the Urban dataset.
Among four experimental datasets, the Urban dataset is the
most heavily mixed dataset in terms of the mixing degree of
ground objects. Visually, the abundance maps generated by the
proposed SSF-Net network exhibit the highest degree of simi-
larity to the real abundance maps. From the quantitative results,
SSF-Net achieves the best accuracy in terms of the Mean_SAD
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Fig. 11. Abundance maps of four materials from the Jasper ridge data obtained by different algorithms.

Fig. 12. Comparison of endmembers between SSF-Net (blue curves) and the corresponding GT (red curves) on the Jasper dataset.

TABLE V
QUANTITATIVE RESULTS FOR THE URBAN DATASET

and Mean_RMSE. By comparing the experimental results on
multiple datasets, the proposed SSF-Net network can consis-
tently outperform other methods in generating more accurate
and reliable estimates of endmembers and abundances, which
fully demonstrates the remarkable superiority of the SSF-Net
network in HU tasks.

D. Computational Cost

Table VI presents the run time by all comparison methods
on different datasets. It can be seen that the classical methods,
FCLS, MLNMF, and SGSNMF, have a relatively simple compu-
tational process and, thus, have a low time overhead. In contrast,

deep learning models usually run significantly longer than classi-
cal methods due to their complex network structure and inclusion
of a large number of parameters. Among these deep learning
models, SNMF, uDAS, and DAEU belong to the pixel-level
unmixing networks. Since they are unmixed pixel-by-pixel, their
processing time increases with the number of pixels. However,
CNNAEU and CyCU-Net are spatial-level unmixing networks,
which capture spatial context information by introducing a re-
ceptive field. However, it is also the inclusion of the receptive
field that causes their time overhead to significantly exceed that
of pixel-level unmixing networks. Overall, the time expenditure
of the proposed method in this study is between the pixel-level
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Fig. 13. Abundance maps of five materials from the urban data obtained by different algorithms.

Fig. 14. Comparison of endmembers between SSF-Net (blue curves) and the corresponding GT (red curves) on the urban dataset.

TABLE VI
COMPUTATIONAL COST OF ALL COMPARISON METHODS ON DIFFERENT

DATASETS IN TERMS OF SECONDS (S)

and spatial-level unmixing network models as mentioned above.
The network model proposed in this study also constructs an
SSFM module in the encoder, which contains spatial attention
and spectral attention mechanisms, which helps to take into
account the spatial contextual information in the HSI data and the
spectral disparity information between the pseudoendmembers.
Despite the increase in model runtime overhead caused by the
introduction of the attention mechanism, the proposed method
is able to significantly improve the unmixing accuracy.

TABLE VII
ABLATION ANALYSIS OF SSF-NET ON URBAN DATASET COMBINED WITH

DIFFERENT NETWORK MODULES

E. Ablation Analysis

To verify the effectiveness of each module in the SSF-Net
network, ablation experiments are conducted in this section for
the spectral attention module and the spatial attention mod-
ule on the Urban dataset. As can be seen from Table VII,
when the SSF-Net network removes both the spectral attention
module in spectral branch and the spatial attention module in
spatial branch, the performance of the network becomes the
worst, which also indicates to a certain extent that the potential
information contained in the HSI data is not fully exploited.
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In the SSF-Net network, the addition of the spectral attention
module can enhance the network’s ability of abundance estima-
tion. The spatial attention module, on the other hand, is able to
improve the endmember extraction accuracy of the network. It is
worth emphasizing that the spectral attention module plays a cru-
cial role in enhancing the abundance estimation capability of the
network, mainly by focusing on the distinct disparities between
different spectral features. And that, the spatial attention module
exhibits higher sensitivity to the difference between different
spatial regions, which significantly enhances the endmember
extraction ability of the network. The results of the ablation
experiments show that the joint use of both spectral attention
module and spatial attention module in SSF-Net can be more
effective in mining high-dimensional features from HSI, thus
obtaining better unmixing results.

F. Discussion

By conducting a quantitative analysis of the experimental re-
sults on the four datasets, it is found that SSF-Net behaves promi-
nently superior unmixing performance to the other comparative
methods. Meanwhile, the complexity of the spatial distribution
of features in real images far exceeds that of synthetic datasets,
resulting in the poor performance of some NMF-based unmixing
methods in real datasets. Besides, SNMF-Net is of high physical
interpretability as it is built by unrolling L–p sparsity constrained
NMF model, so it achieves higher accuracy than other NMF
methods in the real datasets. However, because it only performs
unmixing at the pixel level without introducing spatial informa-
tion, it does not achieve particularly good unmixing accuracy.
Similarly, the pixel-level-based unmixing method also includes
DAEU, which pays more attention to endmember extraction,
and a good endmember extraction result will further enhance
the abundance estimation result, thus it also achieves relatively
excellent unmixing accuracy in these comparative experiments.
Although CNNAEU introduces spatial information, its loss
function only considers SAD, which makes its unmixing results
not as good as other DL unmixing networks. The accuracy of
CyCU-Net is poor because its receptive field does not cover
the complete image, resulting in its lack of extensive informa-
tion and remote dependencies. Most importantly, the proposed
method in this study, however, achieves the optimal accuracy in
real datasets and the unmixing results can be perceived as the
closest to the ground truth in terms of visualization. This further
confirms the excellence of the proposed network model in the
unmixing task.

V. CONCLUSION

In this study, a convolutional AE HU network called SSF-Net
is proposed ingeniously integrating both spatial and spectral
features. The architecture of this network is conceived in such a
manner that it initiates its operation by employing a regional
VCA algorithm to extract the pseudoendmembers from HSI
data. Then, the network utilizes the spatial attention module
along with the spectral attention module to learn the spatial
difference information contained within the HSI data and spec-
tral difference information amongst the pseudoendmembers,
respectively, in such a way that the network makes the best use

of the information inherent in the HSI data, resulting in more
reasonable and superior unmixing results. Experiments confirm
the effectiveness of the SSF-Net network proposed in this article
on synthetic and real hyperspectral datasets with higher unmix-
ing accuracy compared with other state-of-the-art HU methods.
The proposed SSF-Net network is built based on LMM. How-
ever, considering the complexity of the hyperspectral imaging
process, the NLMM is more suitable for elaborating its imaging
principles. Thus, our future research aims to develop more gen-
eral and powerful NLMM-based unmixing networks that inte-
grate the spatial–spectral features. Meanwhile, the introduction
of LiDAR data to aid in HU has been shown to be feasible. Thus,
designing a network architecture that fuses the spatial–spectral
features of HSI with those extracted from the LiDAR point cloud
can help to address the unmixing issue more effectively.
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