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Change Detection Enhanced by Spatial-Temporal
Association for Bare Soil Land Using Remote

Sensing Images
Sasha Wu , Yalan Liu , Shufu Liu , Dacheng Wang , Linjun Yu, and Yuhuan Ren

Abstract—As dust source bare soil land (BSL) contributes to air
pollution and affects the photosynthesis of green plants and carbon
absorption, it is the objective of this study to develop an approach
for monitoring the changes of BSL using remote sensing technology.
Unlike other land use/cover types, the classification of BSL as well as
its change detection is often ignored. For traditional convolutional
neural networks, deep layers cause a long range between input and
output, inevitably leading to the loss of information and compu-
tational costs. To alleviate this problem, transformer is available
to model the global dependencies. Bitemporal association, which
is described as subtraction or attention mechanism, is not fully
considered by current methods. Therefore, we proposed a spatial-
temporal association enhanced mobile-friendly vision transformer
(STAE-MobileVIT) for change detection of high-resolution images
with light weight and high efficiency. On the one hand, a temporal
association enhanced MobileVIT block is employed to strengthen
the association of bitemporal images during feature extraction. On
the other hand, a multiscale feature difference aggregator enhanced
by spatial association is designed to fuse semantic and detailed
information. Since the lack of binary change detection dataset for
BSL, we established a small dataset named BSL-CD, consisting of
1083 pairs of 0.8 m bitemporal images with the size of 256 × 256
pixels, along with the corresponding labels. The experiments on
BSL-CD show that our light-weight model surpass seven common
methods by 3.48, 5.05, and 1.44 percent on F1, IoU, and OA, which
proves the efficiency and accuracy of STAE-MobileVIT.

Index Terms—Bare soil land (BSL), change detection,
mobileVIT, remote sensing images, spatial-temporal association.

I. INTRODUCTION

DUST source bare soil land (BSL) increases due to construc-
tion, demolition, and residential relocation for urbaniza-

tion, as well as secondary plowing and reclamation. BSL often
contributes to air pollution, which does harm to human health
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[1], and impacts the photosynthesis of green plants and carbon
absorption, water loss, and soil erosion [2]. It is essential to
obtain dynamic changes accurately and efficiently in order to
support environmental governance.

“BSL” is defined as soil-covered land on surface, primarily
devoid of vegetation cover according to Chinese National Stan-
dard for Land Use Classification [3]. However, BSL is mostly
neglected in many classification systems for land use/cover, and
is classified as “other land categories” together with bare rock,
gravel land, and sandy land. The areas covered by exposed soil
and rare vegetation are at high risk of dust pollution. To meet
the requirement of environmental governance, we take this kind
of “bare soil land” as BSL in this study. With the development
in large and medium-sized cities, BSL has the potential to trans-
form into buildings, concrete floor, forest, grassland, cropland,
and water and dust-proof nets. Conversely, the reverse is also
true. We consider these changes related to BSL as our target areas
to be extracted. Among the abovementioned changes, areas of
critical concern include the emerging BSL, dust-proof nets, the
grassland, and cropland with seasonal variations. BSL serves as
the main source of dust pollution and poses a great challenge
to urban environmental governance in China. However, existing
products fail to satisfy the requirements for practical application
in accuracy and efficiency. For this reason, more and more
attention is paid to BSL.

In terms of change detection for multispectral remote sensing
images, the traditional methods mainly extract simple features
to obtain pixel-level or object-oriented [4] change results, for
instance, band operation [5], [6], [7], image transformation
[8], [9], [10], and multisource information assisted methods
[11]. However, it is difficult for them to distinguish BSL from
impervious surface and buildings in images. With the advent of
machine learning methods, support vector machine [12], random
forest [13], and multilayer perception (MLP) [14] are applied
to improve the precision of change detection. Nevertheless, it
is tough for them to extract changes automatically from large
areas and apply to other different regions, since they rely on
manually generated and selected features from specific areas,
which limits the contextual scope and requires prior knowledge.
With the increasing availability of high-spatial resolution remote
sensing images, which provide more and more information
of land surface and fine-grained changes, the abovementioned
methods encounter challenges in processing a large volume of
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images efficiently. With the development of artificial intelligence
and computer vision (CV) techniques, deep learning models are
popularly applied to change detection for remote sensing images.
These models excel in extracting spectral, textual, geometrical
boundary, and context-rich features, enabling automatic change
detection. Most deep learning models for change detection are
modified from classical networks, such as fully convolutional
network (FCN) [15] and UNet [16]. Zhang et al. [17] applied
multiscale supervision to improve the precision and Chen and
Shi [18] employed the spatial-temporal attention mechanism
to prioritize the bitemporal association with a relatively large
model. The structures of the above change detection models
can be basically divided into one-stream and two-stream mod-
els [19]. For the one-stream model, the corresponding bands
are first selected from the multibands of bitemporal images.
Subsequently, the selected channels are either connected [20]
or subtracted [21]. Finally, the one-stream model is trained as a
semantic segmentation model for the extraction of changed ar-
eas. For the two-stream model, Siamese networks are utilized to
extract bitemporal features and detect areas of change. However,
the above models based on convolutional neural network (CNN)
cause the loss of information during multilayer encoding and
decoding. With deeper layers, the number of channels increases,
resulting in more parameters, a larger model, and longer training
time. As one of the innovative deep learning methods designed
for natural language processing, transformer [22] whose self-
attention mechanism can capture global dependencies availably
has been recently introduced to CV tasks like image classifica-
tion [23] and semantic segmentation [24]. Hence, Chen et al.
[25] and Bandara and Patel [26] applied transformer to encode
the input bitemporal images into context-rich tokens for change
detection.

Although significant progress has been made in change detec-
tion for remote sensing images, there are still some challenges
that persist in BSL change detection. First, most of the models for
change detection are based on classical networks with a large
volume, but few models are specifically developed for small
datasets. If a small dataset is trained using a large-scale model
like Deeplabv3+ [27] with the Xception backbone, it is easy to
cause the problem of overfitting. For datasets with a small sample
size, light-weight networks like ShuffleNet [28], MobileNet
[29], and mobile-friendly vision transformer (MobileVIT) [30]
have fewer parameters and deliver impressive performance in
image classification and semantic segmentation. However, they
have not been widely applied to change detection tasks. Second,
it is not sufficient for BSL to extract bitemporal features with
the only connection of weight shared Siamese networks. Unlike
other land use/cover types, the change detection results of BSL
are prominently influenced by pseudochanges result from sea-
sonal variations, atmospheric conditions, acquisition time, and
images perspectives. This impact is particularly pronounced in
areas covered by growing or withered grass. Furthermore, the
spatial scales of BSL could be considerably various, different
from the common objects for change detection, like buildings in
similar scales. Thus, it is crucial to strengthen the information
interaction between bitemporal images and explore the global
relations among pixels in spatial-temporal domain. However,

few methods are designed for the change characteristics of BSL.
Third, BSL change detection faces significant limitations due to
the scarcity of available datasets. While there are public datasets
for change detection in specific domains, such as binary LEVIR-
CD [18] for buildings and CLCD [31] for cropland, SECOND
[32], and Hi-UCD [33] for semantic change detection, there is
a notable lack of attention and dedicated datasets specifically
focused on BSL change detection.

To address these issues, we proposed a spatial-temporal as-
sociation enhanced mobile-friendly vision transformer (STAE-
MobileVIT) and established a dataset (BSL-CD) for change
detection of BSL using high-resolution images. The encoder of
STAE-MobileVIT is Siamese networks. A light-weight CNN
backbone (MobileNetV2) [34] is applied to extract multi-
scale features, and a temporal association enhanced MobileVIT
(TAE-MobileVIT) block is used to enhance the association of
bitemporal images. The attention mechanism is incorporated
into a spatial association enhanced (SAE) decoder, where fea-
ture difference maps from multiple scales are fused to gen-
erate context-rich feature maps. Finally, a shallow CNN is
applied to produce pixel-level predictions for changes. BSL-
CD consists of 1083 pairs of bitemporal images annotated
with different BSL changes, which can provide a benchmark
for training deep learning models in studies on BSL change
detection.

The contributions of our work can be summarized as follows.
1) An efficient and light-weight CNN-transformer model

STAE-MobileVIT is proposed for BSL change detection.
We apply light-weight backbones MobileNetV2 and Mo-
bileVIT to lighten the proposed model and to adapt to
small datasets. In addition, a TAE-MobileVIT block is
used to strengthen the temporal association of bitemporal
images.

2) A high-resolution dataset BSL-CD is provided for future
studies, which contains 1083 pairs of bitemporal images
with 0.8 m spatial resolution and size of 256 × 256 pixels,
along with the corresponding binary changed labels.

3) The effectiveness and efficiency of STAE-MobileVIT
are validated through comparative experiments on BSL-
CD dataset with seven common change detection mod-
els including six CNN-based models and a traditional
transformer-based model. The proposed method exceeds
the second-ranked method by 3.48, 5.05, and 1.44 percent
on F1, IoU, and OA.

The rest of this article is organized as follows. Section II
introduces the details of the proposed methodology. Section III
presents BSL-CD and the experimental settings. Some exper-
imental results are reported and analyzed in Section IV. The
discussion is given in Section V. Finally, Section VI concludes
this article.

II. METHODOLOGY

As shown in Fig. 1, the overall structure of STAE- MobileVIT
contains three components: a feature extractor, a SAE multiscale
feature difference aggregator and a prediction head. The details
of each part are introduced in the following.
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Fig. 1. Illustration of the proposed STAE-MobileVIT.

Fig. 2. Structure of the inverted residual block of MobileNetV2.

A. Feature Extractor

STAE-MobileVIT employs Siamese CNN-transformer net-
works modified from MobileVIT to extract multiscale feature
maps of bitemporal images. First, we remove the inverted resid-
ual block of MobileNetV2 in the last layer based on the un-
derstanding that smaller feature maps contain less information.
Parameters and the volume of the model also increase with
deeper convolutional layers. Second, in order to enhance the
temporal association, we concatenate bitemporal token sets in
TAE-MobileVIT block instead of enhancing the features sepa-
rately.

The procedure of the feature extractor is introduced as fol-
lowing. The input bitemporal RGB images are cropped into
size of 256 × 256 pixels, which facilitates the balance of target
and background pixels within smaller-sized samples. The first
convolutional layer with a kernel size of 3 and a stride of 2
is used to extract half-size shallow features, followed a batch
normalization [35] layer and a sigmoid-weighted linear unit
(SiLU) function [36]. Then, we use three inverted residual blocks
to extract feature maps with the size of 64 × 64, 32 × 32, and
16× 16. After obtaining the features with the size of 32× 32 and
16 × 16, a TAE-MobileVIT block is employed in each scale to
strengthen the temporal association and enhance the bitemporal
features. According to the parametric analysis in Section V, the
depths of transformer are set to 2 and 4, respectively.

1) Inverted Residual Block: As shown in Fig. 2, the structure
of each inverted residual block can be divided into three parts,
expansion, depthwise convolution, and projection. Depthwise
convolution presents excellent performance in high-dimensional
feature space, whereas it is not available to change the number of

channels. Thus, pointwise convolution is employed in expansion
layer to increase the number of channels and in projection
layer to decrease it. Each convolutional layer is followed by a
batch normalization. In addition, a SiLU function is performed
following the batch normalization in expansion and depthwise
convolution. Finally, the result is fused with the original input
feature by elementwise addition.

2) TAE-MobileVIT Block: The core idea of MobileVIT is
to learn global dependencies with transformers as convolutions.
The architecture of our TAE-MobileVIT block is shown in Fig. 3.
First, bitemporal feature maps are transformed and divided into
high-dimensional patches with spatial information through local
representations. Given input tensors FAs, FBs ∈ RH×W×C(s =
16,32 denotes the size of tensors), an n × n standard convolu-
tional layer is employed to encode the information of position.
The following pointwise convolution projects the tensors into
high-dimensional RH×W×d by learning linear combinations of
the input channels. Here, C, H, and W denote the channels,
height, and width of the tensor, respectively, while d denotes
the channels of the high-dimensional space. Natural language
processing splits the input sentence into some words or phrases
and represents each one with a token vector. Likewise, vision
transformer [37] splits the input image into several patches. As is
shown in Fig. 3, pixels in the same relative position of each patch
correspond to one token vector. Therefore, high-dimensional
tensors are unfolded into bitemporal token sets TAs, TBs ∈
RN×P×d. Here, N = hw denotes the number of pixels in the
patch with height h and width w, and P = HW

N denotes the
number of patches. N is set to 4 according to the parametric
analysis in Section V. Specially, TAs and TBs are concatenated
into TABs ∈ RN×2P×d. For each m ∈ {1, . . . , N}, interpatch
relations are encoded by applying transformer to obtainGABs ∈
RN×2P×d as

GABs (m) = Transformer (TABs (m)) , 1 ≤ m ≤ N. (1)

Each patch contains pixels from different spatial-temporal
domains, it follows that transformer is available to enhance
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Fig. 3. Architecture of the TAE-MobileVIT block.

Fig. 4. Structure of the transformer and the multihead attention block.

the spatial-temporal association. GABs is split into context-
rich TAs−new, TBs−new ∈ RN×P×d and folded into F ′

As, F
′
Bs ∈

RH×W×d, which are subsequently projected to lower dimen-
sional space via a pointwise convolution. F ′

As is concatenated
with the original input FAs to obtain F ′′

As, and F ′
Bs is processed

in the same way. An n × n convolution is then applied to F ′′
As

and F ′′
Bs to obtain the output FAs−new, FBs−new ∈ RH×W×C .

The structure of the transformer in our TAE-MobileVIT block
is shown in Fig. 4. It consists of layer normalization and two
sublayers, multihead attention block and multilayer perception
block. After obtaining the concatenated token set TABs, a layer
normalization is applied before and after the multihead attention
block. Then, a multilayer perception block is employed. In
addition, a residual connection is employed after each sublayer.

In multihead attention block shown in Fig. 4, the input token
set TABs ∈ RN×2P×d is first expanded into high-dimensional
T ′
ABs by a linear transformation as

T ′
ABs = TABsW

I , T ′
ABs ∈ RN×2P×(m×l×3) (2)

where W I is the weight of the embedding layer, m is the
number of heads in multihead attention, and l is the dimension
for subsequent tensors. m and l are set for 4 and 8, respec-
tively, the same with the original literature of MobileVIT. Then
T ′
ABs is forwarded into different heads of multihead attention.

The parameters are not shared among the heads. As is shown
in Fig. 4, each head of the multihead attention consists of linear
layers and scale dot-product attention. T ′

ABs is transformed into
query (Q ∈ Rm×N×2P×l)), key (K ∈ Rm×N×2P×l)), and value
(V ∈ Rm×N×2P×l)) by linear layers as

Q, K, V = T ′
ABsW

Q, T ′
ABsW

K , T ′
ABsW

V (3)

where W Q, W K , and W V denote the weights of the linear
layers to obtain Q, K, V .

The structure of scale dot-product attention is depicted in
Fig. 4. We employ the dot-product operation and Softmax acti-
vation to obtain the attention map which is used as the weight of
V. The process of scale dot-product attention can be expressed
as

SDPA (Q, K, V ) = Softmax

(
QKT

√
d

)
V. (4)

Then, the output of each head is concatenated and input into
a linear layer

headi = SDPA
(
T ′
ABs W

Q
i , T ′

ABs W
K

i , T ′
ABs W

V
i

)
,

i ∈ {1, . . . , m} (5)

MHA (Q, K, V ) = Concat (head1, . . . , headm)W O (6)
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where W Q
i , W K

i , and W V
i denote weights of the linear layers

of the ith head to map Q, K, and V. W O denotes the weight of
the last linear layer in multihead attention block.

The multilayer perception block, which contains two linear
layers with a SiLU function inside, is applied to further transform
the learning tokens of multihead attention. Then, the output to-
ken set is split into context-rich token sets TAs−new and TBs−new.

B. SAE Multiscale Feature Difference Aggregator

As shown in Fig. 1, a SAE multiscale feature difference aggre-
gator is used to fuse multiscale feature maps from the feature ex-
tractor. First, subtraction and absolute operations are employed
on bitemporal feature maps to obtain feature difference maps
of various scales Ds ∈ RHs×Ws×Cs . Here, Hs and Ws (s =
16,32,64) denote the size of feature difference maps, and Cs

denotes the dimension of the corresponding size. Specifically,
Hs = Ws = s, C16= 128, C32= 96, C64= 64. Then, a point-
wise convolution is used to transform each Cs to C0= 64 in
order to obtain the feature difference maps D′

s ∈ RHs×Ws×C0 .
Second, D′

16 is enhanced through a convolutional block atten-
tion module (CBAM) [38] and upsampled to Us ∈ RHs×Ws×C0

(s = 32,64). Third, D′
32 and D′

64 are concatenated with U32

and U64, respectively. Then, the concatenated tensors are input
into a CBAM separately to obtain Ms ∈ RHs×Ws×2C0 (s =
32,64), which focus more on regions of interest. Finally, M32is
upsampled to U ′

64 ∈ RHs×Ws×2C0 (s = 64) and concatenated
with M64 to obtain X ∈ RHs×Ws×4C0 (s = 64).

CBAM is a light-weight attention module, which concentrates
on information of interest by adjusting the network weights
adaptively. It contains two separate modules, channel attention
module (CAM) and spatial attention module (SAM). In CAM,
we first apply a global max pooling and a global average
pooling based on the height and weight to the input feature F,
respectively. The feature maps are severally input into a weight
shared two-layer multilayer perception with a rectified linear
unit function [39]. Then, an elementwise addition operation and
a SiLU function are employed to obtain the channel attention
feature MC

MC (F ) = σ (MLP (AvgPool (F )) + MLP (MaxPool (F )))

= σ
(
W1

(
W0

(
F c

avg

))
+W1 (W0 (F

c
max))

)
(7)

where σ(.) denotes the sigmoid function. W1 and W0 denote
the shared MLP weights. The channel-refined feature F ′ can be
denoted as

F ′ = MC (F )⊗ F (8)

where ⊗ denotes the elementwise multiplication.
The channel-refined feature F ′ can be input into SAM and

enhanced with another global max pooling and global average
pooling based on the channel. Then, we concatenate the feature
maps and obtained the spatial attention feature MS via a 7 × 7
convolution and a sigmoid attention

MS (F ) = σ
(
f 7×7 ([AvgPool (F ) ; MaxPool (F )])

)
= σ

(
f 7×7

([
F s

avg; F
s

max

]))
(9)

where σ(.) denotes the sigmoid function and f 7×7(.) denotes
the size of the convolution kernel.

The output feature F ′′ can be denoted as

F ′′ = MS (F ′)⊗ F ′ (10)

where ⊗ denotes the elementwise multiplication.

C. Prediction Head

A context-rich feature difference map is generated benefiting
from the feature extractor enhanced by temporal association
and the SAE multiscale feature difference aggregator. Hence, a
simple and shallow FCN is used in STAE-MobileVIT for change
discrimination. In the prediction head, we apply a pointwise
convolution on the concatenated feature map X ∈ R64×64×256.
Then, X is upsampled to X ′ ∈ R256×256×32. The classifier
employs two 3 × 3 convolutional layers with batch normal-
ization and a Softmax function pixel-wisely operated on the
channel dimension. Finally, the predicted change probability
map P ∈ R256×256×2 can be expressed as following:

P = σ (g (X ′ )) (11)

where X ′ denotes the upsampled feature difference maps, g(.)
denotes the convolution, and σ(.) denotes the Softmax function.

III. EXPERIMENTAL SETUP

A. BSL-CD Dataset

For the lack of binary change detection dataset designed for
BSL, we created a small dataset BSL-CD to investigate the
feasibility of applying deep learning for BSL change detection.
BSL-CD contains 1083 pairs of remote sensing images with
high-spatial resolution of 0.8 m. The samples are randomly
split into three parts: 779, 195, and 109 pairs for training,
validation, and testing, respectively. The ratio of changed BSL
pixels to other pixels is nearly 1:4 in BSL-CD and each of the
abovementioned three sets. The bi-temporal images in BSL-CD
were collected by the BJ-2 satellite in Daxing District, Beijing,
China, in July and September 2020 as well as in January and
May 2021. Each sample group consists of bitemporal images
with the size of 256 × 256 pixels and a corresponding binary
label indicating BSL change. As shown in Fig. 5, the main types
of changes annotated in BSL-CD include buildings, vegetation,
dust-proof nets, and construction sites. In practical application,
we expect the extraction results to be entire pieces but not frag-
mented pixels. For this reason, during the process of labelling
the reference images, we adhere the majority principle, ensuring
that the classification of the complete pieces is not influenced
by fragmented, heterogeneous pixels occupying less than 5% of
the total area.

B. Comparison With Other Public Methods

In order to validate the results of STAE-MobileVIT, we made
a comparison with seven methods, including three classical
FCN-based models, a UNet-based model, a multiscale super-
vision model, a spatial-temporal attention-based model, and
a traditional transformer-based model. The following change
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Fig. 5. Examples of samples in BSL-CD. (Image A denotes the previous image and Image B denotes the subsequent image.).

detection models were implemented using their public codes
and hyperparameters were set as consistent as possible with the
original literature.

1) FC-EF [15] is an image-level fusion method based on
FCN, where the concatenated channels of bitemporal im-
ages are regarded as a single input.

2) FC-Siam-diff [15] is a feature-level fusion method based
on FCN, where bitemporal features are extracted by
Siamese networks, and the change information is then
derived from the feature difference maps.

3) FC-Siam-conc [15] is a feature-level fusion method based
on FCN, in which Siamese networks are employed to
extract bitemporal features and the feature concatenation
is used to obtain the change information.

4) CDNet [16] is an image-level fusion method based on
UNet, where the concatenated channels of bitemporal
images are regarded as a single input.

5) Deeply supervised image fusion network (DSIFN) [17]
can fuse multiscale features and feature difference maps
through the spatial and channel attention mechanism, and
it applies deep supervision (i.e., computing supervised
loss at each level of the decoder) to train the intermediate
layers.

6) Spatial-temporal attention neural network (STANet) [18]
is based on Siamese FCN, which can extract more dis-
criminative change information due to the integration of
the spatial-temporal attention mechanism.

7) Bitemporal image transformer (BIT) [25] is a transformer-
based method, which incorporates the Siamese tokenizers
and transformer into conventional Siamese change detec-
tion networks in order to capture rich contexts.

C. Accuracy Evaluation Metrics

In order to evaluate the predicted results, we use three com-
mon metrics, overall accuracy (OA), intersection over union

(IoU), and F1-score. They can be defined as follows:

OA =
TP+ TN

TP + TN+ FP + FN
(12)

IoU =
TP

TP + FP + FN
(13)

F1 =
2

recall−1+precision−1
(14)

where TP, TN, FP, and FN denote the number of true pos-
itives, true negatives, false positives, and false negatives, re-
spectively. We consider the scientific metric F1-score, which
combines recall and precision, as the main assessment index.
Recall and precision can be defined as follows:

recall =
TP

TP + FN
(15)

precision =
TP

TP + FP
. (16)

D. Implementation Details

All the experiments involved were implemented on PyTorch
and models were trained using Intel Core i7-8700K processor,
32 GB memory, NVIDIA Geforce RTX 2080 Ti graphics card
(11 GB). We applied normal data augmentation to the input
image patches, including flip, rescale, crop, and Gaussian blur.
STAE-MobileVIT was trained with the batch size of 8 using a
stochastic gradient descent optimizer with momentum of 0.99
and weight decay of 0.0005. The learning rate was initialized to
0.01 and linearly decayed to 0 during the 200 epochs. The cross-
entropy loss was minimized to optimize the network parameters.

IV. RESULTS AND ANALYSIS

Table I reports the F1, IoU, and OA results repeated 3
times on BSL-CD. The quantitative results show that STAE-
MobileVIT consistently outperforms the other methods with
a significant margin. STANet gains the lowest and the least
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Fig. 6. Visualization results of comparison to seven common methods on BSL-CD. Different colors are used for better view, i.e., white for TP, black for TN, red
for FP, and green for FN. (a) Image A. (b) Image B. (c) Label. (d) FC-EF. (e) FC-Siam-conc. (f) FC-Siam-diff. (g) CDNet. (h) DSIFN. (i) STANet. (j) BIT. (k)
STAE-MobileVIT. (Image A denotes the previous image and Image B denotes the subsequent image.).

TABLE I
COMPARISON RESULTS ON BSL-CD

stable F1 (77.99 ± 1.14%) and IoU (63.93 ± 1.53%) among
all the methods, while FC-Siam-conc and CDNet are slightly
higher but much steadier. FC-EF achieves 80.96 ± 0.51% of F1
(68.02 ± 0.72% of IoU and 91.57 ± 0.27% of OA), which is the
best result among the seven methods. The performance of FC-
Siam-diff, DSIFN, and BIT are moderate between CDNet and
FC-EF with 78.98 ± 0.47%, 79.07 ± 0.71% and 78.30 ± 0.65%
of F1, respectively. On the whole, STAE-MobileVIT reaches the
optimal and relatively stable F1, IoU and OA (84.44 ± 0.43%,
73.07 ± 0.65% and 93.01 ± 0.17%, respectively), which are
3.48, 5.05, and 1.44 percent higher than the second-ranked
FC-EF.

The comparison of STAE-MobileVIT with the seven methods
on BSL-CD is visually depicted in Fig. 6. For a better view,
different colors are used to denote TP (white), TN (black), FP
(red), and FN (green). It can be observed that changes between
BSL and lush vegetation or buildings can be extracted accurately
by most of the abovementioned methods. However, certain types

of BSL change remain prone to be misclassified, yet the pro-
posed method achieves better results than others. First, STAE-
MobileVIT can reduce the impacts of pseudochanges, because
the bitemporal association is enhanced by TAE-MobileVIT
block. For example, sparse grassland in row 5 and 6 (red FP),
which is mistaken as BSL in results of the seven methods,
can be classified correctly by STAE-MobileVIT. The change
detection of BSL is various from other land use/cover types like
buildings, ships, and aircrafts, which are easy to confirm whether
there is or not. It is significantly affected by pseudochanges,
because sparse grassland has similar color behaviors as BSL.
The proposed TAE-MobileVIT block is available to overcome
the influence of bitemporal pseudo changes effectively. Second,
STAE-MobileVIT can also well-handle the fine-grained alter-
ation of BSL. An example of the distinctly discriminated grained
vegetation and dust-proof nets from BSL is shown in row 2 (red
FP) and 3 (green FN). Compared with FC-EF, FC-Siam-conc,
and FC-Siam-diff, more details of changes are rendered in the
results of STAE-MobileVIT, since the SAE multiscale feature
difference aggregator integrates multiscale features and allows
the shallow features to provide detailed information. Similarly,
DSIFN and STANet also perform well in fine-grained change
detection on account of their multiscale features fusion strategy.
Third, STAE-MobileVIT perform well in extracting pieces of
land in regular shape and obtaining entire results with minimal
noise. This suggests that BIT and STAE-MobileVIT benefit from
transformer, which is available to model global dependencies to
alleviate the loss of long-range information. For instance, from
row 1, 4, 5, and 6, BIT and STAE-MobileVIT detect complete
pieces of land with regular boundary, while other methods fail
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TABLE II
ABLATION EXPERIMENTS RESULTS ON BSL-CD

due to the limited receptive fields of CNN. However, the linear
feature from row 3 (green FN) requires more attention, and the
connectivity of results needs to be improved. To summarize, ow-
ing to the advantages of the transformer structure, the SAE mul-
tiscale feature difference aggregator and the TAE-MobileVIT
block, STAE-MobileVIT surpasses the comparative methods in
preserving details, reducing misclassification and mitigating the
effects of pseudochanges. Nevertheless, the proposed method
leaves the extraction of linear features and connectivity to be
improved.

V. DISCUSSION

A. Ablation Study

The ablation study on BSL-CD is performed to further verify
the effectiveness of SAE denoting the SAE multiscale feature
difference aggregator and TAE denoting the TAE-MobileVIT
block, and both are integrated in STAE-MobileVIT. The “Base”
model employs the Siamese MobileVIT as the encoder and a
two-layer FCN as the decoder for change detection. “+SAE”
represents the “Base” model with SAE multiscale feature dif-
ference aggregator and “+TAE” represents the “Base” model
with the TAE-MobileVIT block. In addition to modifying
from MobileVIT, we also use lighter-weight MobileVIT-xs and
MobileVIT-xxs as the basic network, which have less channels
and dimensions. The results of the ablation study repeated 3
times are given in Table II. We can find consistent and significant
drops in F1, IoU, and OA when removing SAE, TAE, or both of
them from STAE-MobileVIT, which indicates the vital impor-
tance of SAE and TAE. Compared with the “Base” model with
F1 of 81.07%, the F1 of “+SAE” and “+TAE” are improved
by 1.95 and 1.44 percent, respectively. The results with F1,
IoU, and OA for STAE-MobileVIT reaches 83.98%, 72.39%,
and 92.93% respectively, which proves the validity of the inte-
gration of SAE and TAE. The decline of standard deviation in
“+SAE,” “+TAE,” and STAE-MobileVIT signifies the excellent
stability of modified models. Besides, the F1 and IoU slightly
decrease when using lighter-weight STAE-MobileVIT-xs and
STAE-MobileVIT-xxs, while the OA is almost unchanged. This
suggests that fewer parameters lead to higher volatility in results,
albeit with a slight decrease in accuracy.

Fig. 7 visualizes the comparison of the ablation results. It
can be seen from row 2, 3, 4, and 5 that compared with the
“Base” model, FP (red), and FN (green) can be better avoided
in the results of “+SAE” and “+TAE”. More spatial details are
kept in “+SAE,” because SAE aggregates semantic characteris-
tics and detailed information simultaneously, which is effective

TABLE III
EFFICIENCY OF VARIOUS MODELS ON BSL-CD

to modify the results of BSL change detection. From row 3
and 5, the fragmented misclassifications in “+TAE” are fewer
than that in “+SAE,” since the transformer structure in TAE
models global dependencies to render more complete results.
TAE also enhances the association of bitemporal images in
order to exclude pseudochanges. From the visualized examples,
STAE-MobileVIT gains the best results, while the lighter-weight
STAE-MobileVIT-xs and STAE-MobileVIT-xxs also perform
better than “+SAE” and “+TAE” results.

B. Efficiency and Effectiveness of Models

In order to further explore the efficiency and effectiveness
of the models, we use three common metrics, floating-point
operations (FLOPs), size of parameters (Params), and training
time (Time) to measure the computational costs and assess the
efficiency. FLOPs whose unit is 109 (G) measure the computa-
tional complexity via the computing time of multiplication and
addition operations for a pair of input images with the size of
256 × 256 × 3. Params whose unit is 106 (M) measure the
number of parameters to be learned during training, which is
related to the complexity of the model. Time whose unit is hours
(h) measures the computational cost by recording the average
training time per 100 epochs repeated three times.

The FLOPs, Params, and Time of all the methods are illus-
trated in Table III. Compared with the seven methods, the FLOPs
of STAE-MobileVIT are slightly more than FC-EF, close to
FC-Siam-conc and FC-Siam-diff, and notably less than the other
models. The Params of STAE-MobileVIT are observably less
than DSIFN and STANet, and close to others. The training time
of STAE-MobileVIT is slightly less than BIT and significantly
less than the other six methods. In order to provide more ef-
ficient and effective models, STAE- MobileVIT-xs and STAE-
MobileVIT-xxs are performed with the least FLOPs, Params,
and training time. The performances are even better than the
seven methods and nearly as excellent as STAE-MobileVIT
from the results in the above Tables I and II. Accordingly,
STAE-MobileVIT is available to balance the accuracy and com-
putational costs.

C. Parameter Analysis

1) Patch Size: Our institution is to unfold high-dimensional
tensors into several token vectors, and encode bitemporal token
sets to enhance the spatial-temporal association. The number of
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Fig. 7. Visualization results of ablation study on BSL-CD. Different colors are used for better view, i.e., white for TP, black for TN, red for FP, and green for FN.
(a) Image A. (b) Image B. (c) Label. (d) Base. (e) +SAE. (f) +TAE. (g) STAE-MobileVIT. (h) STAE-MobileVIT-xs. (i) STAE-MobileVIT-xxs. (Image A denotes
the previous image and Image B denotes the subsequent image.).

TABLE IV
EFFECT OF PATCH SIZE

token vectors is an important hyperparameter depending on the
number of pixels in each patch. We tested different patch size
N ∈ { 4, 16, 64 } to analyze its effect on the performance
of STAE-MobileVIT. Table IV reports the average F1, IoU,
and OA results repeated three times on BSL-CD. There is a
significant decline in F1 when increasing the patch size from
4 to 64. It indicates that compact token sets are sufficient to
denote fine-grained global features and redundant token sets
may hinder the performance of the model. On the other hand,
larger patch sizes result in shorter token length and relatively less
computational costs. As the STAE-MobileVIT is a light-weight
model, the decrease of FLOPs is rather obscure. Therefore, we
set the patch size to 4.

2) Depth of Transformer: The depth of transformer is also
one important hyperparameter influencing the results of the ex-
traction. We tested different configurations of STAE-MobileVIT
containing various numbers of transformer layers in TAE-
MobileVIT blocks. The depths of transformer in 16 × 16
and 32 × 32 feature layers are set to D16, D32 ∈ { 2, 4, 8 }.
As shown in Table V, too large or small D16 decreases the

TABLE V
EFFECT OF DEPTH OF TRANSFORMER

precision of the results. It indicates that a limited number of
transformer layers is insufficient to encode tokens with rich
semantic information, while an excessive number of layers is
also not beneficial. The moderate depth ofD16 proves to be more
effective. Besides, Table V shows no significant improvements
in F1 when increasing the depth of D32. This suggests that
relationships between bitemporal tokens in shallow layers can be
well-learned by a shallow transformer. Table V also shows that
FLOPs is positively correlated with the depths of the transformer.
Accordingly, for the tradeoff between efficiency and precision,
the depth of transformerD16,D32 are set to 4 and 2, respectively.

D. Effect of Dataset Size

To further explore the effectiveness of STAE-MobileVIT
on small datasets, we conducted experiments using various
numbers of samples for training and validation of the model.
Table VI presents the experimental results obtained from the
same testing dataset. It is evident that the proposed method
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Fig. 8. Example of network visualization. (Red denotes higher attention values and blue denotes lower values.) (a) Input bitemporal images. (b) FA64, FB64.
(c) FA32, FB32. (d) Temporal association enhanced FA32-new, FB32-new. (e) FA16, FB16. (f) Temporal association enhanced FA16-new, FB16-new. (g) D16,
D32, and D64. (h) Upsampled M32 and M64. (i) Fusion of multiscale feature difference maps. (j) Change probability map.

TABLE VI
EFFECT OF DATASET SIZE

exhibits exceptional performance when working with small
datasets. For example, the F1, IoU, and OA of relatively small
datasets of 500 and 800 samples for training are higher than
79.19, 65.55, and 91.02, demonstrating the effectiveness of
STAE-MobileVIT on small datasets. As indicated in Table VI,
a notable decrease in F1, IoU, and OA can be observed as the
size of the training set decreases. Therefore, in terms of small
datasets, a larger size of the training set can provide a greater
amount of information regarding positive and negative samples,
ultimately resulting in higher accuracy.

E. Network Visualization

To further understand the proposed model, an example is
provided to visualize the feature maps at different stages of
STAE-MobileVIT, as shown in Fig. 8. Given bitemporal images
(a), a Siamese convolution and inverted residual blocks generate
the feature maps with the size of 64 × 64 (b), 32 × 32 (c) and
16 × 16 (e). TAE-MobileVIT block enhances the bitemporal
association of feature maps with the size of 32 × 32 (d) and
16 × 16 (f). Then, multiscale feature difference maps (g) of
bitemporal images are obtained via subtraction and absolute
operations. The upsampled M32 and M64 (h) are fused (i) and
change probability map (j) is obtained through the classifier.

VI. CONCLUSION

Most BSL contributes to dust pollution and monitoring its
change is of great significance for accurate environmental gov-
ernance. We proposed an efficient CNN-transformer method
STAE-MobileVIT and established a new dataset (BSL-CD) of
high-resolution for BSL change detection. STAE-MobileVIT
applies Siamese networks to extract features of bitemporal

images, and it enhances the spatial-temporal association of
bi-temporal features with TAE-MobileVIT block. Then, the
multiscale feature difference maps are calculated and aggregated
to further strengthen the spatial features. In the end, a simple
FCN is employed as the classifier to predict the change detection
results.

Extensive experiments on BSL-CD verify the capability of
STAE-MobileVIT compared with six CNN-based methods and
a transformer-based method. The proposed method exceeds the
best results of the seven methods 3.48, 5.05, and 1.44 percent on
F1, IoU, and OA. The ablation study validates the effectiveness
of TAE and SAE. Specifically, TAE reduces the impacts of
pseudochanges and misclassification by enhancing bitemporal
association, and transformer can model global dependencies to
alleviate the loss of long-range information. SAE ensures entire
and detailed results via integrating multiscale feature difference
maps. Moreover, the proposed model can be categorized based
on the size into three variants: 1) the original STAE-MobileVIT,
2) the lighter-weight STAE-MobileVIT-xs, and 3) the even
lighter STAE-MobileVIT-xxs. These three models with different
sizes can be utilized for specific objectives, such as pursuing
optimal precision and stability or striving for minimal computa-
tional complexity and costs. In conclusion, all the experimental
results conducted on BSL-CD in this study demonstrate the
efficiency and effectiveness of STAE-MobileVIT.

Nevertheless, there are still some improvements for the pro-
posed method. For instance, to further modify the extraction
of linear features and the connectivity of results, increased
emphasis could be placed on boundary information. In addition,
postprocessing techniques could be employed to optimize the
final results.
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