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Superpixel Segmentation Based on Anisotropic
Diffusion Model for Object-Oriented Remote

Sensing Image Classification
Xiaoli Li , Jinsong Chen , Longlong Zhao , Hongzhong Li , Jin Wang , Luyi Sun , Shanxin Guo ,

Pan Chen, and Xuemei Zhao

Abstract—Superpixel segmentation is an essential step of object-
oriented remote sensing image classification; the accuracy of the
superpixel segmentation boundary will directly affect the classi-
fication result. Most of the traditional superpixel segmentation
algorithms rely on spectral similarity and spatial connectivity to
construct superpixels. They cannot find the accurate boundary
in the complex scenes, such as the spatial distribution of ground
features being relatively broken, and large differences in the size
and shape, especially long-thin shape and circular shape. Aiming
at this problem, a superpixel segmentation algorithm based on an
anisotropic diffusion model named ADS is proposed and applied
to image classification. The anisotropic diffusion model originated
in thermodynamics has excellent properties in which the diffusion
is continuous and smooth and its diffusion speed depends on the
medium, which provides convenience for smoothing homogeneous
regions and establishing boundary constraints for different ground
objects. With this advantage, the diffusion flux model is established
to consider the influence of boundary factors and used to simulate
the dissimilarity measure with boundary constraints between pixels
and seed points by combining the traditional spectral and spatial
distance. Then, the seed points of superpixel are optimized under
the K-means framework. The effectiveness of the proposed algo-
rithm is tested and verified with different spatial resolutions, such as
Landsat 8 with 30 m, Sentinel-2 with 10 m, and SkySat with 0.5 m. A
large number of experiments show that the proposed algorithm can
better correct the superpixel boundary-fitting deviation problem in
complex scenes and effectively promote the improvement of image
classification accuracy.

Index Terms—Anisotropic diffusion, diffusion flux, remote
sensing image classification, superpixel segmentation.
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I. INTRODUCTION

R EMOTE sensing image interpretation is the key to intelli-
gent Earth observation [1]. With the increase in the spatial

resolution of remote sensing images, the detailed information of
ground features is more abundant. In the meantime, the spatial
distribution of ground features is more complex, the hetero-
geneity is stronger, and the boundaries are more uncertain [2],
[3]. The traditional pixel-based image processing methods are
extremely sensitive to noise, which will cause a “salt and pepper”
phenomenon. To deeply mine the implicative knowledge to
improve the processing effect, numerous new algorithms emerge
endlessly.

In recent years, deep learning methods have occupied an
essential position in the field of image classification [4], such as
fully convolutional networks [5], U-Net [6], [7], SegNet [8], and
DeepLab [9]. They enhance the receptive field of images through
a series of operations, such as convolution and pooling, which
can learn more deep information, such as spatial structure. How-
ever, they are often executed based on the regular grid structure of
images, which is lacking in processing irregular structured data.
Focus on this point, a series of graph neural networks have been
extensively studied. Hong et al. [10] proposed minibatch graph
convolutional networks (GCNs), which can train large-scale
graph networks in a minibatch fashion. It deals with the problems
of computational cost and prediction of out-of-sample data. Ding
et al. [11] proposed multiscale receptive fields graph attention
neural network to learn the local–global spatial context informa-
tion, proposed multiadaptive receptive field-based graph neural
framework to learn multiscale features [12], proposed unsuper-
vised self-correlated learning smoothy enhanced locality pre-
serving graph convolution embedding clustering to pay attention
to the smoothy information and the nonlocal relationship [13],
and proposed GCN with adaptive filters and aggregator fusion to
filter noise and capture spatial node relationships from multiple
adaptive aspects [14]. Although various deep learning methods
have achieved good results, there are still some inevitable prob-
lems, such as high requirements for high-performance comput-
ing power, sample size, and quality, which limits its development
[15]. To reduce computational complexity, superpixel segmen-
tation, as a prestep in image processing, is widely studied [11],
[14], [16].
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The goal of superpixel segmentation is to gather the adjacent
pixels with the same characteristics into subregions in image-
domain space and accurately fit the boundaries of different
ground features. At present, the superpixel segmentation method
can be divided into three types [17], [18], [19], graph-based,
gradient-based, and clustering-based. The graph-based methods
express the image as an undirected graph. The edge weight
connecting two nodes is used to measure the similarity between
two pixels. Then, the image segmentation is equivalent to the
graph partitioning. The representative algorithms are normalized
cuts (NCut) [20], [21] and entropy rate superpixels (ERS) [22].
NCut [20] is an unbiased measure of disassociation between
subgroups of a graph, which improves the original graph-based
algorithms in noise sensitivity. ERS [22] formulates the super-
pixel segmentation problem as an optimization problem on graph
topology based on the entropy rate of a random walk on the
graph. It encourages the generation of superpixels with similar
sizes and can better preserve feature boundaries. The graph-
based methods strictly guarantee connectivity within the super-
pixels. However, most of them are with high model complexity
[23]. The gradient-based methods evolve the active contours
according to the image gradient. The representative algorithms
are TurboPixels [24] and spatial-constrained watershed (SCoW)
[25]. TurboPixels [24] is a geometric-flow-based algorithm; it
evolves contours based on proximity-based boundary velocity
and image-based boundary velocity. TurboPixels can respect
local image boundaries and avoid undersegmentation through
a compactness constraint. SCoW [25] introduces spatial con-
straint in the marker-controlled watershed to obtain compact and
evenly distributed superpixels, which makes a balance between
homogeneity and compactness. The excellent boundary-fitting
characteristic of gradient-based methods is slightly inadequate
in complex scenes because it is more dependent on the gradi-
ent information [26]. The clustering-based methods consider
superpixel segmentation as a clustering problem with image
spatial distance. The representative algorithms are simple linear
iterative clustering (SLIC) [27] and linear spectral clustering
(LSC) [28]. SLIC turns the image from RGB color space to
LAB color space and measures the distance between pixels and
seed points by normalized spatial distance and spectral distance.
LSC maps each pixel to a point inside a high-dimensional space
and achieves segmentation based on weighted K-means. The
clustering-based methods can easily control compactness, and
it is widely studied because of their simple principle and strong
extensibility. A lot of improvement methods are proposed to pro-
mote the superpixel segmentation accuracy from the perspective
of compactness and the goodness of fit [29], [30], [31]. However,
different from natural image, remote sensing image is character-
ized by big data, various targets, complex spatial structure, rich
feature information, and ambiguous boundary [32], [33], [34].
It is difficult to achieve the effective segmentation of various
ground features at the unified scale when the essence of the
model is isotropic. Suppose there are both large circular and
small long-thin shapes ground features in the image. In that
case, superpixels will cross the boundaries of the long-thin area
when it focuses on processing the big circular areas. On the
contrary, when it focuses on processing the long-thin areas, the

number of superpixels will skyrocket, accompanied by a surge
in computational complexity, and then lose the significance of
object-oriented processing [35], [36], [37]. Although multiscale
segmentation is used to deal with the problem of excessive super-
pixels, it will add additional new issues, such as the impact of the
correctness of the merging criteria on the segmentation results.
Thus, exploring flexible and anisotropic superpixel construction
methods at fixed scales remains an important issue.

The classical anisotropic model is Perona–Malik (P-M). It
originated in thermodynamics and developed in the image-
filtering field [38]. The excellent properties of P-M in directional
diffusion have been proven to have a protective effect on the
boundaries between ground features [39], [40]. Therefore, it has
also been attempted to be introduced into the image segmen-
tation field. However, most of them obtain global segmentation
results by first P-M filtering and then combining the existing
segmentation methods. The details are easily lost in superpixel
construction [41], [42], [43]. P-M is also used for postprocessing
of existing superpixels to achieve image segmentation, where
the boundary is a known parameter [44], [45]. In the current
approach, the advantages of P-Ms boundary protection have
not been fully reflected. To introduce the excellent properties
of boundary protection into the superpixel segmentation field
to automatically explore boundaries, the anisotropic diffusion
model is incorporated into clustering-based methods, and the
superpixel segmentation algorithm based on the anisotropic
diffusion model named ADS is proposed in this article.

First, the initial seed points are regularly distributed in the
image domain and then moved to the lowest position of the
gradient in the neighborhood to avoid being at the boundary.
Next, assuming that the seed points are the concentration emitter,
the concentration is anisotropically diffused from the seed point
to any point in space according to the concentration gradient
and spectral gradient. The concentration gradient controls the
diffusion direction, and the spectral gradient controls the dif-
fusion speed. The diffusion speed modeled by the monotone-
decreasing function of the spectral gradient will reach a mini-
mum value greater than zero at the boundary between ground
features, which is conducive to exploring the boundaries. To
accurately describe the relationship between pixels and seed
points, the diffusion flux, the spatial distance, and the spec-
tral distance are united to model the dissimilarity that is with
boundary constraints. Then, the superpixels are obtained under
the K-means frame. Finally, to strictly limit the spatial continuity
within the superpixel, a neighborhood block proximity criterion
is designed to eliminate the isolated pixels and small blocks.

The main contributions of this article are summarized as
follows.

1) A new dissimilarity measure is established by the proposed
diffusion flux model, which can describe the degree of
dissimilarity between pixels and seed points in a spa-
tially anisotropic way and achieve the goal of automat-
ically exploring the boundaries of objects in superpixel
segmentation

2) The proposed superpixel segmentation algorithm im-
proves the dependence problem of superpixel segmen-
tation on scale parameters under fixed scale conditions,



LI et al.: SUPERPIXEL SEGMENTATION BASED ON ANISOTROPIC DIFFUSION MODEL FOR OBJECT-ORIENTED REMOTE SENSING IMAGE 7623

making it more flexible to achieve the effective segmen-
tation of different types of complex scenes.

The rest of this article is organized as follows. In Section II, the
classical anisotropic diffusion model, P-M model, is reviewed.
In Section III, the main idea and each component of the pro-
posed algorithm are described, including the proposed diffusion
flux model and the dissimilarity measure model with boundary
constraints. In Section IV, the performance of the proposed
algorithm is examined by superpixel segmentation and image
classification experiments based on three spatial resolutions,
such as Landsat 8 with 30 m, Sentinel-2 with 10 m, and SkySat
with 0.5 m. Section V discusses the performance of the proposed
method. Finally, Section VI concludes this article.

II. RELATED WORK

The main idea of the diffusion model is originated from
thermal conduction in the physical process. Thermal conduction
describes the change of temperature with time. The change is
mainly affected by temperature differences and medium.

Assuming that the image is expressed as I(x,y) = {Ii(xi,
yi) : i = 1, . . . , n}, where Ii is the multichannel spectral char-
acteristics of pixel i, (xi, yi) is the position coordinates of pixel
i, (x,y) is the set of (xi, yi), and n is the number of pixels in
the image domain Ω. The heat equation applied to the image
filtering can be expressed as follows:⎧⎨

⎩
∂I(x,y,t)

∂t = div(∇I(x,y, t)) = ΔI(x,y, t),
t ≥ 0, (x,y) ∈ Ω

I(x,y, t)|t=0 = I0(x,y)

(1)

where t represents the time, div(·) is the divergence operator,
� is the gradient operator, Δ is the Laplace operator, and I0

is the original image at the initial time. The solution of (1) is
the filtering result, and it is equivalent to the image convolution
based on different scale Gaussian filters [46]

I(x,y, t) = Gt
σ ∗ I(x,y, 0) ⇔ I(x,y, t) = Gt

σ ∗ I0(x,y)
(2)

where ∗ is the convolution operator, and σ =
√
2t, Gt

σ is the
Gaussian distribution at t time with 0 as the mean and σ2 as the
variance.

According to (1) and (2), it shows that the traditional thermal
equation applied to image filtering is an isotropic model. The
pixels with the same spatial distance are considered to have the
same smoothing effect, which can cause the boundary to be
excessively smoothed and fuzzy.

To protect the boundary during filtering, P-M extended the
linear thermal equation to the nonlinear thermal equation and
proposed the famous anisotropic diffusion model, P-M model
[47], [48]⎧⎨

⎩
∂I(x,y,t)

∂t = div(c(|∇I(x,y, t)|)∇I(x,y, t)),
t ≥ 0, (x,y) ∈ Ω

I(x,y, t)|t=0 = I0(x,y)

(3)

where | · | denotes the magnitude. c(·) is the diffusion coefficient
used to control the diffusion speed. It expects that the diffusion
speed will be larger in the smooth area and smaller in the
steep site. There are two commonly used diffusion coefficients

Fig. 1. Diffusion function.

[38], [49]

c1(|∇I(x,y, t)|) = 1

1 +
(

|∇I(x,y,t)|
δ

)2 (4)

c2(|∇I(x,y, t)|) = exp

[
−
( |∇I(x,y, t)|

δ

)2
]

(5)

where δ is the threshold of the gradient.
The curves of the diffusion coefficient under the assumption

that the gradient range is 0–100 are shown in Fig. 1. It shows that
the smaller the threshold, the faster the coefficient decreases. At
the same threshold, c1 changes more slowly than c2. Generally,
there is a high gradient at the boundary. When the gradient is far
greater than the threshold, the pixel is smoothed with a minimal
speed. Thus, the boundary can be protected.

P-M also gave the approximate solution of the discrete form
of (3)

I(x,y, t+ 1) = I(x,y, t)

+ λ
∑
f

[
cf (|∇fI(x,y, t)|) · ∇fI(x,y, t)

]
(6)

where λ is the coefficient controlling the stable numerical solu-
tion, 0 <

= λ <
= 1/|f |, f is the direction index, and |f | represents

the number of directions. Assuming that there are four direc-
tions, f = {(s, p) : (s, p) ∈ {(0,+1), (−1, 0), (0,−1), (+1,
0)}}. Then, ∇fI(x,y, t) = I(x+ s,y + p, t)− I(x,y, t),
its details are as follows:

∇f1I(x,y, t) = I(x,y + 1, t)− I(x,y, t)

∇f2I(x,y, t) = I(x− 1,y, t)− I(x,y, t)

∇f3I(x,y, t) = I(x,y − 1, t)− I(x,y, t)

∇f4I(x,y, t) = I(x+ 1,y, t)− I(x,y, t). (7)

If |f |=8, f={(s, p) : (s, p) ∈ {(0,+1), (−1,+1), (−1, 0),
(−1,−1), (0,−1), (+1,−1), (+1, 0), (+1,+1)}}. The rela-
tion of index and direction is shown in Fig. 2.

III. METHODOLOGY

In this section, the proposed superpixel segmentation al-
gorithm based on anisotropic diffusion model called ADS is
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Fig. 2. Direction index. (a) |f | = 4. (b) |f | = 8.

illustrated. It changes the traditional idea of using the anisotropic
diffusion model to filter the image first and then perform the
segmentation but integrates it into the clustering process by the
proposed diffusion flux model. Details are as follows.

A. Diffusion Flux

The anisotropic diffusion model applied to image filtering
only establishes the relationship between adjacent points. In
order to extend it from point to plane to describe the relationship
between any pixels in the image domain and seed points, the
concept of diffusion flux is proposed. Assuming that the seed
points are concentration emitters, the concentration gathers at
the seed points at the initial moment and diffuses to any pixels
over time. The cumulative value of the diffusion amount of
continuous diffusion over some time is the diffusion flux.

Given a set of seed points S = {Sj(aj , bj) : j = 1, . . . ,m},
where Sj is the multichannel spectral characteristics of
seed point j, (aj , bj) is the position coordinates of seed
point j, and m is the number of seed points. For the dif-
fusion flux UJ (x,y) = {U j(xi, yi) : i = 1, . . . , n}, if and
only if (xi, yi) = (aj , bj), U j(xi, yi, t = 0) = 1; otherwise,
U j(xi, yi, t = 0) = 0, where j is the dimension index of dif-
fusion flux matrix, and J is the set of j. To accurately describe
the diffusion process, the diffusion distance and direction are
introduced into the diffusion flux model. As time goes by, the flux
at any point in the image domain can be expressed as follows:

UJ(x,y, t+ 1) = UJ(x,y, t)

+ λ
∑
f

[
1

R
· cf (|∇fI(x,y, t)|)

·∇fUJ (x,y, t) ·Ψ[∇fUJ(x,y, t)]

]
(8)

where R is the diffusion distance, R = 1 when (s, p) ∈ {(0,
+1), (−1, 0), (0,−1), (+1, 0)}, and R =

√
2 when (s, p) ∈

{(−1,+1), (−1,−1), (+1,−1), (+1,+1)}, the diffusion coef-
ficient c is inherited from the image spectral field. The diffusion
speed depends on the gradient threshold. According to the
practice, the gradient image follows the Gamma distribution.
It means that the big gradient occupies a small part of the
image and it is probably the boundary gradient. If the sum
of frequency exceeds the histogram threshold, its correspond-
ing gradient value can be regarded as the gradient threshold.

∇fUJ (x,y, t) is the concentration gradient modeled by (7),
and Ψ[∇fUJ(x,y, t)] is the indicator function and it is used to
control the diffusion directions. If and only if ∇fUJ(x,y, t) >
0,Ψ[∇fUJ(x,y, t)] = 1; otherwise, Ψ[∇fUJ(x,y, t)] = 0.

Fig. 3 shows the concentration diffusion process with diffu-
sion coefficient c1 and |f | = 8, where Fig. 3(a) shows the index
of pixel site, (b) is the gray value of pixels, (c) is the diffusion
flux at the initial time (i.e., t = 0) by assuming f as the seed
point, (d) is the diffusion state at t = 0; (e) is the diffusion
result (i.e., diffusion flux at t = 1), (f) is the diffusion state
of the representative pixel b at t = 1, which is close to the
seed point but have significant difference in grays, (g) is the
diffusion state of the representative pixel l at t = 1, which is
far from the seed point but have similar gray, (h) is the second
diffusion result (i.e., diffusion flux at t = 2), (i) is the diffusion
flux at t = 10, and (j) is the diffusion flux at t = 40. The
detailed calculation process is shown in Appendix A. The circles
represent the pixels, and the red one is the seed point. The number
within circles in Fig. 3(c)–(j) represents the concentration, the
darker the color, the higher the concentration. The black arrow
represents diffusing direction. c is the diffusion coefficient. R is
the diffusion distance. It shows that the pixel with a different
gray from the seed point, even if the spatial distance is short, its
concentration diffusion is still well suppressed, is shown in pixel
b in Fig. 3. The pixel with a similar gray from the seed point,
even if the spatial distance is far, its concentration diffusion is
still well protected, is shown in pixel l in Fig. 3. After several
rounds of diffusion, the concentration of pixels belonging to the
same class as the seed point will quickly approach 0.99, which
is significantly separated from another class of 0.5, as shown in
Fig. 3(j). Fig. 3 effectively illustrates the anisotropy of diffusion
flux.

Fig. 4 shows the difference between isotropic diffusion and
anisotropic diffusion under the unified scale, where Fig. 4(a1)–
(c1) represents the isotropic diffusion; Fig. 4(a2)–(c2) represents
the anisotropic diffusion, Fig. 4(a1) and (a2) are the surface plots
of diffusion flux, Fig. 4(b1) and (b2) are the vertical views of
diffusion flux, and Fig. 4(c1) and (c2) are the composites of flux
contour and image. It can be seen that isotropic diffusion has
the same diffusion effect for different types of ground features
under the unified scale. Thus, it must adjust the scale parameters
to adapt to different ground features. Anisotropic diffusion can
control the diffusion direction and amount according to the
image characteristics. It is beneficial to adapt to different types
of ground features. The advantage of anisotropic diffusion is
that it can help the algorithm to segment the ground features
in complex scenes, such as the large difference in scale, shape,
area, and texture complexity, especially narrow ground features,
as shown in the tennis court and road in Fig. 4(c1) and (c2).

B. Superpixel Segmentation

In superpixel segmentation based on clustering, the dissimi-
larity measure plays an important role. In past studies, the spatial
distance is introduced into the spectral distance to improve the
spatial continuity of superpixel and overcome noises. However,
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Fig. 3. Concentration diffusion process with diffusion coefficient c1. (a) Index of pixel site. (b) Gray value of pixels. (c) Diffusion flux at the initial time (i.e., t
= 0) by assuming f as the seed point. (d) Diffusion state at t = 0. (e) Diffusion result (i.e., diffusion flux at t = 1). (f) Diffusion state of the representative pixel b
at t = 1, which is close to the seed point but have significant difference in gray. (g) Diffusion state of the representative pixel l at t = 1, which is far from the seed
point but have a similar gray. (h) Second diffusion result (i.e., diffusion flux at t = 2). (i) Diffusion flux at t = 10. (j) Diffusion flux at t = 40.

Fig. 4. Difference between isotropic diffusion and anisotropic diffusion under
the unified scale. (a1)–(c1) Surface plot, vertical view, and the composite
image of flux contour and image, under isotropic diffusion. (a2)–(c2) Surface
plot, vertical view, and the composite image of flux contour and image, under
anisotropic diffusion.

there are also many problems. For example, it is difficult to
control the degree and cannot well fit the boundaries when there
are many complex ground features. To deal with this problem,
the diffusion flux generated based on the anisotropic diffusion
model is introduced to describe the dissimilarity between any
pixel i and seed point j

Dij =

√√√√( dSpatial
ij

NSpatial

)2

+

(
dSpectral
ij

NSpectral

)2

+

(
1− dFlux

ij

NFlux

)2

(9)

where dSpatial
ij and dSpectral

ij are the spatial distance and spectral
distance between pixel i and seed point j, respectively. dFlux

ij

is the diffusion flux of pixel i diffused from seed point j.

NSpatial, Nspectral, NFlux are the corresponding normalized param-
eters

dSpatial
ij =

√
(xi − aj)

2 + (yi − bj)
2 (10)

dSpectral
ij = ‖Ii − Sj‖2 (11)

dFlux
ij = U j (xi, yi, T ) (12)

where T is the final moment and satisfied T > 2NSpatial.
To obtain the optimal segmentation result, a process about

optimization seed points is carried out by K-means framework.
First, the initialized seed points are sited at the center of the
uniform grid with NSpatial ×NSpatial size. Move each seed point
to the position with the lowest gradient in the 3 × 3 window to
avoid falling on the boundary or making noise. Then, the pixels
are divided into the superpixel j by dissimilarity Dij minimizing
criteria. Updating the superpixel center Sj(aj , bj) until the
superpixel center set S is convergent or the iteration reaches
the maximum. Finally, eliminate the isolated pixels according
to the mode of neighborhood labels to enhance the connectivity
within superpixels.

C. Summary of the Proposed Algorithm

The proposed algorithm, a superpixel segmentation algorithm
based on anisotropic diffusion model (ADS), is summarized
in Algorithm 1, where the diffusion flux calculating method is
summarized in Algorithm 2.

IV. EXPERIMENTS

A. Experimental Data

The research area is located in Dapeng New District, Shen-
zhen. There are two tested regions, where region 1 is used
to evaluate the effectiveness of algorithms in mid–low spatial
resolution images, and the smaller region 2 is used for high
spatial resolution images because of the consideration of the big
data characteristics. As shown in Fig. 5, where Fig. 5(a) shows
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Algorithm 1: ADS.
Input: Remote sensing image I, the normalized

parameters NSpatial, Nspectral, NFlux, histogram
threshold η, convergence threshold θ, iteration
index τ = 0, maximum iterations M.

Output: Superpixel label L, number of superpixels m.
Initializing the seed points
S = {Sj(aj , bj) : j = 1, . . . ,m}.

Moving each seed point to the position with the lowest
gradient in 3 × 3 window.

Repeat
for each seed point Sj(aj , bj) do
Calculating the spatial distance dSpatial

ij .

Calculating the spectral distance dSpectral
ij .

Calculating the diffusion flux dFlux
ij by Algorithm 2.

Calculating the dissimilarity Dij between any pixel i and
seed point j.

end
The superpixel label Li = argmin(Dij).
Updating the seed points according to K-means.
Until max |Sτ − Sτ−1| < θ or τ > M
Eliminating the isolated pixels.
Return The final superpixel label L and the number of
superpixels m.

Algorithm 2: Diffusion Flux.
Input: Remote sensing image I, the seed points S,

uniform grid size NSpatial, histogram threshold η
Output: The diffusion flux dFlux

ij

Generating the flux image U j(xi, yi, t = 0) at the initial
time according to the seed points S,

Calculating the spectrum gradient image �fI(x, y, t).
Adaptively determining the gradient threshold δ at each
direction by the histogram threshold η

Calculating the diffusion coefficient by c1 or c2
Repeat
Updating the flux image U j(xi, yi, t) over time
Until t > 2×NSpatial

Return The diffusion flux dFlux
ij , i.e., U j(xi, yi, T ).

the location of research regions in Dapeng, Fig. 5(b) shows the
30 m resolution data with R, G, and B, NIR bands, and 298× 204
size clipped from Landsat 8. Fig. 5(c) shows the 10 m resolution
data with R, G, and B, NIR bands, and 869 × 576 size clipped
from Sentinel-2, and Fig. 5(d) shows the 0.5 m resolution data
with R, G, and B, NIR bands, and 1284× 1288 size clipped from
SkySat. All images are taken in 2021. Fig. 6 shows the ground
truth of them. There are six classes, namely forest, artificial,
water, farmland, bare land, and grass.

B. Quantitative Evaluation Index

To quantitatively assess the effectiveness of the proposed
method, the boundary recall (Recall), undersegmentation
error (UE), explained variation (EV), compactness (CO), and

Fig. 5. Research area. (a) Location of research regions in Dapeng. (b) Research
region 1 from Landsat 8 image with 30 m spatial resolution. (c) Research region
1 from Sentinel-2 image with 10 m spatial resolution. (d) Research region 2
from SkySat image with 0.5 m spatial resolution.

Fig. 6. Ground truth. (a) Landsat 8. (b) Sentinel-2. (c) SkySat.

achievable segmentation accuracy (ASA) are used to evaluate
the boundary adherence, compactness, and quality of super-
pixels; the overall accuracy (OA) and Kappa (Ka) are used to
evaluate the accuracy of the classification result. Let L = {Lj :
j = 1, . . . ,m}, G = {Gl : l = 1, . . . , k}, C = {Cl : l = 1,
. . . , k} be the superpixel segmentation result, ground truth, and
classification result of the image I, respectively, l is the index
of class, and k is the number of classes. Then, the quantitative
evaluation index can be calculated as follows.

1) Boundary Recall (Recall): Recall is the fraction of all
boundary pixels within the ground truth segmentation G,
which are correctly detected within the superpixel. The
higher the Recall is, the better

Rec(G,L) =
TP(G,L)

TP(G,L) + FN(G,L)
(13)

where TP(G, L) and FN(G, L) are the number of true
positive and false negative boundary pixels in L with
respect to G.

2) Undersegmentation Error (UE): UE describes the leak-
age of superpixel with respect to a specific ground truth
segment. The lower the UE is, the better. To facilitate
comparison, 1-UE is used in the experimental part. The
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Fig. 7. Superpixel segmentation results of Landsat 8, (a) NCut, (b) ERS, (c) TurboPixels, (d) SCoW, (e) SLIC, (f) LSC, (g) proposed algorithm based on c1
diffusion coefficient, and (h) proposed algorithm based on c2 diffusion coefficient.

higher the 1-UE is, the better

UE(G,L) =
1

n

∑
Gl

∑
Lj∩Gl 
=0

min{|Lj ∩Gl|, |Lj −Gl|}.

(14)
3) Explained Variation (EV): EV quantifies the quality of

a superpixel segmentation based on image rather than
ground truth. It can assess boundary adherence indepen-
dent of human annotations. The higher the EV is, the better

EV(L) =

∑m
j=1 |Lj | ‖µ(Lj)− µ(I)‖22∑n

i=1 ‖Ii − µ(I)‖22
(15)

where μ(Lj) and μ(I) are the mean of superpixel Lj and
the image I, and | . | is a symbol for counting.

4) Compactness (CO): CO is used to evaluate the compact-
ness of superpixels. The higher the CO is, the better

CO(G,L) =
1

n

m∑
j=1

|Lj |4πA(Lj)

P (Lj)
2 (16)

where A(Lj) and P(Lj) are the area and perimeter of
superpixel Lj, respectively.

5) Achievable Segmentation Accuracy (ASA): ASA is the
achievable accuracy for segmentation using superpixels
as a preprocessing step. The higher the ASA is, the better

ASA(G,L) =
1

n

∑
Lj

max
Gl

{|Lj ∩Gl|}. (17)

6) Overall Accuracy (OA): OA is the ratio of correctly clas-
sified pixels to the total number of pixels. The higher the
OA is, the better

OA(G,C) =
1

n

k∑
l=1

Nll (18)

where Nll is the number of pixels that simultaneously
belongs to l in both classification result and ground truth.

7) Kappa (Ka): Ka is a coefficient describing the proportion
of error reduction compared with random segmentation
results. The higher the Kappa is, the better

Ka =
n
∑k

l=1 Nll −
∑k

l=1 Nl+N+l

n2 −∑k
l=1 Nl+N+l

(19)

where Nl+ is the number of pixels in class l in the ground
truth, and N+l is the number of pixels in class l in the
classification result.

C. Superpixel Effectiveness Analysis

The number of superpixels is the main factor affecting the
segmentation accuracy and time efficiency, which is usually
given by human experience. To avoid the impact of fluctuation of
superpixels number on algorithm evaluation, the unified number
for different algorithms is determined to be the smaller value
corresponding to the accuracy convergence. For the Landsat 8
image, m = 700. For the Sentinel-2 image, m = 3000. For the
SkySat image, m = 4000.

1) Landsat 8: Fig. 7 shows the superpixel segmentation
result of Landsat 8, where Fig. 7(a)–(h) shows Ncut, ERS,
TurboPixels, SCoW, SLIC, LSC, and the proposed algorithm
ADS with diffusion coefficients c1 and c2, respectively. It can
be seen that the shape of superpixels based on NCut is crescent
shaped, and the boundaries between superpixels are extremely
smooth. ERS is with different shapes and sizes, and the bound-
ary is zigzag. The shape of TurboPixels, SCoW, and LSC is
almost regular hexagons, and they are in high compactness.
SLIC improves the boundary applicability. But it is still strictly
limited by compactness. Compared with the above algorithms,
the proposed one can have high compactness in the homoge-
neous region and targeted fit various shapes in the heterogeneous
region without compactness limitation because of the boundary
constraint established by the anisotropic diffusion model, as
shown in Fig. 7(g) and (h).
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Fig. 8. Superpixel overlay images of Landsat 8, (a) NCut, (b) ERS, (c) TurboPixels, (d) SCoW, (e) SLIC, (f) LSC, (g) proposed algorithm based on c1 diffusion
coefficient, and (h) proposed algorithm based on c2 diffusion coefficient.

Fig. 9. Superpixel overlay images of Sentinel-2, (a) NCut, (b) ERS, (c) TurboPixels, (d) SCoW, (e) SLIC, (f) LSC, (g) proposed algorithm based on c1 diffusion
coefficient, and (h) proposed algorithm based on c2 diffusion coefficient.

Fig. 8 shows the corresponding superpixel overlay image of
Landsat 8. The yellow area is the enlarged view. It shows that
NCut, TurboPixels, and SCoW cannot fit the narrow object, such
as the bare land around the reservoir and the road mixed in the
forest, as shown in the arrow of Fig. 8(a), (c), and (d). Although
SLIC and LSC have improved performance in the reservoir, they
also cannot distinguish different objects with similar colors, such
as the road, as shown in Fig. 8(e) and (f). ERS and the proposed
algorithm based on both c1 and c2 show better results, and
coefficients c1 and c2 have a similar performance. In addition,
the proposed algorithm can pertinently segment complex areas.

2) Sentinel-2: Fig. 9 shows the superpixel overlay image of
Sentinel-2. It shows that NCut and TurboPixels cannot segment
the water that is with obvious edges, such as the black object in
enlarged view, as shown in Fig. 9(a) and (c). In addition, although
other comparing algorithms effectively segment the water body,
they are difficult to distinguish the tidal flat of reservoir to a
certain extent, as shown in Fig. 9(b) and (d)–(f). The proposed
algorithm has good ability to distinguish narrow ground objects

in images with large-scale differences and broken scenes, as
shown in the tidal flat in Fig. 9(g) and (h).

3) SkySat: To verify the performance of the proposed method
in high-resolution remote sensing images, the SkySat data are
also tested. The superpixel overlay images are shown in Fig. 10.
With the increase of the spatial resolution, the number of pix-
els increases dramatically, which helps to improve the overall
performance of the superpixels segmentation algorithms. But,
there are still some thin and narrow objects that cannot be well
segmented. Such as the boundaries with similar spectra shown
by the arrow. NCut and Turbopixles usually cannot explore the
boundaries, as shown in Fig. 10(a) and (c). The effect of SCoW
is equivalent to SLIC, and they are in the second echelon, as
shown in Fig. 10(d) and (e). ERS is slightly inferior to LSC and
the proposed algorithm.

4) Accuracy Analysis of Superpixel: To quantitatively eval-
uate the effectiveness of the proposed superpixel segmentation
algorithm, the superpixel evaluation index: Recall, UE, EV,
CO, and ASA of different images and algorithms are drawn in
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Fig. 10. Superpixel overlay images of SkySat, (a) NCut, (b) ERS, (c) TurboPixels, (d) SCoW, (e) SLIC, (f) LSC, (g) proposed algorithm based on c1 diffusion
coefficient, (h) and proposed algorithm based on c2 diffusion coefficient.

TABLE I
SUPERPIXEL ACCURACIES

Fig. 11(a1)–(c1), (a2)–(c2), (a3)–(c3), (a4)–(c4), and (a5)–(c5),
respectively. To facilitate observation, the UE index is drawn by
1-UE. Then, all indices shown in the figures take maximization
as the standard. The corresponding accuracy value is listed in
Table I. For the commonly used indices: Recall and UE, from
the perspective of superpixels algorithms, the accuracies of ERS,
SLIC, and LSC are with big fluctuation ranges, and others are
relatively convergent. TurboPixels has the worse Recall and
1-UE, followed by NCut and SCow. The proposed algorithm
based on c1 and c2 can be stable in high accuracy whether Recall
or 1-UE. From the perspective of different spatial resolutions,
Recall decreases with the increase of resolution, and the 1-UE
is reversed. It shows that there are more fine boundaries in high-
resolution images. Except for ERS and the proposed algorithm,
the accuracy of other algorithms has been polarized in the SkySat
image. For example, the Recalls of TurboPixels, SCoW, SLIC,
and LSC are only around 0.7, but 1-UEs are as high as 0.95,

as shown in Table I. For the index EV, evaluating superpixel
segmentation results from the perspective of images can have
very high accuracy, such as 0.99. For the index CO, it indicates
the degree of circularity of superpixels. ERS and the proposed
algorithm have lower CO, and it indirectly demonstrates that the
proposed method can achieve flexible segmentation of ground
objects in an anisotropic manner without circular constraint. For
the index ASA, the trend of differences between algorithms
is the same as recall and UE. To sum up, the proposed one
can better explore complex boundaries and improves superpixel
segmentation accuracy.

D. Influence of Superpixels on Classification

Considering the issue of sample size for images with differ-
ent resolutions, random forests are selected for discussing the
influence of superpixels on classification. The spectral, texture,
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Fig. 11. Quantitative evaluation boxplot of the superpixel segmentation results of Landsat 8, Sentinel-2, and SkySat. (a1)–(c1) Recall, (a2)–(c2) 1-UE, (a3)–(c3)
EV, (a4)–(c4) CO, and (a5)–(c5) ASA. (a1) Landsat 8. (b1) Sentinel-2. (c1) SkySat. (a2) Landsat 8. (b2) Sentinel-2. (c2) SkySat. (a3) Landsat 8. (b3) Sentinel-2.
(c3) SkySat. (a4) Landsat 8. (b4) Sentinel-2. (c4) SkySat. (a5) Landsat 8. (b5) Sentinel-2. (c5) SkySat.

vegetation index, and water index characteristics of superpixels
are input into the classifier. Take the ground truth images as
sample sets, where 70% of them are used for training and 30%
for testing.

1) Landsat 8: Fig. 12 shows the corresponding classification
result of Landsat 8, where Fig. 12(a)–(h) shows NCut, ERS,
TurboPixels, SCoW, SLIC, LSC, and the proposed algorithm
with c1 and c2. The enlarged area of the arrow is shown in

Fig. 13, where Fig. 13(a1) and (a2) shows the ground truth, and
Fig. 13(b1) and (b2)–(i1) and (i2) shows the comparing and pro-
posed algorithms. It can be seen that a lot of detail information
is ignored in NCut; the refined boundary and the object with a
smaller area are not classified, as shown in Fig. 13(b1) and (b2).
TurboPixels, SCoW, and LSC present obvious convex structures,
such as the boundary between different objects, as shown in
Fig. 12(c), (d), and (f), which leads to the misclassification in



LI et al.: SUPERPIXEL SEGMENTATION BASED ON ANISOTROPIC DIFFUSION MODEL FOR OBJECT-ORIENTED REMOTE SENSING IMAGE 7631

Fig. 12. Classification results of Landsat 8, (a) NCut, (b) ERS, (c) TurboPixels, (d) SCoW, (e) SLIC, (f) LSC, (g) proposed algorithm based on c1 diffusion
coefficient, and (h) proposed algorithm based on c2 diffusion coefficient.

Fig. 13. Difference between classification results and ground truth of Landsat 8, (a1) and (a2) ground truth, (b1) and (b2) NCut, (c1) and (c2) ERS, (d1) and (d2)
TurboPixels, (e1) and (e2) SCoW, (f1) and (f2) SLIC, (g1) and (g2) LSC, (h1) and (h2) proposed algorithm based on c1 diffusion coefficient, and (i1) and (i2)
proposed algorithm based on c2 diffusion coefficient.

the narrow area, as shown in Fig. 13(d1), (e1), and (g1) and (d2),
(e2), and (g2); SLIC is obviously improved compared with the
previous algorithm but still inferior to ERS and the proposed
algorithm. In addition, the proposed algorithm is more stable
and adaptable.

2) Sentinel-2: Fig. 14 shows the classification result of
Sentinel-2. The enlarged area of the arrow is shown in Fig. 15.
Compared with the Landsat 8 classification result, some detailed
information can be easily classified because of the increased
pixel number, such as the road. The segmentation effect of Tur-
boPixels, SCoW, SLIC, and LSC significantly improved, except
for NCut. But there are still many misclassified pixels. ERS,
the same as the proposed algorithm visually, has a satisfactory
classification result. As a whole, the proposed algorithm is closer
to the ground truth, as shown in Fig. 15(h1) and (i1), and (h2)
and (i2).

3) SkySat: Fig. 16 shows the classification result of SkySat.
The enlarged area of the arrow is shown in Fig. 17. Compared
with mid–low resolution remote sensing images, the misclassi-
fication pixels are greatly reduced, and the error mainly occurs

in narrow areas and borders. As shown in Fig. 17(b1) and (b2),
NCut is undersegmentation. As shown in Fig. 17(e1) and (f1),
SCoW and SLIC did not find some parts of the bare land, which
is affected by inaccurate superpixel boundary. As shown in
Fig. 17(c2), (d2), and (g2), there are some misclassifications
between water and grass in ERS, TurboPixels, and LSC. The
proposed algorithm is more similar to the ground truth, as shown
in Fig. 17(h1) and (h2), and (i1) and (i2).

4) Accuracy Analysis of Classification: To quantitatively
evaluate the influence of superpixels on classification, the clas-
sification evaluation indices OA and Ka of different images and
algorithms are drawn in Fig. 18(a1)–(c1) and (a2)–(c2), respec-
tively. The corresponding accuracy value is listed in Table II.
It can be seen that the trend of OA and Ka is the same as the
Recall and UE of the superpixel segmentation algorithm, and the
proposed algorithm is still in the lead, followed by ERS, LSC,
and SLIC, because the boundary-fitting accuracy can directly
affect the internal characteristics of superpixel and then affect
the judgment in the classification process. With the improvement
of spatial resolution, the OA shows an overall growth trend.
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Fig. 14. Classification results of Sentinel-2, (a) NCut, (b) ERS, (c) TurboPixels, (d) SCoW, (e) SLIC, (f) LSC, (g) proposed algorithm based on c1 diffusion
coefficient, and (h) proposed algorithm based on c2 diffusion coefficient.

Fig. 15. Difference between classification results and ground truth of Sentinel-2, (a1) and (a2) ground truth, (b1) and (b2) NCut, (c1) and (c2) ERS, (d1) and
(d2) TurboPixels, (e1) and (e2) SCoW, (f1) and (f2) SLIC, (g1) and (g2) LSC, (h1) and (h2) proposed algorithm based on c1 diffusion coefficient, and (i1) and (i2)
proposed algorithm based on c2 diffusion coefficient.

TABLE II
CLASSIFICATION ACCURACIES

Compared with Landsat 8 image, Sentinel-2 images have a
higher spatial resolution, and some detailed information ex-
pected to be distinguished is highlighted. However, its spatial
resolution is not as sufficient as the SkySat image to distinguish
ground objects. Thus, the image complexity of Sentinel-2 is
relatively high. Affected by image complexity, Ka of Sentinel-2
is lower than others. But the Ka of the proposed algorithm is less
affected and still maintains the highest value. For example, SLIC
is reduced from 0.9 to 0.84, while the proposed algorithm is only
reduced from 0.9 to 0.89, almost unchanged. The effectiveness
of the proposed method is further verified.

V. DISCUSSION

A. Ablation Study

To verify the effectiveness of boundary constraint terms in the
proposed dissimilarity measure, an ablation study is performed.
The ablated part is the third term of (9). Table III presents
a comparison of the accuracy of the ablation experiment and
the proposed method. It shows that the difference in Recall is
relatively clear, and the boundary constraint term can increase
accuracy by 7%. The increased CO accuracy after ablation
also indicates the validity of boundary terms, i.e., anisotropic
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Fig. 16. Classification results of SkySat, (a) Ncut, (b) ERS, (c) TurboPixels, (d) SCoW, (e) SLIC, (f) LSC, (g) proposed algorithm based on c1 diffusion coefficient,
and (h) proposed algorithm based on c2 diffusion coefficient.

Fig. 17. Difference between classification results and ground truth of SkySat, (a1) and (a2) ground truth, (b1) and (b2) NCut, (c1) and (c2) ERS, (d1) and (d2)
TurboPixels, (e1) and (e2) SCoW, (f1) and (f2) SLIC, (g1) and (g2) LSC, (h1) and (h2) proposed algorithm based on c1 diffusion coefficient, and (i1) and (i2)
proposed algorithm based on c2 diffusion coefficient.

segmentation rather than isotropic segmentation. For the OA,
there is also a certain loss of accuracy after ablation.

B. Parameter Sensitivity Analysis

To discuss the influence of parameters on model performance,
the changes of OA with parameters are plotted in Fig. 19. The
three columns represent the result of Landsat 8, Sentinel-2,
and SkySat images. The four rows represent the characteristic
normalization parameters NSpatial, NSpectral, NFlux, and his-
togram threshold η. It shows that the OA decreases as NSpatial

and NSpectral increase and increases as NFlux and η increase.
The OA can converge to a certain range with the change of
parameters. With the improvement of the spatial resolution, the
starting points of OA become larger, and the change degree of
the curve is becoming more and more gentle. In addition, the
proposed algorithm based on the c2 coefficient model generally

shows better performance than c1 because the rapidly decreasing
diffusion curve makes the diffusion speed stop at the boundary
area faster.

The number of superpixels is a significant factor in object-
oriented image processing. Too few superpixels can lead to
severe undersegmentation, while too many superpixels can lead
to computational redundancy and a long time. Fig. 20 shows
the classification results with different numbers of superpixels
by taking Landsat 8 image and c1 coefficient as an example.
It shows that the proposed algorithm satisfies the objective law
that as the number of superpixels increases, the details can be
segmented better, and the accuracy of classification will also
be higher. When the number of superpixels reaches 600, it
can already achieve excellent classification results, as shown
in Fig. 20(e). In addition, the proposed algorithm can achieve
relatively good classification with fewer superpixels, as shown in
Fig. 20(a). It indicates that the proposed algorithm can reduce the
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Fig. 18. Quantitative evaluation boxplot of classification results. (a1)–(c1) OA of Landsat 8, Sentinel-2, and SkySat. (a2)–(c2) Ka of Landsat 8, Sentinel-2, and
SkySat. (a1) Landsat 8. (b1) Sentinel-2. (c1) SkySat. (a2) Landsat 8. (b2) Sentinel-2. (c2) SkySat.

TABLE III
ACCURACY ANALYSIS OF ABLATION STUDY

dependence of classification results on the number of superpixels
to a certain extent.

C. Sample Sensitivity Analysis

The number of samples is crucial during classifier training. To
analyze the impact of different numbers of samples, the changes
in accuracy from different perspectives with each algorithm are
drawn in Fig. 21, where Fig. 21(a1)–(c1) shows the changes
in OA of images with 30 m, 10 m, and 0.5 m resolution under
different sample proportions, Fig. 21(a2)–(c2) shows the sample
sensitivity rate of images with 30 m, 10 m, and 0.5 m resolution,
and Fig. 21(a3)–(c3) shows the user and product accuracy of a
small sample, i.e., bare land in 30 m, 10 m, and 0.5 m resolution
images. For Fig. 21(a1)–(c1), it shows that the OA of each
algorithm shows an increasing trend with the increase of sample
proportion. Among them, the fastest increasing speed is ERS
and the proposed algorithm, as shown in Fig. 21(a2) and (b2).
In particular, although NCut has a higher sensitivity rate, its
OA has always been low compared with other algorithms, as
shown in Fig. 21(c1) and (c2). For further in-depth analysis,
the accuracy of small samples is also demonstrated, as shown
in Fig. 21(a3)–(c3). It shows that user accuracy consistently

exceeds product accuracy. It illustrates that most pixels are
missed. Compared with other algorithms, ERS and the proposed
algorithm can achieve relatively high user and product accuracy
simultaneously. It indicates that these algorithms have good
balance and the classification results are closer to the real situa-
tion. For small samples, the accuracy can also reach over 75%.

D. Spectral Sensitivity Analysis

In the process of remote sensing image imaging, the spectrum
of the image is often affected by atmosphere, lighting, and other
factors, and spectral variation is ubiquitous [50]. To analyze
the impact of spectral variation, the noise images with varying
degrees of Gaussian white noise added are used to simulate the
degree of variation of the spectrum. The OA of each algorithm
and sensitivity rate are drawn in Fig. 22. It shows that the
accuracy gradually decreases with the increase in noise variance.
The most significant sensitivity is SLIC, next are ERS and
LSC. NCut, TurboPixels, and SCoW have lower sensitivity.
However, their classification accuracy is often lower than other
algorithms. Through comprehensive analysis, it can be seen that
the proposed algorithm can maintain low sensitivity to noise at
a higher level of classification accuracy.
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Fig. 19. Classification accuracy changing with parameters. (a1)–(c1) NSpatial of Landsat 8, Sentinel-2, and SkySat. (a2)–(c2) NSpectral of Landsat 8, Sentinel-2,
and SkySat. (a3)–(c3) NFlux of Landsat 8, Sentinel-2, and SkySat. (a4)–(c4) η of Landsat 8, Sentinel-2, and SkySat. (a1) Landsat 8. (b1) Sentinel-2. (c1) SkySat.
(a2) Landsat 8. (b2) Sentinel-2. (c2) SkySat. (a3) Landsat 8. (b3) Sentinel-2. (c3) SkySat. (a4) Landsat 8. (b4) Sentinel-2. (c4) SkySat.

Fig. 20. Classification results with different numbers of superpixels. (a) m = 200 and OA = 90.22. (b) m = 300 and OA = 90.89. (c) m = 400 and OA = 92.06.
(d) m = 500 and OA = 92.83. (e) m = 600 and OA = 93.62. (f) m = 700 and OA = 93.63. (g) m = 900 and OA = 94.63. (h) m = 1200 and OA = 95.20.
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Fig. 21. Sample sensitivity analysis of each algorithm with different sample proportions. (a1)–(c1) Change in OA of 30, 10, and 0.5 m. (a2)–(c2) Sample
sensitivity of 30, 10, and 0.5 m. (a3)–(c3) Small sample accuracy of 30, 10, and 0.5 m. (a1) 30 m. (b1) 10 m. (c1) 0.5 m. (a2) 30 m. (b2) 10 m. (c2) 0.5 m. (a3) 30
m. (b3) 10 m. (c3) 0.5 m.

Fig. 22. Spectral sensitivity analysis of each algorithm with varying degrees of Gaussian white noise. (a) 30 m. (b) 10 m. (c) 0.5 m.

E. Time Complexity Analysis

Assuming that the number of pixels in the image is n, the
proposed ADS algorithm uses double-deck loops. Same as the
K-means algorithm, the time complexity of the outer loop is
O(nkτ ), where k is the number of superpixels, and τ is the
number of iterations. The time complexity of the inner loop
depends on the diffusion duration T, and it can be denoted by
O(T). Thus, the overall complexity of ADS is O(nkτT) because

k, τ , and T are far less than n, and ADS still can be regarded as
the linear complexity, i.e., O(n).

F. Remaining Challenges

The extensive experiments and analysis mentioned above
indicate that the anisotropic diffusion model played an effective
role in establishing boundary conditions during the clustering
process, which promotes the flexible segmentation of objects
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with different shapes and sizes under fixed scales. It develops
a new idea for superpixel segmentation but still faces many
challenges. For example, the current diffusion coefficient only
considers spectral differences between pixels, which is insensi-
tive in spectral similarity region. Focus on this problem, more
features and local information should be considered in the
next work. The gradient-based diffusion coefficient is currently
not applicable to SAR images with inherent speckle noise.
Focusing on this problem, the probability-based anisotropic
diffusion model will be further studied for resistance to speckle
noise.

VI. CONCLUSION

In this article, a novel superpixel segmentation algorithm
based on an anisotropic diffusion model, named ADS, is pro-
posed and applied to remote sensing image classification. Based
on the theory of anisotropic diffusion, the diffusion flux of con-
centration is proposed to establish the boundary constraints dur-
ing the clustering process. The concentration gradient controls
the diffusion directions. The diffusion coefficient modeled by the
gradient of the spectrum provides the possibility for controlling
the diffusion speed at the boundary. The proposed algorithm can
have high compactness in homogeneous regions and fit difficult
boundaries in the complex scene without compactness limita-
tions. The effectiveness is further verified in remote sensing
image classification with three spatial resolutions, such as Land-
sat 8 with 30 m, Sentinel-2 with 10 m, and SkySat with 0.5 m.
The experimental analysis results show that ADS can effectively
improve the boundary-fitting deviation problem caused by the
isotropic mechanism and increase the image classification ac-
curacy. In the future, we will focus on the remaining challenges
and further research on the modeling of diffusion coefficients
to adapt to effective segmentation and classification of remote
sensing images in different situations. For example, introducing
antinoise mechanisms in the current model of diffusion flux
would be suitable for SAR image processing.

APPENDIX

DIFFUSION FLUX CALCULATION

In Fig. 3, taking pixel b as an example, its site (x, y) is (1,
2) assuming δ = 20 and λ = 1/8; the diffusion coefficients c1
between pixel b and other pixels are

c1(b, a) =
1

1 +
(

|122−40|
20

)2 = 0.06 (20)

c1(b, e) =
1

1 +
(

|125−40|
20

)2 = 0.05 (21)

c1 (b, f) =
1

1 +
(

|120−40|
20

)2 = 0.06 (22)

c1 (b, g) =
1

1 +
(

|128−40|
20

)2 = 0.05 (23)

c1 (b, c) =
1

1 +
(

|32−40|
20

)2 = 0.86. (24)

The diffusion distance R(b, a) = R(b, f) = R(b, c) = 1 and
R(b, e) = R(b, g) =

√
2. According to Fig. 3(c) and (d), it shows

that only the direction of pixel f satisfies diffusion conditions in
the first diffusion in which the concentration gradient is positive,
i.e., �U(x, y, t) > 0. If � U(x, y, t) < = 0, then Ψ[�U(x, y,
t)] = 0; thus, pixels a, e, g, and c are ignored. Then, the first
diffusion flux of pixel b is

U (1, 2, 1) = U (1, 2, 2) +
1

λ

[
1

R (b, f)
· c1 (b, f)

·∇f7U (1, 2, 0) ·Ψ[∇f7U (1, 2, 0)]

]

= 0 +
1

8
[1 · 0.06 · (1− 0) · 1] = 0.01. (25)

In the second diffusion, there are four directions that can
diffuse toward pixel b, i.e., pixels a, e, f, and g. Thus, the second
diffusion flux of pixel b is

U(1, 2, 2) = U(1, 2, 1)

+
1

λ

[
1

R(b, a)
· c1(b, a) · ∇f5U(1, 2, 1) ·Ψ [∇f5U(1, 2, 1)

]

+
1

R(b, e)
· c1(b, e) · ∇f6U(1, 2, 1) ·Ψ [∇f6U(1, 2, 1)

]

+
1

R(b, f)
· c1(b, f) · ∇f7U(1, 2, 1) ·Ψ [∇f7U(1, 2, 1)

]

+
1

R(b, g)
· c1(b, g) · ∇f8U(1, 2, 1) ·Ψ [∇f8U(1, 2, 1)

]]

= 0.01

+
1

8

[
1 · 0.06 · (0.09− 0.01) · 1+ 1√

2
· 0.05 · (0.12− 0.01) · 1

+1 · 0.06 · (1− 0.01) · 1 + 1√
2
· 0.05 · (0.11− 0.01) · 1

]

= 0.02. (26)
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