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An Anchor-Free Method Based on Transformers and
Adaptive Features for Arbitrarily Oriented Ship

Detection in SAR Images
Bingji Chen , Chunrui Yu, Shuang Zhao , and Hongjun Song

Abstract—Ship detection is a crucial application of synthetic
aperture radar (SAR). Most recent studies have relied on con-
volutional neural networks (CNNs). CNNs tend to struggle in
gathering adequate contextual information through local receptive
fields and are also susceptible to noise. Inshore scenes in SAR
images are plagued by substantial background noise, so achiev-
ing high-accuracy ship detection of arbitrary orientations within
complex scenes remains an ongoing challenge when relying solely
on CNNs. To address the above challenges, this article presents an
anchor-free method based on transformers and adaptive features,
namely, SAD-Det, which can detect rotationally invariant ship
targets with high average precision in SAR images. Specifically,
a transformer-based backbone network called the ship spatial
pooling pyramid vision transformer is proposed to enhance the
long-range dependencies and obtain sufficient contextual informa-
tion for ships in SAR images. In addition, a neck network called the
adaptive feature pyramid network is designed to enhance the ability
of ship feature adaptation by adding fusion factors to feature layers
in SAR images. Finally, a head network called the deformable
head is constructed to make the network more adaptable to the
characteristics of ships by adaptively detecting the spatial sam-
pling positions of the targets in SAR images. The effectiveness of
the proposed method is verified by experiments on two publicly
available datasets, i.e., SAR ship detection dataset and rotated ship
detection dataset in SAR images. Compared with other arbitrarily
oriented object detection methods, the proposed method achieves
state-of-the-art detection performance.

Index Terms—Adaptive features, anchor-free, arbitrarily
oriented detector, ship detection, synthetic aperture radar (SAR),
transformer.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is a type of active mi-
crowave imaging radar. Unlike optical images, SAR is not

affected by daylight or weather and can achieve all-day and
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all-weather observations of the Earth. It also has good infor-
mation acquisition capability in complex situations [1]. Due to
its excellent performance, SAR has been widely developed and
utilized in various fields, including ocean monitoring [2], topo-
graphic mapping [3], agricultural monitoring [4], and disaster
detection [5]. Among them, research on ship object detection
based on SAR ocean images is an important application of
SAR [6] and is of great significance in the fields of maritime
supervision, fishery management, disaster rescue, etc.

The main characteristic of traditional ship detection methods
in SAR images is manual feature extraction, which typically con-
sists of several stages: land masking, preprocessing, prescreen-
ing, and discrimination [7]. These traditional detection methods
mainly include methods based on a constant false alarm rate
(CFAR) [8], methods based on a global threshold [9], methods
based on visual saliency [10], methods based on wavelet trans-
form [11], and methods based on polarization information [12].
Among them, the most widely used method is the CFAR method
based on the sea clutter statistical distribution. Its basic idea
is to statistically model the sea clutter around the pixels to be
detected by sliding the window under the preset false alarm
rate to adaptively determine the detection threshold and then
compare the gray value of the pixel to be detected with the
detection threshold to perform ship detection. However, these
traditional methods, including CFAR, require manual design
and the extraction of ship features, resulting in cumbersome
algorithmic processes and low robustness. These drawbacks
impede the advancement of detection performance, rendering
them inadequate for contemporary ship detection tasks in SAR
images.

In recent years, deep learning [13] has exhibited exceptional
performance in various domains, such as image classification,
object detection, semantic segmentation, and instance segmen-
tation. Li et al. [14] released the first public SAR ship detection
dataset, named SSDD, which enables end-to-end ship detection
in SAR images based on deep learning. Currently, several neu-
ral network architectures are employed for image processing
using deep learning, including convolutional neural networks
(CNNs) [15] and transformers [16].

CNN-based object detection methods have been widely ap-
plied to ship detection in SAR images due to their excellent per-
formance. In terms of two-stage detectors, multiple researchers
have combined various improved modules and attention
mechanisms based on Faster R-CNN [17], Cascade R-CNN [18],
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and Mask R-CNN [19] to improve the performance of ship
detection in SAR images. In terms of one-stage detectors,
Lin et al. [20] designed a feature enhancement pyramid and
shallow feature reconstruction network based on Retinanet [21]
to mitigate the adverse effects of scattering noise in SAR im-
ages and improve detection accuracy for small ships. Zhang
et al. [22] introduced a frequency attention module based on
YOLO V5 [23], which can adaptively process the frequency
domain information of SAR images to suppress noise such
as sea clutter. Zhang et al. [24] proposed a network structure
based on SSD [25], which takes raw SAR images and saliency
maps as input and fuses their features in order to reduce the
computational complexity and the number of network param-
eters (Params). The aforementioned detection algorithms are
all based on the horizontal bounding box (HBB), which can
effectively detect ships in SAR images. However, unlike natural
scene images, remote sensing images, including SAR images,
are usually obtained from a bird’s-eye view and have distinctive
characteristics [26]. For example, the ship features have arbi-
trary orientations, dense arrangements, scale variation, complex
backgrounds, etc. Especially in ports, where a large number of
ships are densely arranged and have a large aspect ratio, the HBB
can introduce substantial interference from the background area
and adjacent ships.

The oriented bounding box (OBB) is well suited for ship
detection in SAR images because it preserves the directionality
of the targets in the image, leading to more accurate positioning.
For example, Zhao et al. [27] proposed a single-stage detec-
tion method that efficiently detects ships in any orientation in
SAR images through multiscale feature fusion and calibration.
Guo et al. [28] introduced a new encoding representation to
describe the OBB and incorporated a feature adaptive module
to refine each feature pyramid layer. Zhou et al. [29] presented
a simple ellipse Params representation method for objects in
any direction, utilizing the YOLOX [30] algorithm for di-
rectional ship detection and yielding favourable results. Zhou
et al. [31] designed a new anchor-free keypoint-based detection
method called KeyShip for high-precision detection of oriented
ships in SAR images. These approaches are all CNN-based
ship detection methods for SAR images. CNNs can obtain an
image-specific inductive bias, including locality and translation
equivariance, thus improving the ability to learn image features.
It is worth noting that SAR images in inshore ship scenes are
subject to severe background noise. However, the convolution
operation in CNNs can only obtain local receptive fields, making
it incapable of capturing the long-range dependencies that can
bolster the representation ability, thereby limiting the utilization
of contextual information [32]. In addition, CNNs are sensitive
to geometric perturbations of images, such as random transla-
tions, rotations, and flips, which makes their anti-interference
ability poor and their generalization ability weak [33].

In contrast to the convolution operation, the multihead self-
attentions (MSAs) of the transformer can capture long-range
dependencies [34]. Furthermore, related studies [35] have shown
that the transformer exhibits strong adaptability to perturbations,
occlusions, and domain shifts. In the field of object detection
in remote sensing images, Yao et al. [36] proposed a new

multimodal deep learning framework for land use and land
cover classification tasks, which outperforms other backbone
models based on transformers or CNNs. Li et al. [37] intro-
duced a baseline network for hyperspectral anomaly detection,
which combines a low-rank representation model with deep
learning techniques to enhance the performance of hyperspectral
anomaly detection. In the field of ship detection in SAR images,
some researchers have also conducted relevant research based on
transformers. For example, Xia et al. [38] utilized the Cascade
Mask R-CNN as the basic architecture, combined with the Swin
Transformer [39], to obtain a visual transformer framework
based on contextual joint-representation learning. Li et al. [40]
introduced a feature enhancement module based on the Swin
Transformer to improve feature extraction capabilities, along
with an adjacent feature fusion module to optimize feature pyra-
mids for enhancing ship recognition and positioning capabilities
in SAR images. Shi et al. [41] developed a deformable atten-
tion mechanism into a Swin Transformer and proposed a new
contour-guided shape enhancement module to improve the accu-
racy of ship detection in SAR images. Zhou et al. [42] created an
edge semantic decoupling module and integrated a transformer
into the detection layer to achieve dense ship detection in inshore
areas. The above algorithms are all based on the HBB, and a
small number of researchers have explored detection methods
based on the OBB. For example, Zhou et al. [43] modified the
pyramid vision transformer (PVT) [44] model, designed a mul-
tiscale feature fusion module and adopted a new loss function
to improve the detection ability for small targets and mitigate
the influence of the ship’s boundary scattering interference.
However, the abovementioned transformer-based methods have
limited context information and feature information based on
ships in SAR images, so their detection performance needs to
be further improved.

To address the above problems, this article presents an anchor-
free method based on transformers and adaptive features for arbi-
trarily oriented ship detection in SAR images, called SAD-Det.
The method is a hybrid structure of the transformer and CNN.
First, to obtain more contextual information related to ships in
SAR images, the ship spatial pooling pyramid vision transformer
(SSP-PVT) is proposed. This module employs PVT to generate
multilayer feature maps and then introduces the last layer of
feature maps into the ship spatial pooling module (SSPM) to
modulate the feature maps from different dimensions. Second, to
improve the performance of ship target feature fusion, we design
the adaptive feature pyramid network (AFPN). By incorporating
the adaptive weight module (AWM) in different feature layers of
the feature pyramid network (FPN), we leverage its self-attention
characteristics to assign different weights to the feature layers
of the neck network. Third, to make the network more adaptable
to the characteristics of ships in SAR images, we propose the
deformable head (DeHead) based on deformable convolution
(DC), which enhances the adaptive ability of the detection head
network. The residual connection is introduced to solve the
problem of vanishing gradients.

The main contributions of this article are as follows.
1) An anchor-free method based on transformers and adap-

tive features for arbitrarily oriented ship detection in SAR
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Fig. 1. Overall architecture of SAD-Det.

images is proposed, called SAD-Det. The detection per-
formance of the arbitrarily oriented ship method for SAR
images based on the anchor-free framework achieves the
highest average precision, which demonstrates the poten-
tial of combining the transformer and CNN.

2) The SSP-PVT is proposed, which utilizes PVT and in-
corporates a module called the SSPM to enhance the
long-range dependencies of ships in SAR images, thereby
obtaining sufficient contextual information to improve the
detection performance of ships in SAR images.

3) The AFPN is proposed, which incorporates the AWM into
the neck network based on FPN. The aim of AWM is to add
fusion factors to different feature layers, thereby assigning
different weights to the feature layers in order to improve
the performance of feature fusion for ships in SAR images.
Furthermore, the DeHead is proposed, which implements
DC to adaptively detect the spatial sampling positions of
the targets and incorporates residual connections to opti-
mize the network for ship characteristics in SAR images.

4) Extensive experiments on SSDD and rotated ship detec-
tion dataset in SAR images (RSDD-SAR) validate the
effectiveness of the proposed module. Compared with
other arbitrarily oriented object detectors, the proposed
method achieves state-of-the-art detection performance.

The rest of this article is organized as follows. Section II
provides a detailed description of the proposed method.
Section III presents and analyses the experimental results.
Finally, Section IV concludes this article.

II. METHODOLOGY

In this section, we first explain the overall architecture of the
proposed method and then describe SSP-PVT of the backbone

network, AFPN of the neck network, and DeHead of the head
network. Finally, we illustrate the loss function used by this
method.

A. Overall Architecture

The overall architecture of the proposed method, named SAD-
Det, is illustrated in Fig. 1. The backbone network is SSP-PVT
we propose, which is based on PVT, as depicted by the blue
cube. To maintain consistency with the naming conventions of
CNN-based backbone networks, such as ResNet, the feature
maps outputted by SSP-PVT are named {C2,C3,C4,C5}. Then,
the last layer of feature layer C5 is fed into the proposed SSPM,
where it is transformed into a feature map C5’ represented by the
red cube. Therefore, the feature map generated by the backbone
network becomes {C2,C3,C4,C5’}. Subsequently, the multi-
layer feature map is input to the proposed AFPN. Initially, lateral
connections are utilized to adjust them to a feature map {M2,
M3, M4, M5} with an equal number of channels, as shown by
the orange cube. Then, the top–down pathway and the proposed
AWM are employed to merge the feature maps, resulting in the
fused feature map. Finally, convolution operations are applied
to obtain the output feature map {P2, P3, P4, P5}, depicted by
the green cube. The feature map is then fed into the proposed
DeHead, where DC and residual connections are utilized in the
two branches to further process the feature map. Finally, the
loss function is computed for three parts, namely, classification,
regression, and centerness.

B. Ship Spatial Pooling Pyramid Vision Transformer

With the promising advancements of transformers in the field
of natural language processing, researchers have extended trans-
formers to the field of computer vision and achieved promising
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Fig. 2. Structure of PVT-V2-B2.

outcomes. For example, the Vision Transformer (ViT), proposed
by Dosovitskiy et al. [45] demonstrated for the first time that a
transformer could be applied to computer vision, and it achieved
state-of-the-art performance in numerous experiments at that
time. However, ViT is not a generic backbone, as it is only
suitable for image classification, not for dense prediction tasks
such as object detection and image segmentation.

PVT [44] is the first hierarchical design of the ViT, which
incorporates a pyramid structure into the transformer, enabling
seamless integration with downstream tasks, such as object
detection. This design is similar to that of ResNet and other
CNN-based backbone networks. PVT plays a crucial role among
a multitude of outstanding backbone networks and has yielded
superior outcomes compared with Swin-Transformer, which is
another frequently employed backbone network. This will be
elucidated through subsequent experiments and analyses. Unlike
traditional convolutional backbones, PVT is a nonconvolutional
backbone that consists of multiple independent transformer
encoders stacked together. The resolution of the input image
is gradually reduced through patch embedding. In addition, a
related team proposed PVT-V2 [46], which reduces the com-
putational complexity to linear and solves the problem of the
high computational complexity of PVT for high-resolution im-
ages. PVT-V2 offers different models according to different
parameter quantities and task requirements. To ensure a fair
comparison with existing backbones, such as ResNet-50 [47]
and Swin-T [39], we selected PVT-V2-B2, which possesses
similar parameter quantities, as the baseline for the proposed
method’s backbone.

The structure of PVT-V2-B2 is illustrated in Fig. 2. Similar
to the CNN-based backbone, PVT-V2-B2 contains four stages,
each of which consists of a patch embedding layer and some
transformer encoder layers, producing feature maps at various

scales. In the first stage, the input image is set to a size of
H × W × 3, and then it is divided into HW

42 patches, where
each patch has a size of 4 × 4× 3. Then, the patches are fed into
an overlapping patch embedding layer, and multiple embedded
patches with a size of HW

42 × 64 can be obtained. Subsequently,
the embedded patches are passed through three consecutive
transformer encoder layers, followed by a reshaping operation to
generate a feature map C2 with a size of H

4 × W
4 × 64. In com-

parison with [16], a transformer encoder layer of PVT-V2-B2
contains a spatial-reduction attention layer, which means adding
convolutions before the multihead attention layer to reduce the
computational complexity, and a convolutional feed forward
layer, which means adding a depthwise convolution between
the first FC layer and the GELU layer. By applying a similar
approach to the remaining three stages, we can obtain feature
maps C3, C4, and C5 with different sizes.

Compared with other targets, ship targets in SAR images have
a substantial aspect ratio. PVT-V2-B2 is a general backbone
network that usually detects input feature maps within a square
window. However, it lacks specific optimization for ship targets,
leaving room for improvement in its detection performance. In-
spired by [48], we propose the SSPM to enhance the long-range
dependencies of ships in SAR images. The specific structure of
SSPM is illustrated in Fig. 3. We first set the feature map C5 as
the input x ∈ RH ′×W ′×C ′

and then pass x into two branches.
Each branch contains a horizontal or vertical strip pooling
layer. The outputs of these layers are labelled yh ∈ RH ′×C ′

and
yv ∈ RW ′×C ′

, respectively. The specific formulas are as follows:

yhi,c =
1

W ′
∑

0≤j≤W ′
xi,j,c (1)



2016 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 3. Structure of SSPM.

yvj,c =
1

H ′
∑

0≤i≤H ′
xi,j,c. (2)

Then, the feature map passes through two 1-D convolutional
layers with kernel sizes of three and five, restores the feature
map to its original size through the expansion operation, and
performs elementwise addition on the feature map. The specific
process is as follows:

yhi,c = EP(Conv3×1(y
h
i,c)) + EP(Conv5×1(y

h
i,c)) (3)

yvj,c = EP(Conv1×3(y
v
j,c)) + EP(Conv1×5(y

v
j,c)) (4)

yi,j,c = yhi,c + yvj,c (5)

where Conv3×1, Conv5×1, Conv1×3, and Conv1×5 represent con-
volutional layers of sizes 3 × 1, 5 × 1, 1 × 3 and 1 × 5,
respectively. EP represents the expansion operation. After that,
the output z is calculated as follows:

z = x+ Prod(x, σ(Conv1×1(y))) (6)

where Conv1×1 represents the convolutional layer of size 1 × 1.
σ represents the sigmoid function, and Prod represents the ele-
mentwise product. At the same time, the residual connection [47]
is introduced to improve the detection results. Through the
above process, the feature map C5 is transformed into C5’. In
conclusion, the output feature map of SSP-PVT is composed of
{C2,C3,C4,C5’}.

C. Adaptive Feature Pyramid Network

Feature fusion is a crucial step in many object detection tasks.
FPN [49] is a typical feature fusion method that is widely used
in various object detection networks. It can connect deep and
shallow feature maps through top–down pathways and lateral
connections and subsequently fuses objects of different scales
to enhance the detection performance. However, the feature
fusion method represented by FPN simply involves element-by-
element addition or concatenation of features within the channel
dimension without fully considering the characteristics of the
specific detection tasks. In the field of ship detection in SAR
images, ships are typically small in size, as observed in several
publicly available datasets. Therefore, investigating methods of

Fig. 4. Structure of AWM.

enhancing detection performance for small targets represented
by ships is of great significance.

Adding fusion factors between adjacent feature layers to
assign different weights to each layer is an efficient approach to
enhancing the performance of FPN. Inspired by [50], we propose
the AWM depicted in Fig. 4. The overall neck network is shown
in Fig. 1, which we call the AFPN.

Considering that the majority of the ships in a SAR image
are small in size and that the shallow feature map contains more
information about small targets, we modified the input of the
neck from the usual {C3,C4,C5’} to {C2,C3,C4,C5’}. The input
feature map is first adjusted to the middle feature map {M2,
M3, M4, M5} with a channel number of 256 through lateral
connections. M5 then doubles the values of H and W through
interpolation and performs scalar multiplication with the weight
w5

4 obtained by AWM. The result is then added to M4 to create
a new feature map M4. This new feature map M4 is passed
through a 3 × 3 convolution to obtain the output feature map
P4. Similarly, the feature maps P2 and P3 can be obtained, and P5
can be directly obtained from M5 through a 3 × 3 convolution.
The formulas are presented as follows:

Ml = Conv1×1(Cl), l = 2, 3, 4, 5 (7)

Ml = Ml + wl+1
l × Upsample(Ml+1), l = 2, 3, 4 (8)

Pl = Conv3×3(Ml), l = 2, 3, 4, 5 (9)

where Conv1×1 and Conv3×3 represent convolutional layers of
sizes 1 × 1 and 3 × 3, respectively, and Upsample represents
the nearest neighbour interpolation. wl+1

l represents the weight
factor resulting from AWM, as shown in Fig. 4. The input value
is obtained by the elementwise addition of the feature maps
Ml and Ml+1, and then the feature factor wl+1

l is obtained
by convolution, global average pooling, global max pooling,
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Fig. 5. Comparison of standard convolution and DC on the receptive field.
(a) Standard convolution. (b) DC.

sigmoid, and other methods. The formula is as follows:

wl+1
l = f(Ml + Upsample(Ml+1)), l = 2, 3, 4 (10)

where f represents AWM. After the above process, the output
feature map of AFPN consists of {P2, P3, P4, P5}.

D. Deformable Head

As previously mentioned, the ship target in a SAR image has a
large aspect ratio, and because standard convolution samples the
fixed position of the input feature map, it cannot meet the precise
requirements of ship detection in SAR images. Therefore, it is
necessary to adaptively adjust the size of the receptive field to
achieve more accurate positioning. DC [51], [52] can mitigate
this problem. Fig. 5 shows a comparison between standard
convolution and DC. The area represented by each point in
Fig. 5(a) and (b) indicates the location of the receptive field.
Our focus is on the activation point of the uppermost feature
map, which is set at the center of the ship. This point needs to
be derived from the nine points marked by the feature map of
the middle layer through 3 × 3 convolution. These nine points
need to be derived from multiple points of the feature map in
the lowest layer through 3 × 3 convolution. After comparison,
it is evident that the standard convolution in Fig. 5(a) has a
fixed receptive field, while the DC in Fig. 5(b) has an adaptive
receptive field. The sampling positions of DC are more in line
with the shape and size of the object itself.

The head design of the proposed method is illustrated in
Fig. 1. Similar to the head network of FCOS [53], the head of
the proposed method is shared among different feature layers.
However, a notable difference is the inclusion of an additional
angle branch to facilitate the merging process in the regression
task. The head of each layer consists of two branches: one branch
predicts classification tasks, while the other predicts regression
and centerness tasks. The four-layer feature map output by the
neck network is used as the input of the head network. Initially,
the feature maps pass through four 3 × 3 convolutional layers
with 256 channels. Subsequently, they are passed through a
deformable convolutional layer, which takes into account the

residual connection [47] that we propose to improve the detec-
tion results. Finally, a 3 × 3 convolutional layer, with respective
channel numbers of 1, 5, and 1, is employed for classification
tasks, regression tasks, and centerness tasks.

E. Loss Function

The loss function of the proposed method consists of three
parts, which can be calculated as

Loss =
1

Npos

∑
x,y

Lcls(px,y, c
∗
x,y)

+
λ1

Npos

∑
x,y

1{c∗x,y>0}Lreg(tx,y, t
∗
x,y)

+
λ2

Npos

∑
x,y

1{c∗x,y>0}Lctrness(sx,y, s
∗
x,y) (11)

where Lcls represents the classification loss using the focal
loss function [21]. Lreg represents the regression loss using
the rotated intersection over union (IoU) loss function [54].
Lctrness represents the centerness loss using the cross entropy loss
function [55]. Npos represents the number of positive samples.
λ1 and λ2 represent the balance weights for Lreg and Lctrness,
respectively, and both default to 1. 1{c∗x,y>0} is 1 when the
(x,y) point in the feature map is identified as a positive sample;
otherwise, it is 0. px,y indicates the score predicted as a ship at
that point. c∗x,y represents the real label corresponding to that
point, with 1 for a ship and 0 for the background. tx,y represents
the target bounding box information predicted at the point, and
t∗x,y represents the real target bounding box information corre-
sponding to the point. sx,y represents the predicted centerness at
that point, and s∗x,y represents the true centerness corresponding
to that point.

III. EXPERIMENTAL RESULTS

A. Datasets and Experimental Settings

We use two datasets to evaluate the performance of the pro-
posed method, namely, SSDD [14], [56] and RSDD-SAR [57].

SSDD is the first public ship dataset for SAR images. It has
two versions, and we specifically chose the 2021 version due
to its unified OBB annotations and detailed usage standards
compared with the 2017 version. This dataset contains a total
of 1160 images depicting 2456 ships. It encompasses various
polarization methods, resolutions, and image sizes. As one of the
most widely used ship datasets in SAR images, SSDD serves as a
baseline for evaluating the performance of the proposed method.
Specific details can be found in Table I.

RSDD-SAR is one of the few publicly available ship datasets
with OBB annotations for SAR images. It comprises 7000
images, encompassing multiple imaging modes, polarization
modes, and resolutions. The images in this dataset contain a total
of 10 263 ships. The model trained by this dataset demonstrates
a strong generalization ability, thus making RSDD-SAR an ideal
choice for evaluating the performance of ship detection based
on the OBB. Details can be found in Table I.
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TABLE I
DETAILS OF SSDD AND RSDD-SAR

The SSDD dataset comprises images of various sizes, which
we resized to 500 × 350 pixels for our experiments. Following
the recommendation in [56], we divided the images into a
training set and a testing set using an 8:2 ratio. Regarding the
RSDD-SAR dataset, the default image input size is specified as
512 × 512 pixels in [57]. This dataset is randomly split into a
training set and a test set using a 5:2 ratio.

The experiment involving the proposed method employed
the AdamW optimizer with an initial learning rate of 0.0001
and a weight decay of 0.0005. The batch size was set to 8. For
training on the SSDD dataset, the model underwent 120 epochs,
with the learning rate decreasing by 0.1 times at 60, 90, and
110 epochs. On the other hand, the training of the RSDD-SAR
dataset involved 36 epochs, with the learning rate decreasing
by 0.1 times at 24 and 33 epochs. The other methods utilized
a stochastic descent optimizer with an initial learning rate of
0.001, a weight decay of 0.0001, and a momentum of 0.9. All
experiments were implemented on the following software and
hardware platforms. The software platform employed a toolbox
called MMRotate [58], which is based on the deep learning
framework PyTorch, and was run on the Ubuntu 22.04 oper-
ating system. The hardware platform consisted of a computer
equipped with an Intel Core i9-12900KF processor and two
Nvidia GeForce RTX 3090 GPUs.

B. Evaluation Metrics

To quantitatively evaluate the performance of the proposed
method, we utilized three evaluation metrics from the MS COCO
dataset [59]: AP, AP50 and AP75. In addition, we used floating
point operations (FLOPs) and Params to measure the time com-
plexity and space complexity of the model. AP is the average
precision calculated from IoU values ranging from 0.5 to 0.95
with a step size of 0.05. AP50 represents the average precision
at an IoU threshold of 0.5, aligning with the evaluation metric
used in Pascal VOC [60]. AP75 represents the average precision
at an IoU threshold of 0.75.

Generally, the definition of AP is the area under the precision-
recall curve (PRC). A higher AP value indicates better detection
performance of the method. The formula for AP is given by

AP =

∫ 1

0

P (R)dR (12)

where P represents the precision, which is the proportion of
correctly detected ship samples to all predicted positive ship
samples. R represents the recall, which is the proportion of
correctly detected ship samples to all labelled positive ship
samples. The formulas for both are as follows:

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

where TP represents true positives, referring to the correctly
detected positive samples. FP represents false positives, indicat-
ing incorrectly detected positive samples. FN represents false
negatives, denoting the incorrectly detected negative samples.
Given the IoU threshold, and setting recall as the abscissa and
precision as the ordinate, we can obtain the PRC mentioned
earlier.

C. Analysis of the Proposed Method

1) Ablation Experiments: To verify the effectiveness of the
proposed method, we gradually incorporate each module into
the baseline and analyze the impact of each module on SSDD.
The corresponding results are presented in Table II. The baseline
network we utilize is FCOS (OBB), which incorporates an angle
branch solely to facilitate the detection of rotationally invariant
objects, in contrast to FCOS. To ensure a fair comparison, we
modify the neck feature layer of the baseline network from
{P3, P4, P5, P6, P7} to {P2, P3, P4, P5} as employed by the
proposed method, and we adopt the same training strategy as
the proposed method. Unless otherwise specified, the following
experiments are conducted on SSDD by default.

According to the results presented in Table II, some con-
clusions can be drawn from the analysis. The three proposed
modules demonstrate a significant improvement in detection
performance compared with the baseline network, thus vali-
dating their effectiveness. Furthermore, the proposed method
exhibits an increase of 3.8%, 2.4%, and 7.6% in the value of
AP, AP50, and AP75, respectively, compared with the baseline
network. In addition, it is evident from the values of FLOPs
and Params in the table that SSP-PVT has similar space com-
plexity and time complexity compared with ResNet-50 from the
baseline network, thereby demonstrating the effectiveness of the
transformer-based architecture in ships in SAR images. More-
over, the other two modules incorporate adaptive methods that
aid in detecting ship features. However, this leads to an increase
in the parameter quantity, consequently affecting the high-speed
performance of detection. Fig. 6 illustrates the corresponding
PRCs for different module combinations at an IoU of 0.75 and
provides a more intuitive representation of the benefits brought
by each module. Subsequently, a detailed analysis is conducted
to examine the impacts of the three proposed modules.

2) Effect of SSP-PVT: Next, ablation experiments and ex-
tensive discussions are conducted for SSP-PVT. To compre-
hensively examine the impact of SSP-PVT, it is compared
against other widely employed backbone networks, including
ResNet-50, Swin-T, and PVT-V2-B2. The experimental results
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TABLE II
ABLATION EXPERIMENTS WITH THE PROPOSED METHOD ON SSDD

Fig. 6. PRCs with IoU = 0.75 when adding different modules.

TABLE III
COMPARISON OF PERFORMANCE BETWEEN SSP-PVT AND OTHER

BACKBONE NETWORKS

are presented in Table III. Each experiment utilizes FPN as the
neck network and FCOS (OBB) head as the head network. The
similarity in the values of AP, FLOPs, and Params between
Swin-T and ResNet-50 validates the viability of the transformer
architecture in ship detection for SAR images. Furthermore,
PVT-V2-B2 exhibits superior performance compared to Swin-
T, resulting in increments of 3.0%, 1.0%, and 4.6% for the
value of AP, AP50, and AP75, respectively. This phenomenon
is likely due to Swin-T’s utilization of windows -head self-
attentionMSA for self-attention in local areas at the expense
of direct global relationship modeling, an essential feature of
ViTs. In addition, SSP-PVT outperforms PVT-V2-B2, yielding
increments of 0.4%, 0.2%, and 1.2% for the value of AP, AP50,
and AP75, respectively. This is likely because the inclusion
of SSPM strengthens the long-range dependencies of ships in
SAR images. These experiments demonstrate that SSP-PVT can
efficiently extract the features of ships in SAR images.

We also represent these methods visually. Fig. 7 depicts
some sparse small targets in an offshore scene of the SSDD
dataset. The detection results using ResNet-50 and Swin-T as the

TABLE IV
COMPARISON OF PERFORMANCE BETWEEN AFPN AND OTHER

NECK NETWORKS

backbone network reveal the presence of some false positives.
However, when utilizing PVT and SSP-PVT as the backbone
network, all objects are detected accurately, thereby intuitively
verifying the effectiveness of this module.

3) Effect of AFPN: Subsequently, ablation experiments and
further discussion of AFPN are conducted. AFPN is compared
with other commonly used neck networks, and the results are
presented in Table IV. For these experiments, considering the
influence of the transformer on the experiment, the backbone
network of each experiment utilizes PVT-V2-B2, and the head
network adopts FCOS (OBB) head. The results demonstrate
that FPN-based variants, such as PAFPN [61] and BiFPN [62],
are not as effective as the baseline structure FPN, leading to
decreased values of AP, AP50, and AP75. This is likely because
the complex neck networks, involving more upsampling and
downsampling, result in the loss of feature information, thereby
negatively impacting detection result. However, when compared
with FPN, AFPN exhibits improved performance with increases
of 0.1%, 0.7%, and 1.1% in the value of AP, AP50, and AP75,
respectively. This improvement can be attributed to AWM incor-
porated in AFPN, which adaptively changes the weight of each
feature map based on the specific characteristics of each group
of images, thus achieving more accurate detection. It is worth
noting that due to the inclusion of AWM, the FLOPs value and
Params value in AFPN are slightly higher than those in FPN,
mildly affecting the network’s high-speed performance.

The visualization of these methods is given in Fig. 8, depicting
an inshore scene with densely packed targets from the SSDD
dataset. It is evident that all methods exhibit various levels
of missed detections. Notably, AFPN demonstrates superior
performance compared with other methods, with the fewest
false positives in the detection results of the neck network. This
illustrates the effectiveness of AFPN, but there is still potential
for improvement in dense scenes.

4) Effect of DeHead: In the following analysis, we exam-
ine DeHead. The head network of FCOS (OBB) is used as a
baseline and compared with DeHead. The results are presented
in Table V. In each experiment, the backbone network utilizes
PVT-V2-B2, while the neck network adopts FPN. It can be seen
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Fig. 7. Visualization of the detection results for different backbone networks. (a) Ground truth. (b) ResNet-50. (c) Swin-T. (d) PVT-V2-B2. (e) SSP-PVT. The
blue boxes indicate the ground truth, the red boxes indicate true positives, and the orange circles indicate false positives.

Fig. 8. Visualization of the detection results for different neck networks. (a) Ground truth. (b) FPN. (c) PAFPN. (d) BiFPN. (e) AFPN. The blue boxes indicate
the ground truth, the red boxes indicate true positives, and the orange circles indicate false positives.

Fig. 9. Visualization of the detection results for different head networks. (a) Ground truth. (b) Baseline. (c) DeHead. The blue boxes indicate the ground truth,
the red boxes indicate true positives, and the light blue circles indicate false negatives.

TABLE V
COMPARISON OF PERFORMANCE BETWEEN DEHEAD AND THE BASELINE

that DeHead outperforms the baseline, resulting in the value
of AP, AP50, and AP75 increasing by 0.4%, 0.2%, and 1.2%,
respectively. This improvement stems from the introduction of
DC, which enhance the network’s adaptability to ship character-
istics through adaptive detection of the objects’ spatial sampling
positions. In addition, the introduction of residual connections
at deeper positions alleviates the issue of vanishing gradients.
Furthermore, the inclusion of modules results in a slight increase
in time complexity and space complexity.

Different head networks are also shown, revealing a sparse
small target in an offshore scene of the SSDD dataset, as depicted
in Fig. 9. It is evident that the baseline’s head network exhibits
false negatives, whereas DeHead network displays none, thereby
substantiating the validity of the proposed module from a qual-
itative perspective.

D. Comparison With General Arbitrarily Oriented Object
Detection Methods

To further assess the effectiveness of the proposed method,
this section compares the proposed SAD-Det with several com-
monly used arbitrarily oriented object detection methods on both
SSDD and RSDD-SAR. These methods include two-stage and
anchor-based algorithms, such as Oriented R-CNN [63], Faster
R-CNN (OBB) [64], and ReDet [65]. In addition, one-stage and
anchor-based algorithms, such as R3Det [66] and S2A-Net [67],
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TABLE VI
DETECTION RESULTS OF DIFFERENT ARBITRARILY ORIENTED OBJECT

DETECTION METHODS ON SSDD

as well as one-stage and anchor-free algorithms, such as FCOS
(OBB) [53].

The results of different arbitrarily oriented object detection
methods on SSDD are presented in Table VI. The results demon-
strate that SAD-Det outperforms the other methods in terms of
AP, AP50, and AP75, achieving respective values of 59.3%,
96.8%, and 67.9%. Taking the AP50 indicator as an example,
SAD-Det’s performance witnessed a noticeable improvement of
5.2%, 4.1%, and 5.4% compared with that of ReDet, S2A-Net,
and FCOS (OBB), respectively. These experimental findings
verify that SAD-Det, which combines transformer and CNN ar-
chitectures, yields superior detection outcomes relative to other
CNN-based arbitrarily oriented detection methods and can even
rival the object detection performance of HBB-based methods.
It is evident that the proposed method has higher time and space
complexity compared with the other methods, as indicated by
its FLOPs and Params. The primary reason for this discrepancy
is that the backbone network of the proposed method produces
feature maps {C2, C3, C4, C5}, while other methods that neglect
the largest feature map C2 only output feature maps {C3, C4,
C5}. Furthermore, it should be noted that the calculation of
FLOPs is partly influenced by the area of the feature maps.
Consequently, although the value of FLOPs of the proposed
method is significantly higher than that of other methods, it is
still within an acceptable range. Moreover, Fig. 10 illustrates the
PRCs corresponding to these methods at IoU = 0.75, enabling
an enhanced understanding of their performance and further
substantiating the advantages of the proposed method from an
alternative perspective.

We select several methods for visualization. The pictures
consist of two offshore scenes and two inshore scenes from the
SSDD dataset, as depicted in Fig. 12. Fig. 12(a) portrays sparse
small objects against an ocean background, and all methods
achieve good detection results for this particular scenario. In
contrast to a few methods that produce a small number of FPs
or FNs, other methods, including SAD-Det, accurately detect
all objects. In Fig. 12(b), in addition to sparse small targets, the
scene contains disturbances, such as islands. At this juncture,
most methods generate a considerable number of FPs and FNs.
Nonetheless, SAD-Det only has one FP, highlighting its superior

Fig. 10. PRCs of different methods on SSDD when IoU = 0.75.

Fig. 11. PRCs of different methods on RSDD-SAR when IoU = 0.75.

resistance to interference compared with that of other methods.
Fig. 12(c) portrays dense large-scale ship targets in an inshore
scene. In contrast to other methods, the proposed method de-
tected all targets accurately, showcasing its effectiveness in this
type of environment. In Fig. 12(d), dense ship targets are once
again present in an inshore scene, with ships positioned close
to the shore, thereby increasing the difficulty of detection. All
methods exhibit a high number of FPs, yet SAD-Det demon-
strates superior detection accuracy. This further emphasizes the
need to enhance the proposed method’s resilience to interference
in inshore scenes with dense targets.

To evaluate the generalization ability of the proposed method,
experiments are conducted on RSDD-SAR. The results of differ-
ent arbitrarily oriented object detection methods can be seen in
Table VII. Compared with the other methods, SAD-Det achieves
high scores in the AP, AP50, and AP75 indicators, reaching
52.0%, 93.8%, and 53.9%, respectively. For instance, in terms
of the AP50 indicator, SAD-Det outperforms ReDet, S2A-Net,
and FCOS (OBB) with improvements of 3.1%, 2.9%, and
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Fig. 12. Visualization of the detection results of various methods on SSDD. (a) Offshore Scene 1. (b) Offshore Scene 2. (c) Inshore Scene 1. (d) Inshore Scene
2. From top to bottom: ground truth, oriented R-CNN, faster R-CNN(OBB), R3Det, S2A-Net, FCOS (OBB), SAD-Det. The blue boxes indicate the ground truth,
the red boxes indicate true positives, the orange circles indicate false positives, and the light blue circles indicate false negatives.



CHEN et al.: ANCHOR-FREE METHOD BASED ON TRANSFORMERS AND ADAPTIVE FEATURES FOR ARBITRARILY ORIENTED SHIP DETECTION 2023

TABLE VII
DETECTION RESULTS OF DIFFERENT ARBITRARILY ORIENTED OBJECT

DETECTION METHODS ON RSDD-SAR

TABLE VIII
DETECTION RESULTS OF DIFFERENT ARBITRARILY ORIENTED SHIP DETECTION

METHODS ON RSDD-SAR

4.5%, respectively, highlighting the advantages of the proposed
method in detecting OBBs. The corresponding PRCs are shown
in Fig. 11, confirming the superior performance of the proposed
method compared with other approaches.

We show the results of several methods on RSDD-SAR in
Fig. 13. Fig. 13(a) displays some ship targets under high-sea
states. While the other methods exhibit FPs and FNs, SAD-
Det accurately detects all objects. The other three images in
Fig. 13(b)–(d) depict ship targets in inshore scenes. Due to the
interference of artificial facilities on the shore, small islands
in the sea and high-sea states, most methods generate missed
and false detections, and some FPs and FNs appear. In contrast,
SAD-Det accurately detects all objects in these three images.
This indicates that the proposed method possesses superior
robustness and anti-interference ability compared with the other
methods.

E. Comparison With Arbitrarily Oriented Ship Detection
Methods

To further validate the effectiveness of the proposed method
for ship detection, this section compares the proposed SAD-
Det with several arbitrarily oriented ship detection methods on
RSDD-SAR from both inshore and offshore perspectives. These
methods include KeyShip [31], SaDet [27], AEDet [29], and
MT-FANet [68]. Since the aforementioned methods are not open
source, we reproduce the structure of SaDet and conduct experi-
ments, citing the best experimental results from the other studies
as our comparison values. The specific results are presented
in Table VIII, which demonstrates that the AP50 of SAD-Det

TABLE IX
SPECIFIC CONFIGURATION OF A LARGE-SCALE ALOS-2 SAR IMAGE

achieves the best value in all scenes, inshore scenes, and offshore
scenes. This clearly illustrates the effectiveness of the proposed
method in the field of ship detection.

F. Verification on a Large-Scene SAR Image

To assess the performance of the proposed method on a large-
scene SAR image, we conduct experiments using a large-scale
ALOS-2 SAR image that includes both inshore and offshore
scenes. This image is not part of the SSDD and RSDD-SAR
datasets, and its specific details can be found in Table IX. The
model weights trained on SSDD are applied to this image, and
the results can be seen in Fig. 14. The performance is satisfactory
for the seaside region, with only one missed detection observed
in the case of multiple small targets. In contrast, the inshore
scenes exhibit a higher number of false and missed detections.
This discrepancy can be attributed to the presence of interfer-
ence, such as artificial facilities in inshore scenes, as well as
the absence of large land scenes on SSDD. This suggests the
necessity of further improving the anti-interference capability
of the proposed method in inshore scenes and its robustness
when applied to other datasets.

IV. DISCUSSION

For deep learning or machine learning models, we not only
require them to fit well with the training dataset, which means
having a small training error, but also hope that they can fit well
with unknown datasets, such as the testing dataset, which means
having strong generalization ability. The effectiveness of gener-
alization ability can be evaluated by examining the occurrence
of model overfitting and underfitting, as illustrated in Fig. 15.
As the number of epochs increases, the training loss gradually
decreases, and the validation loss initially decreases and then
increases. Overfitting and underfitting are two conditions used to
describe the model’s behavior during the training process. Both
conditions adversely impact the neural network’s generalization
ability, with overfitting being the primary concern in current
research.

In the field of ship detection from SAR images, overfitting is a
concern due to the limited number of samples in the ship dataset.
To address this issue, several methods are employed in this study
to prevent overfitting. Specifically, data augmentation is applied
to expand the size of the dataset. This involves preprocessing the
images by applying techniques, such as image rotation, scaling,
and random cropping to generate additional images. In addition,
L2 regularization and dropout regularization are employed to
reduce model complexity.
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Fig. 13. Visualization of the detection results of various methods on RSDD-SAR. (a) Offshore Scene 1. (b) Inshore Scene 1. (c) Inshore Scene 2. (d) Inshore
Scene 3. From top to bottom: ground truth, oriented R-CNN, faster R-CNN (OBB), R3Det, S2A-Net, FCOS (OBB), SAD-Det. The blue boxes indicate the ground
truth, the red boxes indicate true positives, the orange circles indicate false positives, and the light blue circles indicate false negatives.
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Fig. 14. Visualization of the detection results for a large-scene ALOS-2 SAR image. The red boxes indicate true positives, the orange circles indicate false
positives, and the light blue circles indicate false negatives.

The performance of the proposed model is evaluated as fol-
lows. First, increasing the number of epochs leads to a rise
in validation loss and a subsequent decrease in the AP value
if the model is overfitting. Fig. 16 illustrates the relationship
between AP value and epochs for the proposed method in
this study. Fig. 16(a) presents the test results on SSDD, while
Fig. 16(b) shows the test results on RSDD-SAR. It can be
observed that as the number of epochs increases, the values
of AP, AP50, and AP75 initially increase and then stabilize
without decreasing. This indicates that the proposed method is
not affected by overfitting. Furthermore, a hallmark of overfitting

is limited generalization ability. Since the proposed model yields
impressive outcomes across two datasets and a large-scene SAR
image, it can be inferred to a certain extent that the model avoids
overfitting.

Judging from the experimental results, it can be observed
that the trained model did not exhibit signs of overfitting
on the two datasets, thereby confirming the effectiveness of
the proposed method. Furthermore, it is important to explore
lightweight and high-speed techniques for ship detection in
SAR images, as this will be the primary focus of my future
research.
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Fig. 15. Schematic diagram of overfitting and underfitting.

Fig. 16. Relationship between AP and epochs. (a) Results on SSDD.
(b) Results on RSDD-SAR.

V. CONCLUSION

In this article, we propose an anchor-free method based on
transformers and adaptive features for arbitrarily oriented ship
detection in SAR images, namely, SAD-Det. SAD-Det is a
hybrid structure of a transformer and CNN that can detect
rotationally invariant ship targets with high average precision
in SAR images. SAD-Det comprises three main components:
SSP-PVT, AFPN, and DeHead. SSP-PVT is a backbone network
that is based on PVT and combined with SSPM. SSP-PVT can

enhance the long-range dependencies of ships in SAR images
and obtain sufficient context information to improve the de-
tection performance of ships in SAR images. AFPN is a neck
network that is based on FPN and augmented with AWM. The
addition of fusion factors allows different weights to be assigned
to feature layers, thereby enhancing the performance of feature
fusion in ships in SAR images. DeHead is a head network that
utilizes DC to adaptively detect the spatial sampling positions
of the targets and combines residual connections to make the
network more adaptable to the characteristics of ships in SAR
images. The effectiveness of each module in the proposed
method is verified by experiments. Compared with other arbi-
trarily oriented object detection methods, this method achieves
state-of-the-art detection performance. In addition, the inclusion
of specific modules and targeted network designs significantly
increases the computational complexity of the proposed method.
Future research will explore high-speed ship detection methods
for SAR images.
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