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and Qian Zhu

Abstract—Underwater acoustic signal classification is a critical
task that involves identifying different types of signals in a complex
and dynamic underwater environment, which is often contami-
nated by strong ambient noise. Recent studies have demonstrated
that deep learning-based methods can achieve remarkable perfor-
mance in this task by leveraging large-scale labeled data. However,
obtaining labeled data in real-world scenarios can be challenging
due to the labor-intensive and expert-dependent nature of the
labeling process, especially for underwater scenarios. In this study,
we propose a novel self-supervised learning framework combined
with mixup-based augmentation that can learn discriminative rep-
resentations from large-scale unlabeled data, thereby reducing the
dependence on labeled data. In addition, we propose a test time aug-
mentation module to further improve the model’s robustness. Our
proposed approach achieves a classification accuracy of 86.33% on
the DeepShip dataset, surpassing previous competitive methods by
a significant margin. Notably, our method demonstrates excellent
generalization performance in few-shot scenarios and low signal-to-
noise settings, highlighting its potential for practical applications.

Index Terms—Data augmentation, mixup, self-supervised learn-
ing (SSL), test time augmentation (TTA), underwater acoustic
signal classification.

I. INTRODUCTION

THE classification of underwater acoustic signals plays a
critical role in extracting meaningful information from

underwater environments, with wide applications in the remote
sensing field, such as underwater target detection [1] and marine
environment monitoring [2]. However, the complex and dy-
namic underwater environment introduces various interference,
such as ocean ambient noise, multipath effects, and acoustic
propagation distortion, posing significant challenges for accu-
rate classification.

To address these challenges, researchers have made numer-
ous attempts [3], [4]. Traditional underwater acoustic signals
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classification primarily utilizes handcrafted features combined
with shallow architecture-based classifier [5], [6], [7]. These
handcrafted features include waveform features, wavelet fea-
tures and spectrogram features [8]. Furthermore, advanced fea-
ture representation methods have been proposed to express more
information about original signals, including low-frequency
analysis and recording, detection of envelope modulation on
noise, Gammatone frequency cepstrum coefficient [9], etc. Al-
though these features have yielded promising results in many
applications, the selection of representations relies heavily on
specialized domain knowledge and expert experience. Besides,
Shallow classifiers, such as the support vector machine (SVM)
and shallow neural network classifier, exhibit weak fitting and
generalization capabilities due to their constrained capacity
imposed by their shallow architectures [10].

In recent years, deep learning method has shown impres-
sive performance in underwater acoustic signal classification
tasks [11], [12], [13]. Typically, these methods utilize conven-
tional supervised learning paradigm, which faces a significant
challenge—the demand for substantial labeled data to train
models. Furthermore, obtaining an adequate amount of labeled
data presents a significant obstacle, as the labeling process
proves to be labor-intensive and reliant on expert expertise.
Fortunately, in many practical scenarios, large-scale unlabeled
datasets are readily available, enabling the use of self-supervised
learning (SSL) without the need for manual annotations be-
comes a promising alternative method. SSL usually leverages
the inherent structure or patterns within the data itself to create
supervisory signals, thereby encouraging the model learning and
updating. Generally speaking, a SSL framework comprises two
key stages: pretext training (pretraining) and downstream task
fine-tuning. The core objective of SSL is to acquire meaningful
and useful information from an unlabeled dataset by formulating
an effective pretext task. By training on these self-generated
tasks, the model learns to capture essential features and re-
lationships present in the data, which can then be transferred
to downstream tasks with limited labeled data. Recently, the
transformer-based SSL methods have emerged as a powerful
technique that achieves state-of-the-art results in various fields
by guiding model learning through the construction of labels
derived from the data itself [14]. For general audio classification,
several attempts have been made, such as self-supervised audio
spectrogram transformer (SSAST) [15], AudioMAE [16], and
BEATs [17], which leverage pure self-attention methods for
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audio classification and yield remarkable performance. How-
ever, the related work of SSL techniques remains limited in
the context of underwater acoustic signal classification. The
underwater acoustic signal is more intricate due to the multipath
effect inherent in marine environment, making labeled data
even scarcer. Consequently, the exploration of SSL methods in
underwater acoustic classification becomes an urgent concern,
which is the main focus of this article.

In this article, we propose a novel approach for underwater
acoustic signal classification by utilizing SSL framework. The
core challenge in this attempt lies in effectively representing the
acoustic signals, which has a significant impact on the perfor-
mance of the classification task. To overcome this challenge, we
present a two stage methodology. Initially, we adopt a hierarchi-
cal multiscale mask modeling approach as pretext task, which
can capture both local and global information so that obtaining
a excellent initial weights for the downstream classification
task. Given the unpredictable and ever-changing of the marine
environment, underwater acoustic signals often grapple with
substantial interference. To attain a robust and generalizable
representation, we introduce a mixup-based strategy during the
pretraining stage. For the fine-tuning phase, we fine-tune the
pretrained model using a small amount of labeled underwater
acoustic data. Furthermore, we integrate a test time augmen-
tation (TTA) strategy, generating an ensemble of predictions to
further enhance model performance. Our approach demonstrates
the efficacy of SSL paradigm in addressing challenges presented
by intricate and ever-changing marine environments, signifi-
cantly reducing the demand for labeled data when compared
with existing methods. In summary, the primary contributions
of this article include the following key aspects.

1) A novel SSL framework is proposed for underwater acous-
tic signal classification. In this framework, we implement
a hierarchical multiscale mask modeling strategy during
the pretraining phase, which enables the model to con-
currently capture both local and global information from
a large amount of unlabeled acoustic signals (AudioSet
dataset [18]). By this way, we could obtain a robust and
generic representations for downstream tasks, thereby sig-
nificantly decreasing the requirement for labeled data.

2) Inspired by the multipath effect inherent in marine envi-
ronments, we develop a mixup-based strategy to enhance
data diversity, thereby enabling the model to learn more
comprehensive and discriminative representations. In the
subsequent fine-tuning phase, we devise a TTA strategy to
further enhance the model’s robustness, which is inspired
by the observation that different representations of the
same sample exhibit intrinsic consistency. Finally, our
comprehensive experiments demonstrate the effectiveness
of our approach for classifying underwater acoustic sig-
nals.

The rest of this article is organized as follows. Section II
reviews the related work about underwater acoustic signal clas-
sification and self-supervised representation learning (SSRL).
Section III provides a detailed introduction to our proposed
method, including both the pretraining and fine-tuning phases

that constitute our approach. In Section IV, we conduct compre-
hensive experiments to evaluate our method’s performance and
analyze its key components. Finally, Section V concludes this
article and outlines potential directions for future work.

II. RELATED WORK

A. Underwater Acoustic Signal Classification

The classification of underwater acoustic signals, due to its
noteworthy economic and military value, has garnered escalat-
ing interest in recent years. In summary, prior studies can be
broadly categorized into two primary approaches: the utilization
of handcrafted features in conjunction with shallow classifiers,
and the application of deep learning-based methods.

Wang et al. [19] integrated Bark-wavelet analysis and Hilbert–
Huang transform to extract acoustic features and employed
SVM as the classifier. Shi et al. [20] analyzed the features
of underwater acoustic signals from time domain, frequency
domain and cyclostationarity domain, combined these features
and then adopt decision tree for classification. Li et al. [21]
combined MFCC with hidden Markov model for underwater
target classification. Another work by Li et al. [6] proposed a
fusion frequency feature extraction method based on variational
mode decomposition, duffing chaotic oscillator, and a form of
permutation entropy.

Owing to the intricate and ever-changing marine environment,
coupled with diverse interfering factors, the performance of
shallow architecture-based methods falls short of meeting the
demand for high accuracy. Cao et al. [22] utilized convolu-
tional neural network (CNN) for classification with a second-
order pooling to capture the temporal correlations from the
time–frequency (T-F) representation of the radiated acoustic
signals. Wang et al. [23] adopted a hybrid series neural network
to alleviate the effects losses for underwater acoustic signal
modulation classification. However, it is noteworthy that these
methods primarily rely on single representations, leading to per-
formance limitations in complex scenarios due to the restricted
diversity of information [24], [25]. Hong et al. [26] aggregated
multiple acoustic representation and used SpecAugment tech-
nique to improve representation discrimination. Tian et al. [27]
combined wave and T-F representation and proposed a joint
model, thereby enhancing the discrimination of representations.
Li et al. [28] proposed a transfer learning-based data aug-
mentation method for underwater acoustic signal classification.
Despite these methods have obtained promising performance,
they can be time-consuming and labor-intensive to manually
design or select optimal features. Actually, this challenge is
pervasive across various domains. For instance, in hyperspec-
tral anomaly detection, Li et al. [29] replaced conventional
manual parameter (Param) selection with trainable modules,
resulting in significant performance improvements. Similarly,
in acoustic classification fields, Yang et al. [30] have sought to
simulate the human auditory perception system by combining
it with a CNN for underwater acoustic target classification. Xie
et al. [31] modified fixed wavelet Params into learn-able Params
and utilized a CNN combined with attention mechanism for
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Fig. 1. Framework of the proposed approach combined with mixup and TTA strategies. The input signal is performed mixup augmentation with a certain
probability and then converts to 2-D log Mel-spectrogram, where the mixup ratio is generate by β-distribution. The log Mel-spectrogram is split into a sequence
of 32 × 32 patches without overlap, and then random mask part of them. The unmasked patches are fed into Swin-Transformer encoder after adding a learn-able
positional embedding. The output of encoder is used to 1) reconstruct masked patches in pre-training phase; 2) classify underwater acoustic signal in fine-tuning
phase.

classification. Ren et al. [32] proposed a learn-able front-end
based on the cognitive process of the human for intelligent
underwater acoustic classification. These methods are good at
capturing local patterns in the data and can extract high-level
features by DNN learning from the training data. However,
they are poor at capturing long range dependencies information
between time and frequency segments. Currently, transformer
purely based on self-attention shows its great performance for
capturing both local and global information in various tasks.
Feng et al. [33] utilized log Mel-spectrogram and transformer for
underwater target classification. Transformer-based SSL meth-
ods have shown great potential for underwater acoustic signal
classification tasks, but have been under-explored in previous
studies.

B. Self-Supervised Representation Learning

SSRL is a methodology designed to yield robust, generic, and
abstract representations. This approach capitalizes on inherent
data characteristics to create supervised signals through pre-text
tasks, eliminating the necessity for substantial labeled datasets
and effectively addressing the limitations posed by annotation
bottlenecks. Pretext tasks commonly encompass context predic-
tion [34], masked modeling [35], clustering-based methods [36],
contrastive SSL [37], and information maximization [38]. Trans-
former, a network purely relying on self-attention mechanisms,
has garnered significant attention in the researchers due to its
remarkable performance. For example, Yao et al. [39] proposed
an extended vision transformer for Land Use and Land Cover
Classification and achieved great progress. In computer vision

domains, an illustrative contemporary example is the applica-
tion of masked autoencoders (MAE) [40], which proficiently
reconstructs partially masked sections of raw data, exhibiting
excellent performance in downstream tasks. In the fields of
underwater acoustic signal classification, CNNs are commonly
adopted as encoders for automated extraction of acoustic fea-
tures [41]. Notably adept at discerning local attributes like
textures and contours, CNNs may nonetheless exhibit limitations
in capturing substantial long-term dependencies pivotal to audio
classification. To address this, the incorporation of transformer-
based deep neural networks (DNNs) has emerged as a pivotal
factor in augmenting classification efficacy [33]. Gong et al. [15]
introduced a novel approach named SSAST, which integrates
joint discriminative and generative masked spectrogram patch
modeling to advance generic audio classification. The pioneer-
ing utilization of mask modeling SSL in the context of underwa-
ter acoustic classification was introduced by Xu et al. [42]. Their
innovative strategy, involving the reconstruction of multiple
representations, yielded substantial performance enhancements.

III. METHODOLOGY

A. Overall Architecture

Fig. 1 illustrates the proposed SSL-based framework for un-
derwater acoustical signal classification, which comprises two
primary phases: pretraining and fine-tuning. During the pretrain-
ing phase, we employ a mixup technique to augment the original
audio signal and then convert it into a log Mel-spectrogram,
followed by randomly masking a segment of the spectrogram.
We then feed the unmasked patches into the Swin-Transformer
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encoder, which encourages the neural network to predict the
masked-out regions. For the fine-tuning stage, we integrate a
TTA module by combining the pretrained encoder with a linear
classification head, aiming to enhance the subsequent task of
underwater acoustic signal classification.

B. Pretraining Phase

The primary goal of the pretraining phase is to establish highly
effective initial weights that facilitate the extraction of discrim-
inative representations for subsequent tasks. During this phase,
we formulate the pretext task as a masking and reconstruction
procedure, achieved through a randomized masking strategy
applied to the log Mel-spectrogram. The log Mel-spectrogram,
constituted by half-overlapping triangular filters centered at
frequency fmel, can be mathematically defined as follows:

fmel = 2595 ∗ log10

(
1 +

f

700

)
(1)

where f (Hz) signifies the frequency of the signal.
Observing this pattern, it becomes evident that as the fre-

quency f rises, the filter’s bandwidth progressively expands,
rendering it more adept at capturing low-frequency attributes
within underwater acoustic signals. Furthermore, the log Mel-
spectrogram encompasses a broader range of domain repre-
sentations across time and frequency domains, enabling them
to comprehensively capture the intrinsic structure of acoustic
signals compared with the raw waveform signal. Guided by these
insights, we opt for the log Mel-spectrogram as the chosen input
representation. As illustrated in Fig. 1, the unmasked portions of
the patches are subsequently subjected to the encoder for feature
extraction. Then, the output is fed into the decoder to reconstruct
the masked parts.

1) Network Structure: As shown in Fig. 1, the pretraining
phase of our proposed SSL-based underwater acoustic signal
classification framework follows a standard encoder–decoder
architecture. Diverging from the precedent CNN-based stud-
ies, which often concentrate on grasping localized patterns,
transformer-based approaches have demonstrated remarkable
prowess in encompassing both local and global information
across diverse domains. Bearing this consideration in mind, we
choose Swin-Transformer [43] as the foundational architecture
for our encoder. As shown in Fig. 1, a Swin-Transformer block
encompasses a normalization layer, a multihead attention layer
for capturing local information, and a shift window multihead
attention layer for capturing global information. At the end of
the block, a multilayer perception is employed to reduce the
token dimension back to the input dimension. Our selection is
anchored in the innate capability of Swin-Transformer to concur-
rently capture both local intricacies and broader interdependen-
cies. This is accomplished through its integration of pooling and
sliding window mechanisms. Furthermore, Swin-Transformer
achieves the extraction of multiscale insights by incorporating
diverse window sizes, thereby enhancing the model’s ability to
derive more nuanced representations for underwater acoustic
signals. This heightened capability, in turn, bolsters the model’s
effectiveness in subsequent classification tasks. In practice, our

Swin-Transformer encoder is comprised of four blocks with
depths of 2, 2, 18, and 2, respectively. Each block employs mul-
tihead attention with sizes of 4, 8, 16, and 32, correspondingly.
In addition, we set the window size of the Swin-Transformer to
8× 8.

Regarding the decoder, we employ a very shallow network
to reconstruct the masked patches. The decoder comprises a
single-layer convolutional layer and PixelShuffle method [44].
This choice speeds up the training process without negatively
impacting the classification accuracy of downstream tasks. No-
tably, the decoder is only used in the pretraining phase to
reconstruct masked patches.

2) Mask Modeling-Based Pretraining With Mixup: As men-
tioned earlier, SSL allows for the extraction of general repre-
sentations from large-scale data without human annotations,
which can be expensive and time-consuming. With this in mind,
we proposes a pretraining strategy that utilizes a masking-
reconstruction process. The process randomly masks a part of
the log Mel-spectrogram, and the network is trained to recon-
struct the masked parts. This approach helps the model capture
more contextual information and extract more discriminative
representations, as previous research has demonstrated [15].
To increase the diversity of the training data and improve the
generalization and robustness of the pretext task, a mixup strat-
egy is used to augment the training data. The mixup strategy is
performed with a certain probability before converting the audio
signal to log Mel-spectrogram. This process can be formulated
as follows:

smixup = s1 ∗ ratio + s2 ∗ (1− ratio) (2)

where s1 and s2 denote the raw acoustic signals, while the
ratio signifies the mixing ratio. This ratio is generated using
the β-distribution, which is a continuous probability distribution
defined on the interval [0, 1]. This can be formulated as follows:

β(a, b) =

∫ 1

0

ta−1(1− t)b−1dt (3)

where a and b are the shape Params of the distribution. Inspira-
tion from [45], the mixup probability for our main experiment
is 0.5 with a β(10, 10) distribution.

Specifically, the mixed raw audio signal is then converted to a
log Mel-spectrogram X . The log Mel-spectrogram is split into a
sequence of 32 × 32 patches x, and parts of them are randomly
masked (as shown in Fig. 1). The unmasked patches are fed into
the Swin-Transformer-based encoder to extract generic features,
after adding a trainable positional embedding. For each masked
patch xi, we obtain the corresponding Swin-Transformer en-
coder output Oi, which is subsequently input to a decoder to
reconstruct the masked patch ri. Our aim is to obtain a recon-
structed patch ri that closely matches the original xi, enabling
the model to correctly match (xi, ri) pairs. Accordingly, we
employ the �1 loss to evaluate the reconstruction error

loss =
1

n

N∑
i=1

|ri − xi|. (4)
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Fig. 2. Examples of the mask strategy, encompassing patch-level, temporal
frame-level, and frequency frame-level applications. The first row showcases
the original log Mel-spectrogram, while the subsequent three rows offer a visual
representation of the outcomes resulting from the application of various masking
strategies.

3) Masking Strategy: Masking strategy refers to a technique
employed in various tasks, particularly in SSL, where specific
portions or elements of data are intentionally hidden or masked
during training [15], [40], [42]. This strategy encourages the
model to predict or reconstruct the hidden parts, effectively
guiding it to learn meaningful representations or features that
capture important information within the data. As a practical
implementation for the underwater acoustic signal classification
task, the mask strategy in our proposed framework is determined
by three factors: mask level, mask ratio, and mask size. The mask
level can be divided into patch-level, frequency frame-level,
and time frame-level. An illustrative instance of the masking
strategy is depicted in Fig. 2. Notably, it is observable that
frame-level masking (in both frequency and time domains)
exhibits completed gaps, potentially limiting the capacity of
SSL methods to learn solely the temporal frame structure. In
contrast, patch-based masking empowers the model to capture
both temporal and frequency spectrogram structures through
analysis of adjacent patches. The choice of mask level hinges
upon the particular type of acoustic signal. Generally, time
frame-level masking proves more suitable for speech signals,
while patch-level masking is found to be more effective for
generic acoustic signals [15]. Thus, our approach employs patch-
based masking. The mask ratio refers to the proportion of the
masked part in the whole input, and the mask size determines
the difficulty of reconstruction. A good mask strategy can enable
the model to make full use of the contextual information from
the unmasked parts, thereby extracting better representations.
Drawing from the insights of [42] and our empirical analysis,
we determined that employing a patch-level mask strategy, with
a mask ratio of 0.6 and a mask size of 32 × 32 pixels (as
exemplified in Fig. 1), yields enhanced performance in down-
stream tasks for our model. The underlying rationale behind
masking is to curtail the model’s over-reliance on particular

Fig. 3. Setup of the fine-tuning phase. It depicts the main steps in this phase,
including the integration of the TTA module. After fine-tuning, each batch of
test data are augmented using the mixup strategy. Then, both the original and
augmented data are input to the fine-tuned model. Finally, the predictions from
these inputs are averaged and summed based on the mixup approach.

features or patterns that might not exhibit strong generalization
to novel data.

C. Fine-Tuning for Downstream Tasks

In our method, the fine-tuning phase is to encourage the pre-
trained model to perform well on the underwater acoustic signal
classification task by using a small number of labeled data. The
fine-tuning framework of our method is comprised of an encoder
that extracts generic audio representations and a classification
head for classifying the signals. In implementation, we replace
the final layer of the pretrained model by a random initialized
linear layer, which is exactly the classification head, as shown
in Fig. 3.

As previously mentioned, the mixup-based pretraining has
been effective in enhancing data diversity to alleviate the mul-
tipath effects inherent in marine environments (this can later
be supported in experiments, see Table II and Fig. 5), enabling
the model to acquire generic and discriminative representations.
While mixup has been relatively successful, its granularity is
somewhat coarse in this context. Furthermore, the complexities
introduced by the unpredictable and ever-changing nature of
marine environments necessitate a more refined approach. Rec-
ognizing the Swin-Transformer encoder’s proficiency in captur-
ing both local and global features, coupled with the observation
that a single sample may exhibit similarities or near-identical
characteristics when viewed from different perspectives, we
introduce a TTA module to further enhance model robustness.
Notably, since the mixup strategy is already employed during
the pretraining phase, a natural extension of TTA emerges
in the form of mixup. In this context, we apply mixup directly to
the original log Mel-spectrogram, introducing an augmentation
coefficient. This step could emphasize boundary information, a
critical factor for classification. This augmentation process can
be defined as follows:

spec = λ × spec0 (5)

where spec denotes the spectrogram resulting from the mixup
augmentation, and spec0 represents the original log Mel-
spectrogram. In this context, λ signifies the mixup augmentation
coefficient.
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In addition, drawing inspiration from computer vision, it is
noteworthy that even when the same image undergoes flip or
rotation transformations, the resulting images maintain remark-
able intraconsistency. Expanding on this insight and considering
the temporal nature of acoustic signals, a vertical flip strategy
has been integrated into the TTA module to preserve the segmen-
tation of the signal. The finalized structure of the TTA module
is as follows:

p̂ =
1

n

n∑
1

pi (6)

where p̂ represents the final adapted prediction result, n donates
the number of transformations used in TTA (here, n = 3), and
pi (where i ranges from 1 to n) corresponds to the predictions
for the original test data and TTA with different transformations,
respectively.

In summary, throughout the fine-tuning phase, we initiate the
process by extracting the log Mel-spectrogram and inputting
them into the pretrained encoder for the extraction of hidden
features. These acquired features are subsequently utilized to
train the classification head. To further amplify model ronust-
ness, a TTA module is employed, generating an ensemble of
predictions.

IV. EXPERIMENT RESULTS AND DISCUSSION

In this section, we elucidate the experimental setup and
protocols that were employed to assess the efficacy of our
proposed model. We provide an intricate account of the utilized
dataset, preprocessing methodologies, evaluation metrics, and a
comprehensive assessment of our method’s performance across
diverse scenarios. This encompassing evaluation encompasses
sensitivity analysis of Params, examination under conditions of
low signal-to-noise ratio (SNR), and scrutiny in the context of
few-shot scenarios.

A. Dataset Description

In this article, we present a pretraining and fine-tuning
approach for our method using the AudioSet-2 M dataset [18]
and the DeepShip dataset [46], respectively. AudioSet-2 M is
a multilabel audio event classification dataset that contains 2
million 10-s audio clips from YouTube videos with 527 sound
classes. Due to its diverse range of acoustic signal categories,
including human sounds, animal sounds, and sounds of things,
and its large amount of audio data volume, pretraining with
AudioSet-2 M enables our model to obtain a comprehensive
perception of various acoustic signals and learn discriminative
representations. The DeepShip dataset consists of 47 h and
4 min of real-world underwater acoustic signals produced by
256 types of ships and divided into four classes. For this study,
we added a fifth class of marine background noise1 to form a
new DeepShip dataset. We randomly divided the new dataset
into training and test sets. To align with the 10-s audio clips
used in the pretraining phase with AudioSet-2 M, we further
partitioned the acoustic recordings in both sets into segments of
10 s for fine-tuning. Table I presents comprehensive information

1https://github.com/ZhuPengsen/Dataset-segmentation

TABLE I
DESCRIPTION OF DEEPSHIP DATASET

about the fine-tuning dataset. In practical implementation, the
audio was sampled at a rate of 32 000 Hz. We proceeded to
extract log Mel-spectrograms using time frames of 10 ms,
encompassing 128 frequency bins per frame. Subsequent to this
extraction, a normalization procedure was conducted on the
log Mel-spectrograms using the dataset’s mean and standard
deviation. The calculated values for the mean and standard
deviation were −4.268 and 4.569, correspondingly.

B. Implementation Details

This part gives a details of our method’s implementation,
which can be divided into two phase: the pretraining phase on
AudioSet and the fine-tuning phase on DeepShip dataset. Dur-
ing the pretraining phase, we leveraged the Swin-Transformer
architecture, employing a configuration of four blocks for our
encoder. To ensure a fair comparison with the vision transformer,
we established the depths of these four Swin-Transformer blocks
at 2, 2, 18, and 2 layers, respectively. Furthermore, we desig-
nated the number of multihead attention mechanisms within
each block as 4, 8, 16, and 32 heads, correspondingly. The
decoder component takes the form of a streamlined network,
encompassing a solitary convolutional layer and adopting the
PixelShuffle method. Concerning the specific details of the
pretraining process, we adopted a mixup ratio of 0.5, drawing
inspiration from [47]. Subsequently, the preprocessed log Mel-
spectrograms were fed into the model using a batch size of 128,
and an individual iteration employed a learning rate of 0.003.
The training protocol spans across 128 epochs, incorporating a
warm-up epoch that extends over two iterations. This protocol
is orchestrated using the AdamW optimizer, while the learn-
ing rate schedule is orchestrated through the implementation
of the cosine decay strategy. Significantly, the entirety of the
pretraining phase was accomplished within an approximate span
of three days, harnessing the computational capabilities of eight
NVIDIA A40 GPUs.

For the subsequent downstream fine-tuning, we introduced a
pooling layer and a linear classification head, which replaced
the final layer of the pretrained model, with Params initialized
randomly for the targeted classification task. This transition al-
lowed the model’s adaptation to the specific task. The fine-tuning
phase extended over 100 epochs, employing a batch size of 256
and a learning rate set at 0.000625. A warm-up period spanning
10 epochs was integrated into the process, facilitated by the uti-
lization of the AdamW optimizer. The learning rate adjustment
followed a cosine decay strategy. In terms of the loss function,
we employed the cross-entropy loss, which is well-suited for
classification tasks, during the fine-tuning stage. To enhance the
model’s performance, a TTA module was incorporated. This

https://github.com/ZhuPengsen/Dataset-segmentation
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TABLE II
QUANTITATIVE COMPARISON BETWEEN DIFFERENT KINDS OF METHODS USING THE DEEPSHIP DATASET

strategy involved employing a mixup ratio of 1.1 along with a
flip transformation, contributing to improved generalization and
robustness.

Consistent with numerous prior studies, we utilize four com-
monly employed metrics to assess the efficacy of our proposed
approach. These metrics encompass accuracy, precision, recall,
and F1-score.

C. Quantitative Comparison

We evaluated the effectiveness of our proposed method for un-
derwater acoustic signal classification on the DeepShip dataset
by comparing it against competitive baselines of traditional
machine learning and deep learning. Specifically, we utilized
SVM, random forest (RF), and K-nearest neighbors (KNN) algo-
rithms as the traditional methods baselines, while SSLMM [42],
SNANet [48], SSAST [15], separable convolutional autoencoder
(SCAE) [46], CNNs (including the Residual Network and Incep-
tion architecture), and a standard DNN were selected as the deep
learning baselines for comparison. SSLMM employs a Swin-
Transformer-based approach combined with two decoders for
the purpose of reconstructing masked acoustic representations.
This strategy effectively augments the model’s capacity to learn
and represent information. SNANet is a CNN-based approach
that involves extracting spectrum features from each component
in different frequency bands. SSAST is a standard transformer-
based SSL method for audio classification. This method adopts
a pretext task centered around a masked spectrogram patch mod-
eling strategy, integrating both discriminative and generative
aspects. The fundamental procedure and core architecture of Au-
dioMAE closely resemble that of SSAST. However, AudioMAE
diverges in its approach by employing a higher mask ratio and
exclusively inputting visual patches into the encoders. SCAE
is a symmetric encoder–decoder framework where the encoder
fuses a separable convolution block with an Xception block to
transmute input data into an abstract discriminative represen-
tation. This representation is subsequently reassembled by the
decoder, structured on the U-Net architecture [49]. ResNet uses
residual connections to address the vanishing gradient problem
in deep networks and typically consists of several residual blocks
with multiple convolutional layers. Inception employs parallel

convolutional layers with varying filter sizes to capture features
at different scales, enabling the network to effectively capture
local and global patterns. In practice, we adopt ResNet50 and
Inception_v4 as the backbones.

As illustrated in Table II, our method outperforms all other
methods by achieving the highest accuracy score of 86.33%. The
scores for other evaluation metrics, including precision, recall,
and F1-Score, also demonstrate the superiority of our method
over others, with scores of 85.72%, 82.91%, and 84.29%, re-
spectively. SSLMM remained at the second position by ob-
taining scores of 80.22%, 80.81%, 79.94%, and 80.07% for
classification accuracy, precision, recall, and F1-Score. SNANet,
SSAST, AudioMAE, SCAE, Residual-based network, Incep-
tion and DNN achieved a accuracy score of 78.25%, 77.70%,
76.66%, 77.53%, 76.98%, 76.16%, and 73.11%, respectively.
Upon comparing the performance of our method, SSLMM,
SSAST, and AudioMAE, both of which are transformer-based
SSL approaches, it becomes evident that their performance sur-
passes that of other methods. This outcome serves as a validation
of the effectiveness of the pretraining process. Notably, in the
case of AudioMAE, there is a slight discrepancy between the
accuracy score and precision. We believe this discrepancy may
be attributed to the high mask ratio, which poses challenges
for the model in accurately classifying negative samples, thus
resulting in this outcome. Furthermore, in-depth analysis of the
performance of models, such as SCAE, Residual, Inception,
and DNN reveals a notable enhancement in model performance
owing to the inclusion of convolutional operations. Among
machine learning methods, SVM achieved the highest accuracy
score of 72.24% and outperformed other machine learning-
based methods. RF ranked second with a classification accuracy
score of 69.71%. Our findings indicate that DNN-based methods
generally exhibit superior performance compared with tradi-
tional machine learning-based methods with shallow network
architecture, which can be attributed to their increased capacity
for learning more complex representations. It is observed that
the proposed method outperformed all other methods, which we
attribute to the following three key factors.

1) The utilization of Swin-Transformer as the encoder, en-
abling extraction of both local contextual information and
global structure for more discriminative representations.



XU et al.: SELF-SUPERVISED LEARNING-FOR UNDERWATER ACOUSTIC SIGNAL CLASSIFICATION WITH MIXUP 3537

Fig. 4. Sensitivity of Param λ.

2) The incorporation of mixup strategy during pretraining
to increase data diversity, thereby bolstering the model’s
robustness, and augment its ability to generalize across
distinct data classes.

3) The application of TTA module from various perspectives,
enabling multiple views of the same sample. This is cou-
pled with output averaging, which serves to mitigate the
potential of misclassification.

D. Extended Analysis

1) Param Sensitivity: To ensure the attainment of a robust
fine-tuned model, we conducted an additional assessment to
gauge the model’s responsiveness to the augmentation coeffi-
cient (λ) used within the TTA module. As depicted in Fig. 4,
the integration of mixup in the TTA module effectively ele-
vates classification task performance to a certain extent, with
the optimal performance achieved when λ is set to 1.1. We
attribute this enhancement to mixup’s ability to enhance the
sharpness of discriminative boundary information, a crucial
element for successful classification. Conversely, it is apparent
that the enhancement progressively diminishes when the value
of λ surpasses 1.1, and even deteriorates beyond the performance
of not employing mixup. This decline might stem from the fact
that as boundaries become excessively sharp, the previously
inconspicuous original boundaries are sharpened to a point
where classification becomes confusing.

2) Computational Complexity: In general, the model’s per-
formance tends to improve as the number of model Params
increases. However, this often results in higher computational
complexity. To provide a more comprehensive evaluation of
our method compared with competitive baselines, we conducted
a computational complexity analysis (focusing on DNN-based
approaches). Specifically, we employed two widely-used met-
rics: the number of model Params and floating-point operations
per second (FLOPs) to assess computational complexity. The
results are presented in Table III. It can be seen that the
number of Params in traditional DNN models varies significantly
based on their architecture, whereas SSL-based methods tend to
maintain an approximately consistent number of Params. This
distinction arises because traditional DNN methods often rely
on structural changes to enhance performance, whereas SSL

TABLE III
COMPUTATIONAL COMPLEXITY OF CURRENT DNN-BASED METHODS FOR

UNDERWATER ACOUSTIC SIGNAL CLASSIFICATION

Fig. 5. Noise tolerance analysis: The quantitative comparison between our
proposed method and competitive algorithms, within different SNR.

methods prioritize the design of pretext tasks. In addition, DNN
exhibits the lowest FLOPs, which aligns with their simpler
structure. Residual network has the fewest Params due to their
convolution operations only related to kernel size and channel
number, thereby greatly reduces Params through receptive fields
and weight sharing. Furthermore, SSL-based methods gener-
ally exhibit higher computational complexity than traditional
DNN-based methods. This heightened complexity arises from
the incorporation of self-attention mechanisms, enabling inputs
from various locations to interact with one another, along with
multiheaded attention mechanisms that enable models to pri-
oritize different information within distinct scale. Besides, the
absence of labels requires SSL models to learn implicit super-
visory signals from the data itself, necessitating more Params,
such as the decoder used to reconstruct original masked patches.
Notably, AudioMAE has lower FLOPs compared with other SSL
methods, primarily because it only processes visual patches. In
contrast, our method’s FLOPs are roughly three times higher
than SSLMM due to the integration of the TTA module.

3) Noise Tolerance: It is widely acknowledged that data
often undergo various forms of degradation, including noise
effects and multipath effects during propagation [42], [50],
[51]. To assess the robustness of our method in the presence
of such variabilities, particularly noise effects, we conducted
comprehensive noise tolerance analyses. Inspired by the fact
that the combination of multiple noises often approximates
a Gaussian distribution in complex scenarios, we employed
Gaussian white noise to simulate real-world noise generation.
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Fig. 6. Visualizing the mask reconstruction results. Displayed are the original, masked, and reconstructed log Mel-spectrograms. Notably, the third row showcases
the reconstruction by the pretrained model without mixup, while the fourth row presents the reconstruction with mixup. In the red region, it is apparent that the latter
highlighted line more closely resembles the original. Moving to the yellow region, the latter reconstruction exhibits greater smoothness. Within the orange region,
the latter reconstruction captures more information. Based on these observations, it becomes evident that the pre-training with mixup yields valid improvements.

Subsequently, we introduced this noise into the original signals,
varying the SNR from −5 to 5 dB. These modified signals were
then utilized for training the model, with performance evalu-
ation conducted using a clean testing dataset. The results are
depicted in Fig. 5. It can be seen that our method exhibits strong
classification performance even in conditions with low SNR. Be-
sides, our method achieves the best performance compared with
the other competitive baselines. This reason can be attributed
to the robust and versatile representations obtained through
mixup-based pretraining, with further enhancement in robust-
ness achieved through the application of the TTA module during
fine-tuning.

E. Results Visualization

1) Reconstruction Visualization: As mentioned before, the
quality of a pretrained model is closely tied to the success
of downstream tasks. To further evaluate the effectiveness of
the pretraining phase, we randomly selected a audio record-
ing and performed patch-level masking on it. Subsequently,
the pretrained model was employed to reconstruct the masked
patches, drawing on the knowledge gleaned from the unmasked
counterparts. We visualize the outcomes of pretraining with
and without the mixup strategy in Fig. 6. In the red region,
it is apparent that the latter highlighted line more closely re-
sembles the original. Moving to the yellow region, the latter

reconstruction exhibits greater smoothness. Within the orange
region, the latter reconstruction captures more information.
Overall, these reconstructions exhibit greater resemblance to
the original data. Based on these observations, it is evident that
pretraining with mixup produces significant improvements. Our
findings underscore that the pretrained model, when integrated
with mixup, achieves a more accurate reconstruction of masked
patches. This underscores the model’s successful assimilation
of contextual information from the unmasked patches. Notably,
in the red, yellow, and orange regions, the pretrained model
with mixup demonstrates enhanced capability in reconstructing
intricate representations similar to the original data, as compared
with the scenario without mixup.

2) Feature Visualization: To provide a clear and intuitive
presentation, we employ t-distributed stochastic neighbor em-
bedding (t-SNE) to visualize the results of underwater acoustic
signal classification. Recognizing the importance of hidden rep-
resentations in classification, we utilize t-SNE to map the hidden
representations generated by our proposed model’s encoder
after fine-tuning into a 2-D space, as illustrated in Fig. 7. The
visual representation clearly shows that representations from
the same class are closely clustered together, while those from
different classes are separated. These observations affirm that
our proposed method effectively captures discriminative repre-
sentations, thereby enhancing its performance in downstream
classification tasks.
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Fig. 7. t-SNE visualizing results of the hidden representations. Dots of differ-
ent colors denote hidden representations of various classes.

Fig. 8. Experimental results under few-shot settings. We compared with the
competitive deep learning-based baselines.

F. Few-Shot Settings

Here, we conducted experiments to demonstrate the gen-
eralization ability of the proposed framework under few-shot
settings. Specifically, we randomly sampled the labeled training
data at sample ratios of 50%, 10%, 5%, and 1% from the whole
DeepShip dataset and used these resampled data to train different
methods. The accuracy results for both our proposed model
and compared methods are presented in Fig. 8. Our method
achieved accuracy score of 54.43%, 78.03%, 80.79%, and 83.04
with sample ratio of 1%, 5%, 10%, and 50%, respectively.
Conversely, the second-ranking approach, SSLMM, attained
percentages of 67.99%, 73.33%, 74.79%, and 79.62% for the
respective metrics, indicating an overall inferior performance
compared with our method. In the context of the 1% ratio,
our method exhibited lower performance than SSLMM. This
discrepancy might be attributed to the incorporation of the mixup
strategy augments sample diversity, however, it is conceivable

TABLE IV
IMPACT OF THE MIXUP IN PRE-TRAINING AND TTA IN FINE-TUNING FOR THE

CLASSIFICATION MODEL

that the resulting discriminative representation might not have
been sufficiently learned in the same limited samples. Notably,
we observed that the classification accuracy curve of our method
outperforms other competitive baselines, demonstrating that our
approach achieves satisfactory classification performance even
under limited data conditions. We attribute this improvement to
the superior prior knowledge obtained from the pretrained model
in the AudioSet, which enables better classification accuracy
on specific tasks despite having a small number of samples. In
addition, the pretraining and fine-tuning paradigm effectively
leverages optimal model weights that were pretrained on a large
scale of unlabeled acoustic signals, enabling our method to
quickly converge to specific tasks.

G. Ablation Study

To demonstrate the validation of mixup and TTA strategies,
We perform an ablation study to tease apart the effectiveness
of each component with the DeepShip dataset. Specifically, we
design three experiment settings: 1© without mixup in training
phase and without TTA in fine-tuning phase; 2© using mixup
in training phase and without TTA in fine-tuning phase; 3©
simultaneously using mixup in training phase and using TTA in
fine-tuning phase. The relevant results are presented in Table IV.
It can be seen that the utilization of all components within our
proposed framework leads to best performance. Specifically, our
method achieves an accuracy score of 86.33%, a precision score
of 85.72%, a recall score of 82.91%, and an F1-score of 84.29%.
These results surpass the case 1© (which does not employ any
strategies) by 6.88%, 5.85%, 3.74%, and 5.06%, respectively.
Furthermore, our method outperforms case 2© (which utilizes
only the mixup strategy in the pretraining phase) with im-
provements of 1.99%, 1.42%, 1.70%, and 1.56%, respectively.
Moreover, when comparing the improvements of case 1© and
2© against case 2© and 3©, it becomes evident that the mixup

strategy employed during the pretraining phase is more effective
than TTA used in the fine-tuning phase. This observation demon-
strates that the mixup strategy during pretraining enriches the di-
versity of acoustic signals and effectively alleviates the multipath
effect present in marine environments, which encourages the
model to capture robust and generic representations in turn. In
addition, it is worth noting that while the performance of case 1©
is slightly lower than the latest baseline SSLMM, this difference
may be attributed to SSLMM’s use of multirepresentation mask
modeling, whereas our method relies on a single representation
for reconstruction.



3540 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

V. CONCLUSION

In this article, we propose an underwater acoustic signal
classification method based on SSL, combined with mixup,
and TTA strategies. In our proposed method, we implement a
mixup-based strategy during the pretraining phase to enhance
the diversity of training data. This strategy effectively alleviates
the multipath effect characteristic of marine environments. In
addition, we design a hierarchical multiscale mask modeling
strategy as a pretext task during this phase, which allows us
to derive robust and generic representations suitable for down-
stream tasks. In the subsequent fine-tuning phase, we introduce
a TTA module to further bolster the robustness of our approach.
The experimental results demonstrate the effectiveness of our
proposed method, achieving a superior classification accuracy of
86.33% on the DeepShip dataset, which includes the challenging
fifth class related to ocean environment noise. This performance
surpasses that of competitive baseline models. Furthermore,
we extended our experiments to few-shot settings, where we
observed that our classification method consistently maintains
impressive performance, even when faced with limited labeled
data scenarios.

Notably, our approach incorporates a mixup-based strategy,
inspired by the observed multipath effect typical of marine
environments. While our method has demonstrated effectiveness
through high metric values, there remains room for improve-
ment. For instance, the mixup-based strategy relies on artificial
prior knowledge and design, which poses a limitation in terms
of granularity.

In the future, we plan to conduct a more fine-grained analysis
and modeling to better represent multipath effects and other
forms of interference in marine environments. This could involve
exploring various data augmentation techniques to enhance our
approach. In addition, we are considering the application of
neural architecture search techniques as an alternative solution
for further optimization.
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