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Abstract—The acquisition of global context and boundary infor-
mation is crucial for the semantic segmentation of remote sensing
(RS) images. In contrast to convolutional neural networks (CNNs),
transformers exhibit superior performance in global modeling and
shape feature encoding, which provides a novel avenue for obtain-
ing global context and boundary information. However, current
methods fail to effectively leverage these distinctive advantages
of transformers. To address this issue, we propose a novel single
encoder and dual decoders architecture called STDSNet, which
embeds the Swin transformer into the dual-stream network for
semantic segmentation of RS imagery. The proposed STDSNet
employs the Swin transformer as the network backbone in the
encoder to address the limitations of CNNs in global modeling
and encoding shape features. The dual decoder comprises two
parallel streams, namely the global stream (GS) and the shape
stream (SS). The GS utilizes the global context fusion module
(GCFM) to address the loss of global context during upsampling. It
further integrates GCFMs with skip connections and a multiscale
fusion strategy to mitigate large-scale regional object classification
errors resulting from similar features or shadow occlusion in RS
images. The SS introduces the gate convolution module (GCM)
to filter out irrelevant features, allowing it to focus on processing
boundary information, which improves the semantic segmentation
performance of small targets and their boundaries in RS images.
Extensive experiments demonstrate that STDSNet outperforms
other state-of-the-art methods on the ISPRS Vaihingen and Pots-
dam benchmarks.

Index Terms—Dual-stream, remote sensing (RS), semantic
segmentation, Swin transformer.

I. INTRODUCTION

R EMOTE sensing (RS) images have become a crucial
source of data for surface information extraction. Ad-

vancements in aerospace and sensor technologies have enabled
the capture of high-quality RS images, which can be applied in
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various scenarios [1]. Semantic segmentation is a pixel-level
classification that predicts category labels for each pixel in
an image. It has garnered widespread attention in RS-related
fields. High-quality RS images can capture detailed information,
such as texture, shape, and color features in large-scale regions.
However, these features pose challenges for semantic segmenta-
tion in complex scenarios. Currently, the semantic segmentation
of RS images serves as a crucial research area for RS image
analysis and provides technical support for various significant
RS applications, including urban planning [2], [3], [4], land
cover survey [5], [6], environmental monitoring [7], and disaster
assessment [8], [9].

In recent years, the rapid development of convolutional neural
networks (CNNs) has played a crucial role in driving forward
research on image semantic segmentation. The fully convo-
lutional network (FCN) [10] with encoder–decoder architec-
ture, specifically, has emerged as a popular configuration for
semantic segmentation owing to its exceptional segmentation
performance. Within the CNN-based encoder–decoder architec-
ture, the encoder leverages successive convolution and pooling
operations to reduce the spatial sizes of features, thereby enhanc-
ing their semantic representation and extracting features [11].
Conversely, the decoder restores the image resolution while
simultaneously fusing high-level semantic and low-level spatial
information [13].

While the FCN-based method has demonstrated promising
results, it still faces significant challenges in the semantic seg-
mentation of RS images. On the one hand, RS images typically
encompass a wider spatial range and fewer object categories
compared to natural images. Furthermore, it comprises a multi-
tude of ground objects belonging to various categories that share
similar spectral and material properties, as well as ground objects
that are obscured by shadow. These factors make it more difficult
to embed clear global scene information at a global level, leading
to severe semantic confusion issues and ultimately segmentation
errors in large-scale areas in RS images [14]. On the other hand,
RS image-related applications require highly accurate ground
object mapping, necessitating precise identification of diminu-
tive objects and boundaries. However, CNN-based models of-
ten perform feature downsampling during feature extraction to
reduce computational complexity, resulting in the loss of small-
scale features and ultimately inadequate semantic segmentation
of small targets and their boundaries. [15]. Consequently, more
global context and boundary information are requested as clues
for semantic reasoning in RS images [16], [17].
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Due to the locality of convolution, CNNs are limited in
their ability to model global information. This limitation is
attributable to the fact that each convolutional kernel focuses
solely on the local pixels within its receptive field and, therefore,
cannot model long-distance dependencies. To address this issue,
DeepLabV3+ [18] employed pyramid-structured dilated convo-
lutions [19] to expand the receptive field and improve global
information extraction. UperNet [20] incorporated a pyramid
of global pooling layers to effectively capture global context
information. However, the grid effects of dilated convolutions
and the semantic loss induced by the global pooling layer make
it challenging to capture comprehensive global context infor-
mation. In addition, although DANet [21] and DNLNet [22]
leverage attention mechanisms to establish long-range depen-
dencies, they are still not liberated from CNNs. In essence,
CNNs aggregate global information from local features rather
than encoding the global context directly. Therefore, using only
CNNs makes it difficult to acquire clear global scene information
from RS images with complex backgrounds [23].

Recently, transformer architectures based on self-attention
mechanisms have demonstrated remarkable achievements in
natural language processing (NLP) [25], offering novel solu-
tions for modeling global relationships. Dosovitskiy et al. [26]
proposed the vision transformer (ViT), which employs a pure
transformer structure as a feature extractor for the first time to
perform image recognition tasks. Zheng et al. [27] introduced the
segmentation transformer (SETR), a first semantic segmentation
model that builds upon ViT, thus representing the first attempt
to apply transformers to semantic segmentation. To address the
limitations of SETR, Xie et al. [28] proposed SegFormer, which
reduces the number of parameters of the model, eliminates
the position encoding, and designs a lightweight yet effective
All-MLP decoder. In addition, Liu et al. [29] introduced the
Swin transformer, which employs a shifting window strategy to
constrain self-attention calculations within nonoverlapping win-
dows while allowing for cross-window information exchange.
The Swin transformer has demonstrated significant potential
in certain dense prediction tasks and is progressively gaining
popularity for semantic segmentation of RS images [16], [30].

In addition, some recent work investigating the properties of
transformers indicates the superior encoding of shape features
by transformers compared to CNNs. This discovery provides
a novel avenue for extracting boundary information. Naseer
et al. [31] demonstrated that ViTs can achieve comparable shape
recognition capabilities to those of the human visual system,
which surpass the performance of CNNs when properly trained
to encode shape-based features. The authors also highlight that
transformer models exhibit a higher shape bias compared to
CNN models with similar parameter counts. Here, shape bias
is defined as the fraction of correct decisions based on object
shape. Similar conclusions have been drawn by Tuli et al. [32],
who investigated the degree of correlation between various
visual models and human vision from the perspective of error
consistency and discovered that transformers have a higher
shape bias than CNNs, which aligns more closely with human
errors. In addition, Ghiasi et al. [33] visualized and compared
the behavior of transformers and CNNs and observed that both

architectures share a common feature where early layers learn
low-level features while deeper layers learn high-level object
features or abstract concepts. The distinction lies in the fact that
transformers can more effectively utilize global context informa-
tion. These studies effectively demonstrate that transformers are
superior to CNNs in encoding shape features, corroborating the
potential of extracting boundary information from transformers.

Despite the transformer’s significant advantages over CNNs in
global modeling and shape feature encoding, current semantic
segmentation methods do not completely exploit these bene-
fits. Most transformer-based methods empirically apply certain
strategies that are applicable in CNNs to the decoder. However,
these strategies were not originally devised considering the
characteristics of transformers. This means that the full potential
of the transformer cannot be realized. As a result, the decoding
process suffers from the semantic loss of global context and
boundary information. Specifically, some methods [16], [30]
employ the traditional upsampling techniques commonly used
in popular decoders, such as linear interpolation and transposed
convolution. However, the feature representation for each lo-
cation on these upsampled feature maps is restored from a
restricted receptive field. This constraint limits the ability to
restore pixel-wise predictions, resulting in the loss of global
context during the upsampling process [34], [35]. In addition,
certain methods [36], [37] migrate the decoder strategies that
involve dense image representations, wherein shape, color, and
texture features are simultaneously processed using CNNs. This
simultaneous processing of diverse feature types hampers ade-
quate decoding of shape features, leading to the loss of boundary
information.

In this article, we propose a single encoder and dual de-
coders framework for RS imagery semantic segmentation called
STDSNet, which employs the Swin transformer as the network
encoder to mitigate the limitations of CNN in global modeling
and shape feature encoding. The dual decoder consists of two
parallel streams, namely the GS and the shape stream (SS).
The GS aims to optimize the utilization of the global context
captured by transformers, while the SS focuses on processing
shape features to obtain more accurate boundary information.
The primary contributions of this article are as follows.

1) We combine the Swin transformer backbone with a CNN-
based two-stream network to construct a new single en-
coder and dual decoders semantic segmentation frame-
work. The dual decoder fully exploits the advantages of
the Swin transformer in encoding global context and shape
features.

2) In the GS, we utilize the global context fusion module
(GCFM) to recover the loss of global context during the
upsampling process. We further integrate skip connections
and a multiscale fusion strategy to optimize the utilization
of global context, effectively ameliorating large-scale re-
gional segmentation errors that arise due to similar fea-
tures or shadow occlusion in RS images.

3) To filter out redundant feature information, we introduce
the gate convolution module (GCM) in the SS. By integrat-
ing GCMs at various stages of the encoder, the network
can selectively suppress noise layer by layer, allowing it
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to focus solely on processing boundary information. This
improves the semantic segmentation performance of small
targets and their boundaries in RS images.

The rest of this article are organized as follows. Sec-
tion II provides an overview of related work on STDSNet.
Section III presents the comprehensive structure of STDSNet
along with specific implementation details. Section IV outlines
the experimental setup, shows the experiment results, and dis-
cusses them in detail. Finally, Section V concludes this article.

II. RELATED WORK

A. Semantic Segmentation of RS Images Based on CNN

In recent years, despite the success achieved by FCN-based
methods in semantic segmentation tasks, their effectiveness
in addressing challenging segmentation issues in RS imagery
has remained limited. These challenges are posed by ground
objects that are of small scale, have high similarity, or suffer
from mutual occlusion. To mitigate these challenges, researchers
have devised various solutions. Multiscale feature extraction has
been employed by some researchers to enhance the network’s
performance. Zhang et al. [38] utilized a multibranch parallel
convolution structure from HRNet [39] to generate feature maps
at various scales, thereby strengthening the embedding of scale-
related contextual information. Zhang et al. [40] improved the
network’s ability to express multiscale features by combining
three different paths, namely pooling, transpose convolution, and
dilated convolution, and learning the optimal combination of dif-
ferent scales of features. Hang et al. [41] proposed a multiscale
progressive segmentation network, which gradually segments
objects into small, large, and other scales by cascading three
subnetworks. This method greatly improves the segmentation
of large and small objects.

The attention mechanism is also a noteworthy aspect. Haut
et al. [42] used a method that combines attention mechanisms
with a residual-structured network in super-resolution RS im-
ages, which integrates the high and low-frequency character-
istics of RS images and filters out low-frequency surface fea-
tures that are not useful. Ding et al. [14] proposed a method
that combines the patch attention module (PAM) and attention
embedding module (AEM), which enhances the embedding of
contextual information while enriching the semantic informa-
tion of low-level features.

In addition, contextual information is equally important se-
mantics for improving the accuracy of semantic segmenta-
tion. Zhou et al. [43] used convolutional features to capture
spatial contextual information, encode category co-occurrence
relationships into convolutional features, and thus decouple
the most discriminative features. Zhou et al. [44] proposed a
hierarchical context network to simultaneously explore pixel-
to-pixel (P2P) and pixel-to-object (P2O) relationships, learn
detail-granularity context, and semantic-grained context sepa-
rately, thereby aggregating to obtain hierarchical context infor-
mation. These CNN-based methods have made significant con-
tributions to the development of semantic segmentation for RS
images.

B. Semantic Segmentation of RS Images Based on Transformer

Transformer is built upon the self-attention mechanism, which
demonstrates superior performance in global context modeling.
In recent times, the application of transformer models in the
realm of computer vision has yielded remarkable outcomes. In
RS image semantic segmentation, transformer’s exceptional ca-
pability in global modeling has garnered attention. Most existing
transformer-based RS image segmentation methods employ a
hybrid architecture that incorporates both CNN and transformer
in an encoder–decoder design. ST-UNet [16] introduced a novel
dual-encoder architecture by combining transformer and CNN.
It utilized the Swin transformer to facilitate the acquisition of
global semantic information by the network and to alleviate the
limitations of CNN’s global modeling. DC-Swin [36] employed
transformers to extract multiscale global contextual feature
information and integrated features through the densely con-
nected feature aggregation module (DCFAM). Swin-CNN [30]
adopted Swin transformer as the network backbone and inte-
grated CNN’s spatial pyramid pooling, channel attention, and
edge detection strategies, thereby verifying that CNN’s effective
strategies are also applicable to transformers. CTMFNet [37]
used HRNet and CrossFormer [45] as the backbone paths of
CNN and transformer, respectively, to extract local and global
contextual information. It further designed the dual-backbone at-
tention fusion module (DAFM) to fuse the local and global con-
textual information of the two branches. These works achieved
remarkable results, corroborating the suitability of transformer
structure for RS image semantic segmentation.

C. Multitask Learning

Multitask learning is an effective approach for improving
model generalization and robustness. This approach takes ad-
vantage of the complementary information between tasks and
shares resources and parameters across tasks to improve the
efficiency and prediction accuracy of the model. Several recent
studies have used different strategies to combine complementary
tasks and improve the performance of computer vision tasks. For
example, Takikawa et al. [17] proposed a dual-stream network
that explicitly injects boundary information into the segmented
CNN and uses a dual-task loss function to refine the semantic
mask and boundary prediction. Hang et al. [46] proposed an
automatic identification model upon CNNs, which comprises
two parallel decoders to learn multiscale features and edge infor-
mation, respectively, effectively improving the accuracy of the
model. Li et al. [47] introduced a boundary loss that adaptively
fuses with the original semantic loss in RS image semantic seg-
mentation tasks, enabling semantic and boundary information
to complement and enhance each other. Bhattacharjee et al. [48]
presented an end-to-end multitask transformer architecture that
employs shared attention between transformers of multiple tasks
to model the dependencies between the tasks. Zhang et al. [49]
combined deformable CNN and query-based transformers to
propose a novel MTL model for multitask learning of dense
prediction.

Drawing inspiration from these excellent works, we have
adopted the Swin Transformer backbone as the encoder of our
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Fig. 1. Architecture of our proposed STDSNet. STDSNet comprises an encoder module that utilizes the Swin transformer backbone to extract features, and a
two-branch decoder module consisting of the global stream and the SS. (a) Encoder. (b) Global Stream. (c) SS.

network to transmit the information stream to the dual-stream
decoder based on CNNs. This hybrid framework enables the
proposed network to harness the respective strengths of both the
CNN and transformer architectures in semantic segmentation
for RS images.

III. METHOD

In this section, we provide a comprehensive account of the ar-
chitecture and component modules of STDSNet. We commence
by delineating the overall network structure, which is followed
by an introduction of the Swin transformer encoder, the global
stream, and the SS.

A. Network Structure

As stated in Section I, transformer has demonstrated superi-
ority over CNNs in encoding global context and shape features
that are essential for accurate semantic segmentation of RS
images. Our objective is to develop a CNN-based decoder that
can effectively incorporate the characteristics of the transformer
architecture. Towards this end, we propose the STDSNet, which
synergistically combines the strengths of both CNNs and trans-
formers.

The overall architecture of the proposed STDSNet, as de-
picted in Fig. 1, follows a single encoder and dual decoders
framework. The robust capacity of the Swin transformer to en-
code global context and shape features is leveraged in STDSNet
to augment the network’s performance. In the dual-branch de-
coder component, we have devised two parallel streams, namely

the global stream and the SS, for processing the global context
and boundary information, respectively. To this end, the GCFM
is introduced in the global stream to recover the loss of global
context, while the GCM in the SS filters noise unrelated to
boundary information. In the STDSNet, the outputs of the global
stream and SS collaborate to produce the final prediction. This
is achieved by coupling the respective loss functions of the dual
streams.

B. Swin Transformer Encoder

The Swin transformer, which is based on ViT, invokes CNN’s
hierarchical structure and restricts self-attention to nonoverlap-
ping windows at different layers, thereby significantly reducing
processing complexity. It enables window-to-window informa-
tion interaction through sliding window operations, thus giving
the model the ability to model globally in disguise.

1) Swin Transformer Backbone: As shown in Fig. 2, the
Swin transformer backbone consists of four stages. Specifically,
the patch partition module divides the input RGB image into
nonoverlapping patches with a size of 4 × 4, and the num-
ber of channels is 4 × 4 × 3 = 48. Stage 1 consists of a
linear embedding layer and two successive Swin transformer
blocks, which transform the blocks from two-dimensional to
one-dimensional sequence features through the linear layer and
project the number of channels to C. In stages 2 through 4,
the patch merging modules halve the height and width of the
feature map and double the number of channels during the
downsampling process. The data sequence through the Swin
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Fig. 2. Structure of the Swin transformer backbone, consisting of four stages.

Fig. 3. Two successive Swin transformer blocks: the former is based on W-
MSA, and the latter is based on SW-MSA.

transformer block does not alter the size of the image or the
number of channels, but it increases the attention weights on its
sequence.

In Fig. 2, the output of the ith stage is marked as Ei (i = 1, 2,
3, 4), which corresponds to Fig. 1(a). In our STEDNet, we adopt
the Swin-base (Swin-B) backbone configuration (i.e., channelC
= 128, a window size of 7, channel numbers of {128, 256, 512,
1024} per stage, layer numbers of {2, 2, 18, 2} per stage, and
head numbers of {4, 8, 16, 32} per layer).

2) Swin Transformer Block: Swin transformer blocks appear
in pairs in the Swin transformer backbone, as depicted in Fig. 3.
The former Swin transformer block is based on the multihead
self-attention mechanism of the window (W-MSA), whereas the
latter is based on the multihead self-attention mechanism of
the shifting window (SW-MSA). Each Swin transformer block
contains a multilayer perceptron (MLP), a LayerNorm (LN)
layer prior to each self-attention mechanism and MLP, and a

residual connection afterward. They can be expressed as follows:

ŝl = W-MSA(LN(sl−1)) + sl−1

sl = MLP(LN(ŝl)) + ŝl

ŝl+1 = SW-MSA(LN(sl)) + sl

sl+1 = MLP(LN(ŝl+1)) + ŝl+1 (1)

where ŝl and ŝl+1 represent the outputs of the W-MSA and
SW-MSA modules, respectively, and sl and sl+1 represent the
outputs of the MLP in the former and latter Swin transformer
blocks, respectively.

C. Global Stream

Global context encoding is critical for large-scale region
categorization in RS images [16], [50]. The absence of global
context significantly degrades the precision of semantic segmen-
tation, which becomes particularly pronounced when dealing
with high-resolution RS images [30], [37]. The Swin trans-
former’s robust global modeling abilities allow for the inclusion
of higher-level global contextual information from the encoder’s
deeper layers.

However, popular decoders typically employ conventional
upsampling techniques such as linear interpolation, which result
in the loss of global context during upsampling. Consequently,
these decoders fail to fully utilize the global context obtained
from the Swin transformer. To address this limitation, we de-
signed the global stream, which uses the GCFM to compensate
for the loss of global context during upsampling. Moreover, we
establish three skip connections to interconnect feature maps of
corresponding sizes between the encoder and decoder, followed
by fusing feature maps of different scales, thereby optimizing
the utilization of global context.

1) Structure of the Global Stream: The global stream archi-
tecture is illustrated in Fig. 1(b). Initially, the channel dimen-
sion of the output tensor E4 ∈ R

1024×(H/32)×(W/32) from the
final stage of the encoder is converted to 512 by applying a
1 × 1 convolution operation. The resulting output is denoted as
G1 ∈ R

512×(H/32)×(W/32). This conversion process is performed
to prepare for subsequent processing in the GCFM. Similarly,
the channel dimensions of the output tensors (E1–E3) from
stages 1–3 of the encoder are also converted to 512 by a 1 × 1
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Fig. 4. Detailed design of the GCFM. It employs a parameter k to regulate the up-sampling multiplier and integrates the correlation matrix to recover the loss of
global context during the upsampling process.

convolution operation to prepare them for feature fusion. Three
GCFMs are employed in the global stream. The size of each
feature map inputted to the GCFM is upsampled to k times its
original size by tuning the parameter k. Subsequently, G1 is
inputted into the first GCFM (k = 2), and the resulting output is
fused with the feature map output fromE3 via element-wise sum-
mation, yielding G2 ∈ R

512×(H/16)×(W/16). Then, G1 is inputted
into the second GCFM (k = 4), and the output is fused with the
feature map output from E2, producing G3 ∈ R

512×(H/8)×(W/8).
Finally, G1 is inputted into the third GCFM (k = 8) and further
fused with the feature map output from E1, and the resulting
tensor is denoted as G4 ∈ R

512×(H/4)×(W/4).
After acquiring feature maps Gi (i = 2, 3, 4), we upsample

G2 and G3 to the same resolution as G4. Next, the feature maps
G2–G4 are concatenated along the channel dimension for further
feature fusion. Subsequently, a 1 × 1 convolution is applied for
dimensionality reduction, and the resulting output is denoted
as G ′ ∈ R

512×(H/4)×(W/4). Finally, a 1 × 1 convolution layer is
used, followed by linear interpolation upsampling on the feature
map G ′ to generate a prediction mask for the global stream.

2) GCFM: The GCFM acquires the correlation matrix by
integrating visual primitives extracted from high-level feature
maps. The correlation matrix captures the dense spatial mapping
relationships between all feature pixels, preserving the long-
range context dependencies of spatial features and supplying
denser global contextual information. Subsequently, the corre-
lation matrix is fused with the upsampled decoder feature map,
enabling the recovery of global context during the upsampling
process.

As depicted in Fig. 4, the GCFM accepts the output of the
final layer of the encoder backbone network, denoted as F ∈
R

C×H×W , as its input. Initially, two 1 × 1 convolutional layers
are applied to the feature map F to decrease its channel count,

resulting in the acquisition of two feature maps, each containing
N channels. Then, the visual primitives are acquired adaptively
from these two feature maps and fused to produce the correlation
matrix, denoted as M ∈ R

N×N. The correlation matrix encodes
a comprehensive depiction of the relationship among distinct
feature space positions and can be computed as follows:

M = δ(F)⊗ SoftMax�(μ(F)). (2)

where δ and μ stand for two 1 × 1 distinct convolutional layers,
while ⊗ signifies the matrix multiplication operation.

To address the loss of global semantics caused by upsam-
pling, the correlation matrix M is utilized during the bilinear
interpolation upsampling of the global stream. To begin with, we
obtain Fup ∈ R

C×kH×kW by bilinear interpolation upsampling
the feature map F with a factor of k (k = 2, 4, 8). Following
this, we convert the feature map Fup into an N -dimensional
attention vector using a 1 × 1 convolutional layer and a softmax
function. Subsequently, the correlation matrix is fused with
the N -dimensional attention vector, and the resulting output
establishes a skip connection with Fup. Finally, we obtain the
result F̂ ∈ R

C×kH×kW through a 3 × 3 convolution, BN, and
ReLU layer, which is calculated as

F̂ = ξ(M⊗ SoftMax(η(Fup))⊕ Fup) (3)

where ξ denotes the 3 × 3 convolutional layer together with the
BN and ReLU layers, while η represents the 1 × 1 convolutional
layer. In addition, we use ⊕ to indicate the operation of element-
wise addition.
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D. Shape Stream

Both the encoders employed in the transformer and CNN
architectures tend to capture low-level features at shallow lay-
ers [33]. However, the transformer architecture has superior
encoding of shape features and a stronger shape bias compared to
CNNs [31], [32], which provides a novel approach for extracting
boundary information.

However, the present state-of-the-art methods utilized for
image semantic segmentation involve dense image representa-
tion, wherein CNNs are employed to simultaneously process
shape, color, and texture information [28], [51], [52]. These
methods may not be optimal as they comprise disparate types
of information that are crucial for recognition. On the other
hand, the majority of current multitask learning methods rely on
CNN-based encoders [17], [47], [53], such as ResNet [11] and
ResNeSt [54], which are unable to overcome the disadvantages
of CNNs in encoding shape features during feature extraction.
As a result, these methods do not transfer well to encoder archi-
tectures that use transformers. To overcome these limitations, we
propose a novel single encoder and dual decoders architecture
that maximizes the shape features captured by transformers in
order to extract boundary information more effectively. This is
achieved by incorporating shape features into a separate process-
ing branch (called the SS) to acquire boundary information. Our
dual-stream network architecture enables the parallel processing
of information in both the global stream and the SS.

1) Structure of the SS: The diagram in Fig. 1(c) depicts the
structure of the SS. Initially, a 1 × 1 convolution is applied to
the feature map E1, which maintains its size and number of
channels, resulting in the feature map S1 ∈ R

128×(H/4)×(W/4).
The feature maps Ei (i = 2, 3, 4) are upsampled to match the
size of S1, and a channel reduction to 1 is performed through
a 1 × 1 convolution, respectively, producing the feature maps
Si ∈ R

1×(H/4)×(W/4) (i = 2, 3, 4). After the completion of these
operations, the preparation of the GCM is finalized.

We employ three GCMs to selectively gate the boundary-
related information within the SS. Specifically, we integrate
three GCMs at distinct stages of the encoder to enable selective
suppression of noise layer by layer. As shown in Fig. 1(c), the
feature maps S1 and S2 are simultaneously inputted into the first
GCM. The output from this step is then fed into the second GCM
along with a feature map S3 to obtain the second GCM’s output.
Furthermore, the output of the second GCM undergoes further
processing in a similar manner with feature map S4 to produce
the output of the third GCM. Notably, the output feature map
size and channels of all three GCMs remain consistent with S1.
Following this, we perform channel-wise concatenation of the
outputs from the three GCMs and apply a 1 × 1 convolution
layer to adjust their channel dimensions, resulting in the feature
map S ′ ∈ R

128×(H/4)×(W/4). Finally, we apply a 1 × 1 convolu-
tion layer and linear interpolation upsampling to S ′ to generate
the ultimate prediction mask for the SS.

2) GCM: In the shallow layers of the encoder, a multitude of
low-level features are captured, causing ambiguity between the
object and background boundaries. These superfluous low-level
features are perceived as noise during context fusion and can

Fig. 5. Detailed design of the GCM. It utilizes high-level semantics to gate
low-level semantics, thereby eliminating extraneous feature information.

negatively impact the precision of object boundary segmenta-
tion. To address this, we propose the GCM, which leverages
high-level semantics within the SS to gate low-level semantics,
where high-level semantics possess a higher-level semantic
comprehension of the scene and guide low-level semantics in
selectively focusing on the pertinent boundary-related informa-
tion. In this way, extraneous noise can be effectively eliminated.

As shown in Fig. 5, the GCM’s operation commences with
the concatenation of the high-level semantic X ∈ R

c×h×w and
the low-level semantic T ∈ R

1×h×w, which are then subjected
to a pair of successive 1 × 1 convolutional layers to obtain the
attention map A ∈ R

c×h×w. The computational process of the
attention map can be represented as follows:

A = σ(φ(λ(X ∪T))) (4)

where ∪ denotes the channel concatenation operation. λ and φ
represent a convolutional layer and a normalized convolutional
layer, respectively, where both operations employ a convolution
kernel size of 1 × 1, followed by a sigmoid function σ. Then,
GCM involves the element-wise multiplication of the low-level
semantic T with an attention map A, which is subsequently
followed by the inclusion of a residual connection and a convo-
lutional layer. This process can be expressed by the following
equation:

Z = ψ(T�A⊕T) (5)

where ψ denotes a 3 × 3 convolution operation and � signi-
fies the operation of element-wise multiplication. Z ∈ R

c×h×w

represents the output of the GCM, which is subsequently trans-
mitted to the subsequent layer of the SS for further processing.
More specifically, as shown in Fig. 1(c), the low-level semantic
of the previous GCM output will be employed as input to the
following GCM, together with the high-level semantic from
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deeper features. This multistage approach facilitates the gat-
ing of the low-level semantic through the high-level semantic,
thereby effectively filtering out redundant low-level features.

E. Loss Function

In our experiment, we employ the cross-entropy loss as the
loss function for the global stream. The global stream loss (LGS)
is denoted as

LGS = − 1
N

N∑

j

C∑

i

[ yji log(ŷji) + (1 − yji)log(1 − ŷji)] (6)

where N and C refer to the number of samples and categories,
respectively. In addition, the symbols y and ŷ signify the ground
truth of the segmentation and the corresponding predictions,
respectively.

Furthermore, to enhance the network’s ability to extract
boundary information, we utilize the boundary loss (BF1) [55] as
the SS’s loss function, which has demonstrated its effectiveness
in RS image semantic segmentation tasks [30], [53], [56]. The
SS loss (LSS) consists of the following calculation steps:

yb
gt = pool (1 − ygt , θ0)− (1 − ygt)

yb
pd = pool (1 − ypd , θ0)− (1 − ypd) (7)

yb,ext
gt = pool (yb

gt , θ), y
b,ext
pd = pool (yb

pd , θ) (8)

Pc =
sum (yb

pd ◦ yb,ext
gt )

sum (yb
pd )

, Rc =
sum (yb

gt ◦ yb,ext
pd )

sum (yb
gt)

(9)

LSS = 1 − 1
C + 1

C∑

c=0

2 × Pc × Rc

Pc + Rc (10)

where ygt and ypd represent the binary maps corresponding
to the ground truth and predicted labels for an arbitrary class
c within an image, respectively. The max-pooling operation
is denoted by pool (·), and the sliding window size, i.e., the
convolution kernel size, is denoted by θ0, which is typically set
to 3. The extended boundaries of the true map and predicted
map are represented by yb,ext

gt and yb,ext
pd , respectively, which are

obtained through maximum pooling. Here, θ represents the size
of the padding operation, and it is set to 5 in this article. We use Pc

and Rc to represent precision and recall, respectively. The sum
operation is denoted by sum (·), and pixel-wise multiplication is
represented by ◦.

By coupling their respective loss functions, the output feature
maps from the global stream and the SS culminate in the final
prediction of the STDSNet. The total loss (Ltotal) of the model
is calculated by aggregating the global stream loss LGS and the
SS loss LSS through a weighted sum, which can be expressed as

Ltotal = αLGS + βLSS (11)

where α and β are the weights of the global stream and the SS,
respectively. We conduct a systematic analysis by varying the
hyperparameter values of α and β to investigate their impact
on the overall performance of the model. Subsequently, we
perform a meticulous evaluation of the experimental outcomes

and ultimately select the values α = 1 and β = 0.2 as optimal.
The comprehensive details of our experimental methodology
and findings are expounded in Section IV-C.

IV. EXPERIMENTS AND RESULTS

A. Datasets

The effectiveness of the proposed network has been evaluated
through experiments conducted on the International Society of
Photogrammetry and Remote Sensing (ISPRS) Vaihingen and
Potsdam datasets.

1) Vaihingen Dataset: Vaihingen is a small German village
with numerous adjacent multistory buildings in Germany. The
Vaihingen dataset comprises true orthophoto (TOP) tiles, each
containing three spectral bands of red, green, and near-infrared,
along with the digital surface model (DSM) and the normalized
DSM (NDSM). Note that we have not used DSM and NDSM in
our experiments to reduce computation. Based on studies [14]
and [58], we have used 16 TOP images for training, while the
remaining 17 have been used for testing. The average size of
the images is 2064 × 2494 pixels, and the ground sampling
distance (GSD) is 9 cm. The dataset is tagged with six categories
to facilitate study on semantic segmentation, namely impervious
surface (white), building (blue), low vegetation (cyan), tree
(green), car (yellow), and clutter (red). Notably, we have ignored
the category “clutter” during the quantitative evaluation of the
dataset, in line with previous studies [57] and [58].

2) Potsdam Dataset: Potsdam is a quintessential German
city with a compact urban structure and an intricate network
of buildings. The Potsdam dataset comprises 38 TOP tiles of
identical dimensions (6000 × 6000 pixels), with a GSD of
5 cm. Following studies [14] and [58], 24 images are utilized for
training and the remaining 14 for testing. Each TOP image in the
Potsdam dataset comprises near-infrared, red, green, and blue
channels, as well as DSM and NDSM. Similar to the Vaihingen
dataset, the Potsdam dataset assigns six categories for semantic
segmentation of the images, with the category “clutter” being
excluded during quantitative evaluation.

B. Evaluation Metrics

Mean intersection over union (mIoU) and mean F1 score
(mF1) are employed to evaluate the results of semantic segmen-
tation in our experiments. The mIoU is calculated as the mean
of the IoU for all categories, whereas the mF1 is calculated
as the mean of the F1 score for all categories. IoU is defined
as the ratio of the intersection and union of the true value and
the projected value for each category, whereas the F1 score is
a thorough evaluation of precision and recall for each category.
The calculation formulas for these two evaluation metrics, which
are based on the confusion matrix, are given as follows:

IoU =
TP

TP + FP + FN
(12)

F1 = 2 × precision × recall
precision + recall

(13)
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TABLE I
ABLATION EXPERIMENT OF THE PROPOSED MODULES ON THE VAIHINGEN AND

POTSDAM DATASETS

where precision and recall are calculated as

precision =
TP

TP + FP
(14)

recall =
TP

TP + FN
(15)

where true positive (TP) is the number of pixels where both
the predicted and actual conditions are true. False positive (FP)
indicates the number of pixels for which the predicted condition
is true but the actual condition is false. False negative (FN)
represents the number of pixels for which the predicted condition
is false but the actual condition is true.

C. Implementation Details

Both our method and other state-of-the-art methods are
trained and tested using a single NVIDIA Tesla P100 with 16 GB
of memory utilizing the PyTorch framework. To ensure fairness
in the experiments, all participating methods execute training
and testing in the same experimental environment. Specifically,
the maximum number of epochs is set to 100, and the batch size
is set to 4. All of our transformer-based models are trained using
adaptive moment estimation (AdamW) [59], with the initial
learning rate set to 6 × 10−5 and a weight decay of 0.01. We
enable the warm-up strategy in the initial 1500 iterations to
slow down the initial overfitting of the model to the minibatch
and maintain a smooth distribution. Each raw image in the
training and testing sets is divided into 512 × 512 pixel patches.
During the data preprocessing stage, various standard data
augmentation techniques are implemented, including resizing,
random cropping, random flipping, photometric distortion, and
normalization. In our experiment, all methods are initiated with
pretrained weights to expedite the convergence of the model.

D. Ablation Study

In the proposed STDSNet, the GCFM and the GCM emerge
as two pivotal components. In order to evaluate the specific
contribution of these two modules to STDSNet, we performed
ablation experiments on the ISPRS-Vaihingen and Potsdam
datasets. Table I shows the results of the experiments with and
without the integration of the two components. For the sake of
simplicity, we refer to STDSNet-GCFM and STDSNet-GCM,

Fig. 6. Comparison of segmentation results without and with using GCFM
in the STDSNet. (a) image. (b) ground truth. (c) STDSNet-GCFM (without
GCFM). (d) STDSNet (with GCFM).

Fig. 7. Comparison of segmentation results without and with using GCM in
the STDSNet. (a) image. (b) ground truth. (c) STDSNet-GCM (without GCM).
(d) STDSNet (with GCM).

which denote the removal of the GCFM and GCM from STD-
SNet, respectively.

1) Effect of GCFM: As presented in Table I, STDSNet-
GCFM reduces mIoU from 81.77% to 81.09% and mF1 from
89.81% to 89.39% on the Vaihingen dataset, which is a drop of
0.68% and 0.42%, respectively, compared to STDSNet. Similar
trends can be observed on the Potsdam dataset, where the
removal of GCFM in STDSNet lowers mIoU and mF1 by
0.87% and 0.54%, respectively. Fig. 6 illustrates the visualized
comparison results. In the first row, the top of the “Building,”
which is extremely similar to the “Low Vegetation,” can be
effectively distinguished from them after using GCFM. In the
second row, segmentation errors caused by the large shadow
occlusion are prevented after using GCFM. This demonstrates
that the loss of global context during upsampling is reduced after
using GCFM to mitigate large-scale regional object classifica-
tion errors resulting from similar features or shadow occlusion.

2) Effect of GCM: In comparison to STDSNet, STDSNet-
GCM lowers mIoU from 81.77% to 81.45% and mF1 from
89.81% to 89.61% on the Vaihingen dataset, a decrease of
0.32% and 0.2%, respectively. Similarly, the removal of GCM
in STDSNet lowers mIoU and mF1 by 0.52% and 0.31% on
the Potsdam dataset, respectively. A more visual comparison
of the segmentation results is shown in Fig. 7. In the first row,



184 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE II
ABLATION EXPERIMENTS OF THE PROPOSED MODULES ON VAIHINGEN DATASET

the small target “Car” and “Building” can be segmented more
accurately after using GCM. In the second row, the use of GCM
improves the segmentation of small target “Car,” particularly
the boundaries of small targets, which can be segmented more
meticulously. This shows that using GCM improves the per-
formance of semantic segmentation of small targets and their
boundaries by filtering out irrelevant features and allowing it to
concentrate on processing boundary information.

3) Ablation Study for the Dual-Decoder Structure: To vali-
date the effectiveness of the dual decoder structure proposed in
STDSNet, we perform a decomposition of STDSNet to evaluate
the impact of each stream on semantic segmentation tasks for
RS images. Specifically, we investigate the contributions of the
global and SSs in the dual decoder to enhance the network’s
performance. To establish a baseline for the network, we adopt
the ALL–MLP decoder [28], which has been proven to achieve
satisfactory segmentation outcomes using the Swin transformer
in RS images [60]. Through experimentation on the Vaihingen
dataset, we analyze the effects of integrating various compo-
nents.

The experimental results are presented in Table II. The quan-
titative results in the table indicate that our dual-stream network
yields a 1.48% significant increase in mIoU and a 0.96% increase
in mF1 compared to the baseline. Specifically, when employ-
ing the global stream (GS) as the network’s decoder instead
of ALL-MLP, both mIoU and mF1 exhibit improvements of
1.02% and 0.68%, respectively. This demonstrates that the GS
can effectively address the segmentation challenges posed by
similar feature objects and the objects obstructed by shadows
in RS imagery, thereby significantly enhancing the quality of
segmentation results obtained for large-scale regions in RS
images. Furthermore, the introduction of SS to the GS further
improves mIoU by 0.46% and mF1 by 0.28%, with the most
substantial improvements observed in the small target “Car”
category, enhancing IoU by 1.05%. These results indicate that
the SS can effectively improve the segmentation results of small
targets and their boundaries.

To visually assess the efficacy of the dual-stream architecture,
we present visual examples of semantic segmentation results for
the Vaihingen dataset in Fig. 8. The first row of the figure displays
notable examples from the entire scene, which have been labeled
as colored squares. Rows 2 to 4 provide zoomed-in versions of
these examples to showcase greater detail. It is evident from the
second and third rows of Fig. 8(d) that the use of the GS as the
decoder can effectively ameliorate large-scale regional object
classification errors that arise due to similar features or shadow
occlusion in RS images. Furthermore, incorporating the SS onto
the GS, as demonstrated in the fourth row of Fig. 8(e), further

improves the segmentation accuracy of small targets such as
“Car” and their contours.

4) Ablation Study for Hyperparameter Setting: The hyper-
parameter setting in (11) is not robust to the segmentation
performance of the network, as the multitask loss is influenced
by various factors such as correlation, sample distribution, and
task complexity. To determine the optimal weight ratio between
GS loss and SS loss in the total loss, we conduct ablation
experiments on hyperparameters. Specifically, we fix the value
ofα at 1 and vary the value of β. Fig. 9 demonstrates the efficacy
of STDSNet for semantic segmentation of the ISPRS Vaihin-
gen and Potsdam benchmarks with different hyperparameter β
thresholds.

Upon observing Fig. 9, it can be noted that both curves
exhibit similar trends. Initially, the STDSNet’s segmentation
accuracy demonstrates a gradual improvement on both datasets
with an increasing value of β. Notably, both curves attain their
highest mF1 at β = 0.2. However, as β continues to increase,
a decreasing trend in the network’s segmentation accuracy is
observed. This is due to the different scale losses associated
with the global and SSs. When the weight loss ratios of the two
streams are close, the network tends to excessively focus on the
SS, neglecting the dominant role of the GS, ultimately leading
to a decline in overall segmentation accuracy. Consequently, α
and β are ultimately set to 1 and 0.2, respectively.

E. Comparison With Existing State-of-the-Art Methods

We conduct a comparative analysis of the proposed STD-
SNet with other state-of-the-art methods, including FCN [10],
DeepLabV3+ [18], DANet [21], SegNeXt [51], MAResU-
Net [61], SegFormer [28], UPerNet [20], ST-UNet [16], and
Swin-CNN [30]. The first five comparative methods are CNN-
based, while the remaining four employ a hybrid architecture of
CNN and transformer. To ensure experimental fairness, we uti-
lize backbone versions that exhibit comparable parameter counts
and computational operations for comparative analysis. Specif-
ically, ResNet101 (R-101) serves as the backbone for FCN,
DeepLabV3+, DANet, and MAResU-Net, while MSCAN-L is
used for SegNeXt, MIT-B5 for SegFormer, and Swin-B for
UPerNet and Swin-CNN. In particular, ST-UNet uses the R-101
and Swin-B dual branches as the backbone of the network.

1) Results on Vaihingen Dataset: We present the quantitative
results of our proposed method and other state-of-the-art meth-
ods on the ISPRS Vaihingen dataset in Table III. The proposed
STDSNet achieves the highest mIoU and mF1 of 81.77% and
89.81%, respectively, and outperforms all other methods in
terms of IoU for all categories. Compared to the suboptimal
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Fig. 8. Comparison of segmentation results using different components in the single encoder and dual decoders framework. (a) image. (b) ground truth.
(c) Swin-B + All-MLP. (d) Swin-B + global stream. (e) Swin-B + global stream + shape stream.

method, STDSNet improved by 0.66% in mIoU and 0.4% in
mF1. Particularly for the challenging “Car” category, which is a
relatively small target object in RS images, our method achieved
an IoU of 76.57%, surpassing the suboptimal method by 1.39%.

To visually compare the proposed method with several seman-
tic segmentation methods in Table III, we have visualized the
prediction results of each method in Fig. 10. For ground objects
exhibiting high similarity or occlusion due to shadows, the
STDSNet demonstrates superior capability in making accurate
class predictions for large-scale regions. In the first to third
rows of the figure, it is evident that certain methods exhibit
poor segmentation performance when applied to ground objects
with high similarity, as well as those obscured by shadows, due
to a severe semantic confusion issue. This can be attributed

to these methods’ insufficient or inappropriate utilization of
finer-grained contextual information obtained at the global level,
ultimately leading to object misclassification in large-scale re-
gions within RS images. In comparison, STDSNet still exhibits
relatively accurate predictions, which can be attributed to its
GS’s capacity to optimize the utilization of the global context
acquired by the transformer. Furthermore, as demonstrated in
the fourth to sixth rows of the figure, STDSNet significantly
improves the segmentation of small targets and their edges
compared to other methods when faced with small and dense
targets such as “Car.” This is consistent with our expectation
and indicates that the SS is capable of filtering the redundant
noise and making reasonable use of the shape features captured
by the transformer.
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TABLE III
COMPARISON OF SEGMENTATION RESULTS ON THE VIHINGEN DATASET WITH STATE-OF-THE-ART METHODS

TABLE IV
COMPARISON OF SEGMENTATION RESULTS ON THE POTSDAM DATASET WITH STATE-OF-THE-ART METHODS

Fig. 9. Curve of effectiveness on STDSNet at different β thresholds.

2) Results on Potsdam Dataset: We present the quantita-
tive results of each method on the ISPRS Potsdam dataset in
Table IV to provide further evidence of the effectiveness of

STDSNet. The results in the table indicate that our method
surpasses the other methods in terms of mIoU and mF1, achiev-
ing 82.33% and 90.17%, respectively, while also achieving the
highest IoU in most categories. Compared to the second-best
method, STDSNet achieves an improvement of 0.54% in mIoU
and 0.31% in mF1. Notably, for the “Car” and “Tree” categories,
which are relatively small in the Potsdam dataset, STDSNet also
outperforms the suboptimal method by 0.89% and 0.82% in IoU,
respectively.

Similarly, we visualize the qualitative comparison between
STDSNet and alternative methods in Fig. 11 in order to further
demonstrate the efficacy of our STDSNet. From the first to
fourth rows of the figure, we observe that STDSNet outperforms
other methods in accurately identifying ground object classes in
large-scale areas, particularly in achieving accurate segmenta-
tion of objects with similar appearances and those occluded by
shadows. Furthermore, from the fifth to the sixth row, it is evident
that STDSNet effectively addresses the problem of missing and
incorrect detection of small targets and generates more precise
outlines of such targets. These outcomes align with our initial
expectations and provide strong validation of the contribution
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Fig. 10. Comparison between the proposed STDSNet and other state-of-the-art methods on the Vaihingen dataset. (a) image. (b) ground truth. (c) FCN.
(d) DeepLabV3+. (e) DANet. (f) SegFormer. (g) UPerNet. (h) SegNeXt. (i) MAResU-Net. (j) ST-UNet. (k) Swin-CNN. (l) STDSNet.

Fig. 11. Comparison between the proposed STDSNet and other state-of-the-art methods on the Potsdam dataset. (a) image. (b) ground truth. (c) FCN.
(d) DeepLabV3+. (e) DANet. (f) SegFormer. (g) UPerNet. (h) SegNeXt. (i) MAResU-Net. (j) ST-UNet. (k) Swin-CNN. (l) STDSNet.
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TABLE V
COMPARISON OF MODEL PARAMETERS AND FLOPS

of GCFM and GCM to the proposed dual-stream network.
Furthermore, they also demonstrate that the dual-stream network
can reasonably leverage the global context captured by the
transformer as well as the shape features, thereby enhancing
the overall segmentation performance of the network.

However, the problems with STDSNet should also be em-
phasized. From the visualization results in the second row of
Fig. 11, it can be seen that the bottom-right portion of the result
in STDSNet fails to effectively recognize the low vegetation
category. This suggests that although our work has improved
the semantic segmentation of RS images in general, there is still
much room for improvement. In the future, we will study this
issue in depth in our subsequent work.

3) Evaluation in Efficiency: For comprehensive compar-
isons, Table V lists the performance metrics of all models in
the same experimental environment. These metrics comprise
the number of floating-point operations per second (FLOPS),
measured in gigaflops (G), and the number of parameters,
measured in millions (M). For an input size of 3 × 512 ×
512, most hybrid models consisting of CNNs and transformers
obviously exceed the models solely based on CNNs in terms of
the aforementioned metrics. In contrast to these methods based
on pure CNN, it is evident that our proposed method entails
a tradeoff between efficiency and accuracy, favoring the latter.
Nevertheless, it is noteworthy to highlight that our STDSNet
demonstrates favorable performance compared to a network
with a transformer structure. Particularly when utilizing the same
backbone in the encoder, STDSNet reduces the parameters by
approximately half when compared to Swin-CNN, accompanied
by a reduction in FLOPS of over 50%. While the parameters
and FLOPS may limit STDSNet’s applicability in real-time and
lightweight scenarios, it still holds a promising future in the
semantic segmentation of RS images.

V. CONCLUSION

In this article, we integrate the dual-stream network with the
Swin transformer to create a novel network named STDSNet,
which achieves more accurate semantic segmentation of RS
images. The network follows a single encoder and dual decoders
architecture. In the encoder, we employ the Swin transformer
as the network backbone to address the limitations of CNN

in capturing global context information and shape features.
The dual decoder consists of two CNN-based parallel streams,
namely the GS and the SS. The GS optimizes the utilization of
global context, while the SS focuses on processing boundary
information. We construct the GCFM in the GS to recover the
loss of global context during the upsampling process. In addition,
we design the GCM in the SS to filter out redundant noise that is
not related to boundary information. As demonstrated by the
experiments, the STDSNet outperforms other state-of-the-art
methods in terms of mIoU and mF1 metrics on the ISPRS
Vaihingen and Potsdam datasets. The result confirms the effi-
cacy of the proposed method in effectively reducing large-scale
regional object classification errors caused by similar features or
shadow occlusion in RS images and improving the segmentation
performance for tiny targets and their boundaries.

Although the dual-stream network has been designed to lever-
age the transformer’s strengths in feature extraction and has
achieved remarkable semantic segmentation performance, there
is still room for further improvement. Specifically, the dual
decoder architecture, which improves accuracy, also contributes
to increased model parameters and computational complexity.
In light of these limitations, we plan to devote our future re-
search efforts toward streamlining the model architecture and
optimizing the network to better accommodate various types of
RS tasks.
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