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A Novel Transformer Network With Shifted Window
Cross-Attention for Spatiotemporal Weather
Forecasting

Alabi Bojesomo ¥, Hasan AlMarzouqi

Abstract—Earth observation is a growing research area that
can capitalize on the powers of artificial intelligence for short
time forecasting, a now-casting scenario. In this work, we tackle
the challenge of weather forecasting using a video transformer
network. Vision transformer architectures have been explored in
various applications, with major constraints being the computa-
tional complexity of attention and the data-hungry training. To
address these issues, we propose the use of video Swin-transformer
(VST), coupled with a dedicated augmentation scheme. Moreover,
we employ gradual spatial reduction on the encoder side and
cross-attention on the decoder. The proposed approach is tested on
the Weather4Cast2021 weather forecasting challenge data, which
requires the prediction of 8 h ahead future frames (4 per hour) from
an hourly weather product sequence. The dataset was normalized
to 0-1 to facilitate the use of the evaluation metrics across different
datasets. The model results in an mse score of 0.4750 when provided
with training data, and 0.4420 during transfer learning without
using training data, respectively.

Index Terms—Encoder—decoder video architecture, now-
casting, shifted window cross attention, video Swin-transformer
(VST), weather forecasting.

1. INTRODUCTION

EATHER forecasting is a crucial driving force in agri-
W culture and the autonomous vehicle industry [1]. Accu-
rate weather forecasting affects the successful deployment of
autonomous vehicles and the management of food production.
When designing autonomous navigation and collision avoid-
ance technologies, for example, awareness of the weather is an
essential part of the location context. Also, reasonable weather
prediction is essential in monitoring soil nutrients and regulating
crop yield in the agricultural industry.

Al is gradually gaining traction in weather forecasting due to
its relative simplicity, when compared to numerical weather pre-
diction (NWP) [2], [3], [4], [5], [6]. Al approaches applicable to
weather forecasting can be categorized according to the network
structure, e.g., convolutional neural networks (CNN) [7], [8], [9],
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[10], autoencoders [11], [12], and recurrent networks [13], [14],
[15], [16].

CNN has been used in many state-of-the-art image
classification [17], [18], [19] and semantic segmentation
models [20], [21]. Spatiotemporal forecasting has also been
tackled with CNN models, based on their demonstrated
performance on segmentation tasks [21], [22], [23]. Recently,
self-attention transformer-based models have gradually
revolutionized computer vision applications [24], [25], [26],
[27]. While natural language processing (NLP) uses transformer
networks on encoded tokens, vision transformer-based models
utilize patch-based image encoding [24]. Vision transformers are
showing promise in many applications; however, they involve
the computationally costly self-attention mechanism, which
presents a challenge to be addressed. Various modifications
of self-attention [28], [29], [30], [31] have been proposed in
literature to address computational demands.

The vision transformer is widely used in many computer
vision applications, including semantic segmentation [24], [25],
[26], [32]. Dosovitskiy et al. [24] used patch-based image encod-
ing, similar to word embedding in NLP, making vision problems
amenable to the transformer network [32]. Other works explore
modifications of the attention layer, resulting in more efficient
transformer architectures for vision tasks, such as the pyramid
vision transformer [25]. Spatiotemporal forecasting is similar to
dense prediction tasks, e.g., depth estimation and segmentation,
which have been tackled by CNN-based architectures [20].
However, more recently, the vision transformer is gradually
becoming the dominant architecture in these applications [24],
[25], [26], [29].

Among the widely adopted vision transformer architecture
is the shifted window transformer (Swin transformer), which
uses local window attention with shift operations between trans-
former layers [29], popular in classification tasks. The Swin
transformer has also been used as an encoder (feature extrac-
tor) for downstream tasks, such as object detection, segmenta-
tion [33], and forecasting [21], [34], [35], [36]. Cao et al. [33]
replaced all CNN blocks of the typical UNet architecture [20]
with Swin transformer blocks, resulting in the Swin-UNet archi-
tecture. The Swin-UNet network uses an MLP-based layer (mul-
tilayer perceptron) as a patch expanding layer for upsampling in
the decoding branch. This layer can be viewed as the opposite
of the MLP-based downsampling layer (i.e., patch merging
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layer), used in pyramid vision transformers [25], [29], [33].
Lio et al. [30] proposed the 3-D (3-D/video) Swin transformer,
replacing the patch embedding, patch merging, and shifted win-
dow transformer with their respective 3-D variants, resulting
in a parameter-efficient network, as evidenced in performance
on several video datasets (e.g., Something-Something v2 [37],
Kinetics-400 [38], and kinetics-600) [30].

Low-rank architectures have also been applied for forecasting
time-series data with the aim of improving performance. A novel
multistep forecasting framework is proposed in [39] to address
the challenges of ultra-short-term forecasting of wind speed
and wind power. The approach combines selective Hankeliza-
tion, tensor decomposition, feature selection, and a low-rank
tensor learning-based predictor. The method converts the time
series into a high-order tensor structure using Hankelization
and utilizes a low-rank tensor learning network with an long
short-term memory (LSTM)-based encoder and attention-based
decoder. Feature selection using similarity search is employed
to enhance accuracy. The approach improves the accuracy of
wind power and wind speed forecasting, but requires higher
computational costs. In [40], a structured low-rank matrix com-
pletion is applied for data imputation in time series forecasting.
The method employs Hankel matrixes and convex relaxation
based on the nuclear norm. The proposed approach introduces
a new formulation that assigns different weights for previous
observations, resulting in improved performance. Experiments
demonstrate its superiority in multistep ahead prediction com-
pared to state-of-the-art methods. Inspired by compressed sens-
ing, Liu [41] introduced the convolution nuclear norm mini-
mization (CNNM) approach to recover the future part of con-
volutionally low-rank time series. However, CNNM is sensitive
to trends and dynamics. To address this, a learnable orthonor-
mal transformation called learning-based CNNM (LbCNNM)
is proposed. LbCNNM uses principal component pursuit to
learn suitable transformations, integrating dictionary learning,
model combination, and coherence. Although computationally
complex, LbCNNM effectively handles time series compo-
nents and incorporates forecasts from other methods. In [42],
a recurrent neural network (RNN)-based time series model is
combined with a Gaussian copula process output model with a
low-rank covariance structure. This approach enables modeling
time-varying correlations among numerous time series with
non-Gaussian marginal distributions. A low-rank factorization
of the covariance matrix and a recursive formula for parameter
estimation and likelihood computation are employed. However,
the computational resources necessary for practical deployment
of low-rank-based methods in spatiotemporal forecasting are
substantial.

In this article, we propose a computationally efficient archi-
tecture based on transformers capable of capturing long-term
spatiotemporal interactions for weather forecasting. Our contri-
butions include the following.

1) We propose a deep learning architecture capable of cap-
turing complex spatial relationships in remote sensing
images, through the novel paradigm of video Swin trans-
former (VST) with shifted window cross-attention. The
incorporation of shifted window attention promotes the

exploration of interwindow relationships and global cor-
relation integration, while effectively mitigating compu-
tational overhead. In addition, we employ cross-attention
in the decoder, to enahnce feature extraction and further
optimize computational efficiency.

2) The performance of the proposed approach is evaluated
on the Weather4Cast2021 weather forecasting challenge
dataset. The objective is to predict the future frames 8 h
ahead based on an hourly weather product sequence, with
4 frames per hour. Our model achieves competitive results
compared to the state of the art, attaining an mse score
of 0.4750 when trained with available data and 0.4420
through transfer learning without utilizing training data.
Notably, this is achieved by utilizing less than 50% of the
parameters used by the model achieving the first position
on the competition leaderboard, leading to faster training
and inference times.

3) Lastly, we present an ablation study that includes a quan-
titative analysis and systematic evaluation of the model’s
prediction performance, focusing on both the weather
products and the network structure. A qualitative analysis
of the model prediction is presented, offering detailed
insights into its performance with respect to future time
steps (e.g., Fig. 6).

The rest of this article is organized as follows. A summary
of related works is presented in Section II. The details of the
proposed architecture and its layers are given in Section III,
while the experimental results of the proposed approach in the
IEEE Big Data 2021 Weather4cast challenge data are presented
in Section IV. Finally, Section V concludes this article.

II. RELATED WORKS

Weather forecasting is the foundation of meteorology. Tra-
ditionally, weather prediction is based on physical modeling
of the associated physical phenomena. This NWP approach
requires the solution of spatiotemporal partial differential equa-
tions (PDE), related to a variety of underlying atmospheric pro-
cesses, including radiative, chemical, dynamic, thermodynamic,
etc [43]. It is obvious that modeling and solving this multitude
of atmospheric processes requires substantial computational
resources, which is, indeed, one of the disadvantages of the
NWP method [44]. However, the most important drawback
of the PDE approach is the chaotic nature of weather [45],
which makes model performance highly dependent on the initial
conditions. The use of NWP in short-term weather forecasting
is problematic, it is a popular approach in long-term forecasting,
as it is able to track long-scale trends [46].

The spatiotemporal nature of weather prediction offers major
opportunities and challenges for the use of Al and data analytics
methods. Data-driven weather prediction helps to avoid both the
known and unknown chaotic behavior of weather fluctuations
by focusing on the evolution of available data [47]. Physical
phenomena associated with the weather are too complex to
model and sometimes not well understood, paving the way for a
relatively simpler data-driven approach. Al methods for weather
forecasting can be classified into machine learning (ML)-based
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and deep learning-based. Furthermore, ML architectures, ap-
plied to weather forecasting, can be grouped into static and dy-
namic (recurrent) in terms of whether the prediction is generated
sequentially [48], [49], [50], [51], or not. Static ML architec-
tures include clustering (K-means, PCA) [52], [53]; artificial
neural networks (ANN) [49], [54], [55]; graph neural networks
(GNN) [56]; clustering + neural networks [57], [58]; decision
trees, such as gradient boosting (XGBoost [59], AdaBoost [50],
CatBoost [50], [60], [61]); and random forest [62], [63]. On the
other hand, dynamic ML architectures for weather forecasting
make use of the sequential nature of training data in gener-
ating the forecast. Methods in this category include partially
recurrent architectures [e.g., Elman neural networks] [64], and
fully recurrent ones, such as RNN, LSTM, and gated recurrent
units (GRU). The principle of fully recurrent architectures is
that they capitalize on the dynamic patterns in the input data
sequences [8],[11],[12],[14],[65], [66]. The common challenge
of ML-based methods is that they require a good understanding
of weather parameters in order to perform appropriate feature
engineering. This limits their applicability as not all contributing
factors to weather changes are yet known or can be accurately
measured and/or tracked.

Deep learning-based approaches alleviate the need for the fea-
ture engineering stage of ML methods. Instead, feature learning
is automatically performed with the use of convolution blocks,
allowing data-driven extraction of the required features. These
features are then used as the input to the classification/regression
layer, which is usually a fully connected layer. Considering the
spatiotemporal setting of weather data, CNN can be readily
applied [10], NeXtNow [67], U-STNx [68] . In [20], a UNet
architecture with a densely connected backbone was used for
weather prediction [69], where the continuous aggregation of
the densely connected CNN in the backbone ensures the reuse of
the intermediate-state results. Moreover, generative adversarial
networks have been successfully applied in weather forecast-
ing [70], [71], [72], [73], [74]. Spatiotemporal weather forecast-
ing using deep learning requires appropriate treatment of the spa-
tial and temporal information in the data. For instance, CNN can
be used to extract features from the spatial information, while re-
current networks (RNN, LSTM, and GRU) can be used to model
the temporal interrelationship. Combining CNN with recurrent
networks results in architectures, such as ConvLSTM [15], [16],
[75]1, [76], [54], PredRNN [77], PredRNN++ [78], MetNet [13],
TrajGRU [79], ConvGRU [66], and MFNet [80]. Spatiotem-
poral weather forecasting can also be tackled with transform-
ers [81], originally proposed for NLP [32]. This is because
attention networks used in transformers can eradicate the need
for time-consuming sequential forecasting, an approach com-
mon to recurrent networks (ConvLSTM [75], PredRNN [77],
PredRNN++ [78], ConvGRU [66]).

The state-of-the-art (SOTA) architectures for spatiotemporal
weather forecasting [66], [69], [70] are memory intensive and
require a substantially large number of parameters. In light
of this, there is a need to develop lightweight, efficient, and
improved accuracy spatiotemporal weather prediction models.

In this research, we are motivated by the self-attention mech-
anism of transformers, as it can capture the relationship between
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Fig. 1. Spatiotemporal encoder—decoder architecture with cross attention in
the decoder.
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Fig. 2. Outline of the local window grouping in the shifted window-based
architecture. The local window is shifted for a layer n + / following a regularly
placed window in layer n. Since self(cross)-attention is window based, the
shifting operation between layers provides the necessary connection, otherwise
missing in local window-based attention. [29].

the input variables [32]. In fact, vision transformers are gradu-
ally dominating computer vision applications, including dense
prediction [26], [33]. These architectures [24], [28], [29], [30],
[31] can be applied to weather prediction. Solutions for this
application involve an encoder (backbone, feature extractor)
and a decoder (segmentor, predictor, forecaster) [57], [66], [69],
[70]. This makes models designed for classification applicable
as feature extractors. Furthermore, decoders, such as UNet [20],
FaPN [82], UperNet [83], and SegFormer [84] among others
have been proposed for dense prediction (e.g., weather forecast-
ing). Among all these decoders, SegFormer uses attention layers,
while others are based on CNN.

III. METHODS

The proposed model (see Fig. 1) includes multiple stages
for gradual downsampling of the spatial dimension in the en-
coder, which aid in capturing salient global representations.
The encoder uses self-attention, and the decoder employs cross-
attention to merge the skip connected input from the encoder
with its main input [32], [35]. The developed model uses shifted
window attention [30]. This encourages the exploitation of in-
terwindow relationships as local window attention is used to
reduce the computational overhead (see Fig. 2). Regular local
transformer models exhibit a nonglobal correlation similar to
convolutional networks. The interwindow relationship in shifted
window transformer has the power to integrate the global corre-
lation, even while being window-based.

As shown in Fig. 1, the input enters the network through a
patch embedding layer, while the final output of the model comes
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from a projected patch expanding layer. The patch embedding
layer converts the spatiotemporal inputs into tokens, while the
final output is a projection of tokens to spatiotemporal format.
Three encoder and three decoder blocks are included in the
model, each with four 3-D transformer layers (encoder/decoder).
The limited number of layers helps to avoid the need for huge
datasets to pretrain transformer-based models [24], [26], [29],
[30]. The proposed model is composed of several layers and
blocks; including the patch partitioning layer, patch merging
layer, patch expanding layer, and the shifted window trans-
former encoder and decoder blocks.

A. Patch Transformation Blocks

The transformation of the input into workable patches as
required by the transformer-based model is carried out by patch-
specific layers. Also, the downsampling and upsampling in the
intermediate blocks in the encoder and decoder, respectively,
need the path transformation blocks.

In the patch partitioning layer, the spatiotemporal features are
divided into patches and transformed using linear embedding.
Two CNN layers are used to accomplish this. The first convo-
Iution has a stride value equal to its kernel size dimension to
encourage patch partitioning, whereas the second convolution
has a kernel size of 1 for linear embedding.

The patch merging layer downsamples features using linear
[fully connected (FC)] layer, making it a knowledge-based
operation contrary to traditional rule-based ones (average/max
pooling operation). This layer flattens the features of each group
of patches (2 x 2). This is followed by applying an FC-layer
to convert the 4*C-dimensional features to 2*C-dimensional
output, where C is the number of channels of the incoming
features [29], [30]. On the decoding branch of the network,
we have the patch expanding layer, which works in exactly the
opposite way to the patch merging layer, thus resulting in a
learned upsampling operation.

The projection head of the network (Fig. 1) includes a patch
expanding layer to recover the original spatial dimensions. This
is followed by an FC-layer for channel dimension projection.

B. Encoder Blocks

The proposed model’s encoder backbone network includes a
multistage VST. We employ three stages (Fig. 1), each with four
3-D transformer layers. Apart from the first encoder, which has
linear embedding, each subsequent encoder block has a patch
merging unit, followed by Swin-transformers.

A multihead self-attention (MSA) [24] layer is followed by a
feed-forward network in the transformer layer used for computer
vision tasks, with each of these layers preceded by layer normal-
ization (LN) [85]. Because of the spatiotemporal nature of the
input, the 3-D shifted-window MSA is used in this study (See
Fig. 2). As highlighted in Fig. 3, the Swin transformer makes
use of an interchange of sliding windows, where window (local)
attention is next to another local but shifted window attention.
This arrangement leads to (1) for any two attention layers
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Fig.3. Swin Transformer Encoder block: An encoder stacking of two concur-
rent self-attention layers is shown, with shifted-window attention always coming
after nonshifted ones.

#' = MLP(LN(z')) + &'

! = SW-MSA(LN(z!)) + 2!

2!t = MLP(LN(z't1)) 4 2!+ (1)

where ! is the activation map (continuously processed input)
of layer [, LN and MLP represent the LN and feed-forward
layer, respectively, and W-MSA and SW-MSA represent win-
dowed multi-head self-attention and shifted window multihead
self-attention, respectively. In both W-MSA and SW-MSA, a
relative position bias is used [29], [30]. However, the primary
distinction between W-MSA and SW-MSA is a shift in window
positioning before computing the local attention within the
windowed blocks. In this research, we use (1, 7, 7) as the window
size for all Swin transformers, with a shift size of 2 for the
shifted window versions. In addition, the MLP layers include
two FC-layers as

where f; and f, are the transfer functions of the two layers,
respectively, X € R X is the input with... being the other pos-
sible dimensions of the input, W € $¢*44 is the weight matrix
of the first (hidden) fully connected layer, and Wy € R4 * 4 is
the weight matrix of (output) fully connected layer.

C. Decoder Blocks

In the decoder, we use multihead cross attention (MCA) units
that enable the interaction of encoded tokens with decoding ones.
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cross-attention blocks is shown, with shifted-window attention always coming
after nonshifted ones.

In contrast to MSA, which uses the same input as the key, query,
and value; MCA uses one input as the key and value, while
using another as the query. This ensures that we can explore the
dependency of one input (query) on the other parameters.

The use of MCA only deals with the interaction between
the skip connection (from the encoder) and the decoding input.
There arises the need to further deal with self-dependency in
the form of self-attention of the resulting output after MCA is
applied before applying the MLP network. The MSA layer is
followed by another MCA layer in the decoder [32]. Such an
arrangement merges the skip-connected part with the decoding
input. While this process is done using addition in LinkNet [86]
and by concatenation in U-Net [20], we use MCA [32]. The
building blocks of our cross-attention-based decoding are pre-
ceded by LN, an approach commonly used with vision trans-
formers [24], [34], [35], [36].

Similar to the encoder layers, we use a 3-D shifted window
MCA in the decoder. Related to (1), the Swin transformers in the
decoder blocks alternately used self and cross attention, followed
by shifted window self and cross attention, as illustrated in the
following (Fig. 4):

' = W-MSA(LN(z! 1)) + 2!?

' = W-MCA(LN(Z"),y) + &

2! = MLP(LN(Z!)) + !
T = SW-MSA(LN(z!)) + !
)7 y) 4 g—:l+1

MLP(LN(Z!*T1)) 4 71!

T = SW-MCA(LN(z'H!

L=

T = SW-MSA(LN(z!)) + !

1+1

271 = MLP(LN(z!T1)) 4 2+t 3)

where y represents the output of the corresponding encoder (skip
connection) as shown in Fig. 1. All other variables and functions
follow the definitions in (1). The W-MCA and SW-MCA units
are defined here with two inputs compared with W-MSA and
SW-MSA in (1).

IV. EXPERIMENTAL RESULTS
A. Data Description

The proposed system was tested on the challenging Traf-
ficdcast 2021 [87], [88] weather dataset. The dataset used was
part of the IEEE BigData Conference competition for weather
movie snippet forecasting. As shown in Fig. 5, the dataset covers
11 regions including:

RI: Nile region (covering Cairo).

R2: Eastern Europe (covering Moscow).

R3: South West Europe (covering Madrid and Barcelona).
R4: Central Maghreb (Timimoun).

R5: South Mediterranean (covering Tripoli and Tunis).
R6: Central Europe (covering Berlin).

R7: Bosphorus (covering Istanbul).

RS: East Maghreb (covering Marrakech).

R9: Canary Islands.

R10: Azores Islands.

R11: North West Europe (London, Paris, Brussels, Amsterdam).

These regions are grouped into two for both core challenge
and transfer challenge. The regions used for the core challenge
are R1-R3, R7, and R8, and the data provided are divided into
training, validation, and test sets. The transfer challenge only
has the test set for testing the transferability of the trained model
on data from the remaining regions without prior training.

The data are presented in 256 x 256 weather images for
various weather parameters, as shown in Table I, categorized into
five subgroups, with an area resolution of 4 x 4 km per pixel.
These weather images are captured 4 times per hour, amounting
to one in 15-min intervals.

Some static context variables are also provided, including
elevation and longitude/latitude. This static information is pro-
vided in a format of 256 x 256 pixels, similar to the weather
parameters. This information is unique to the specific regions
and does not change over time.

The evaluation metric for these challenges (core and transfer
challenges) considers the presence of missing values for each
variable and attempts to remove the dominance of any variable
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Fig.5. 1EEE Big Data Weather4Cast 2021 Data Localization. The core challenge is shown in blue squares, while the regions in orange squares are for the transfer
learning challenge [88].

TABLE I TABLE II
IEEE BIGDATA WEATHER4CAST COMPOSITION DATA CATEGORIES USED IN MODEL TRAINING

Weather Product Weather variables Data type weather variables

Temperature at | temperature, ctth_tempe, ctth_pres, target temperature, crr_intensity, asii_turb_trop_prob, cma

Ground/Cloud ctth_alti, ctth_effectiv, ctth_method, static elevation, latitude, longitude

(CTTH) ctth_quality, ishai_skt, ishai_quality dynamic ctth_tempe, ctth_press, ctth_effectiv, crr, crr_accum,

Convective crr, crr_intensity, crr_accum, crr_quality cma_cloudsnow, cma_dust, cma_volcanic,

Rainfall Rate cma_smoke, ct, ct_cumuliform, ct_multilayer

(CRR)

Probability of | asii_turb_trop_prob, asiitf_quality

Occurrence

of Tropopause where R represents the set of all regions involved for a given

Folding (ASII) challenge, D is the total number of days in the testing set, 7'is the

Cloud Mask | cma_cloudsnow,  cma,  cma_dust, number of time steps, w(v) := —————— is the scaling factor

(CMA) cma_volcanic, cma_smoke, cma_quality ps, ' persistence(v) g

Cloud Type (CT) o, ct_cumuliform, ct_multilayer, attributed to each variable v in the set of all target variables V.

ct_quality Also, P, = 256 x 256 — NN, is used to account for missing

Training variables in italic represent the exogeneous inputs, while data for a target variable v in any region r, where N, is the

hile in bold are the aut ive terms. 2 . .
Whre i boi€ are the aulogressive ferms number of missing data (i.e., empty pixels).

in the metric calculation. The scaling factor used to remove such B. Model Training
(target) variable depending on dominance is given by Pytorch was used to implement the model shown in Fig. 1. In
conjunction with the Adam optimizer [89], we use the evaluation

persistence(v) metric (5) as the loss function. We trained the model using
0.03163512, if v = temperature this loss function in a multitask setting, as the scaling factor
0.00024158, if v = crr_intensity involved balances the effects of each variable on the total loss.

~ ) 0.00703378, ifv= asii_turb_trop_prob [ - @) The learning rate starts at le-4 and is gradually reduced by half
0.19160305, ifv = cma when the validation set performance plateaus for more than 3

epochs. The model was trained with a dedicated data augmen-
tation scheme for dense prediction purposes. The augmentation
pipeline includes random horizontal (RandomHorizontalFlip)

The evaluation metric using such persistence scaling leads to a
value of 1 for persistence modeling and is given by

1 D=36T=32 () P and vertical (RandomVerticalFlip) flipping of the data, as well
w(v . o .

Scorec = ——— E E E E as random rotations of the data block (90° RandomRotation)

DTRcV d=1 t=1 reRe veV Pry =1 The model training uses either the expected target data only

rdt  —rdit or together with any combination of additional static and/or
< (" = Ivp") ®) dynamic data available (Table IT). The parameters of the models
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TABLE III
TRAINED MODELS PERFORMANCE COMPARISON

Model Additional Data | #Parameters Performance
version static others Core Transfer
v2 No No 5.74M 0.4936  0.4516
v6 Yes No 5.78M 0.4840 0.4516
v7 No Yes 5.85M 0.4810  0.4447
v8 Yes Yes 5.87M 0.4750  0.4420
Top 3 models on the leaderboard
ConvGRU [66] (2021) Yes No 18M 0.4729  0.4323
Dense UNet [69] (2021) Yes Yes 12M 0.4802  0.4376
Variational UNet [70] (2021) No Yes 16M 0.4857  0.4594

Blue, red, and brown colored results represents the 1st, 2nd and 3rd.

TABLE IV
TRAINED MODEL CONFIGURATIONS

model Hyperparameters Additional Data

version | embed-dim | patch-size | weight decay | static | dynamic
v0 16 2x2 No No No
vl 32 2x2 No No No
v2 48 2x2 No No No
v3 48 2x2 Yes No No
v4 48 3x3 Yes No No
v5 48 4x4 Yes No No
v6 48 4x4 Yes Yes No
v7 48 4x4 Yes No Yes
v8 48 4x4 Yes Yes Yes

Starting with model v3, a weight decaying factor of le-6 was
included during training to address possible overfitting.

v2, v6, v7, and v8 will be presented later in Table III. The
additional data categories (i.e., static and dynamic) considered
here are based on the fact that some weather variables are related,
e.g., temperature and pressure. Also, the elevation map of a given
location has some impact on weather fluctuations [90], [91].

C. Experiments

A forecasting model (Table III) was developed that follows
the architecture in Fig. 1 with an embedding dimension of 48 and
a patch size of 4. Training of the model configurations involved
whether additional data will be used. One of the models was
trained using only the target variables, as listed in Section I'V-A,
while the remaining models include either other dynamic or
static data, or a combination of the two together with the target
variables (Table IIT). We used different combinations of data
in model training to investigate the predictive capability of
combining input data during training.

As shown in Table (III), training with different combinations
of inputs results in different model configurations in terms of
the number of parameters (i.e., there is a change in the number
of input channels).

We compared our models with the best performing models
for this dataset in Table III [88]. Our model has the least number
of parameters and does not include ensembling, used by other
models.

D. Ablation Study

We developed several forecasting models (Table 1V) that
follow the architecture in Fig. 1 with changes in the hyper-
parameters (i.e., embedding dimension, patch size, and weight
decay). As previously mentioned, model configuration training
involves selecting whether additional data will be used. Some
of the models were trained using only the target variables, as

TABLE V
MODEL PERFORMANCE WITH VARYING EMBEDDING DIMENSION

Model | embed-dim | #Parameters | Core Transfer
v0 16 688,080 0.5015  0.4572
vl 32 2,574,688 0.4940  0.4530
v2 48 5,708,528 0.4936  0.4516

The bold entities are to highlight the best-performing models compared to others.

TABLE VI
MODEL PERFORMANCE WITH VARYING PATCH SIZE

Model | patch size | #Parameters | Core Transfer

v3 2x2 5,708,528 0.5016  0.4516

v4 3x3 5,721,008 0.4974  0.4516

v5 4x4 5,738,480 0.4945  0.4516
TABLE VII

MODEL PERFORMANCE WITH ADDITIONAL DATA

Model | static | dynamic [ #Parameters | Core Transfer
Models with embedding dimension of 48

v6 Yes No 5,780,048 0.4840 0.4516

v7 No Yes 5,847,632 0.4810 0.4516

v8 Yes Yes 5,866,064 0.4750  0.4420
Models with embedding dimension of 32

v9 Yes No 2,616,256 0.4845  0.4529

v10 No Yes 2,661,312 0.4764  0.4481

vll Yes Yes 2,673,600 04777  0.4446

The bold entities are to highlight the best-performing models compared to others.

listed in Section IV-A, while some models included either other
dynamic or static data, or combinations of the two together with
the target variables (Tables II and IV).

1) Embedding Dimension Variation: We trained several
models that varied in the size of the embedding dimension,
i.e., {16, 32, 48}. These dimensions were chosen to avoid an
excessively large number of parameters, as the intention was to
develop parameter-efficient models. All these models use a patch
size of 2 x 2 without any additional data (static or dynamic)
(Table IV). The experimental results in Table V show that we
can obtain an improvement in performance by increasing the
embedding dimension.

2) Patch Size Variation: We explored the effect of increasing
the patch size used in the patch embedding layer of the model
(Fig. 1). In this experiment, we use the best performing model of
Table V, which uses an embedding dimension of 48. The results
of these experiments are shown in Table VI, and indicate that a
patch size of 4 achieved the best results. It is worth noting that
increasing the patch size has a noticeable effect on performance,
while only incurring a very modest increase in the number of
parameters.

3) Using Additional Data: Earlier ablation experiments in
this study used only the target variables stated in Table II. In
the current experiment, we trained the best performing model
in Table VI, i.e., with a patch size of 4 x 4 and an embedding
dimension of 48, with different combinations of additional data.
We also considered models with an embedding dimension of 32
for this experiment to reduce model size, and possibly enhance
transferability, and reduce overfitting. However, the experiments
demonstrated that reducing the embedding dimension does not
lead to improvements in model transfer, instead the model is self
resilient to overfitting.
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Fig. 6. Comparing the temperature forecast with ground truth. The left side shows the situation before forecasting. On the right side, the first row shows the
expected values in a sample of future times, while the second row shows the predicted values. Values normalized to the range (0, 1).
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Fig. 7. Comparing the cma forecast with ground truth. The left side shows the situation before forecasting. On the right side, the first row shows the expected
values in a sample of future times, while the second row shows the predicted values. The contour line in white is used to show the binary threshold at 0.5.
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Fig. 8. Comparing the asii_turb_trop_prob forecast with ground truth. The left side shows the situation before forecasting. On the right side, the first row shows
the expected values in a sample of future times, while the second row shows the predicted values. Values normalized to the range (0, 1).

E. Qualitative Analysis quite well in the beginning but its reliability decreases with time.

We conducted a pictorial representation and analysis of the
validation data based on the effect of time. Here, the variables
are plotted individually to show the trend over the time of
forecasting window. The weather conditions were compared to
the ground truth, as shown in Figs. 6-9. This analysis shows that
the model was able to accurately predict the weather variables

As an example, prediction in Fig. 6 follows the expected value
but slight blurriness occurs toward the end of the prediction
horizon. This is similar to the observation in the analysis of cma
(Fig. 7), asii_turb_trop_prob (Fig. 8), and crr_intensity (Fig. 9).
The crr_intensity shown in Fig. 9 indicates that the model can
learn even in the scarcity of nonzero values.
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Comparing the crr_intensity forecast with ground truth. The left side shows the situation before forecasting. On the right side, the first row shows the
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expected values in a sample of future times, while the second row shows the predicted values. Values normalized to the range (0, 1).

V. CONCLUSION

A short-time weather forecasting model was introduced for
the first time that uses the 3-D Swin-transformer in a U-
Net architecture, which resulted in competitive results, i.e.,
a leaderboard score (scaled multitask mse) of 0.4750 and
0.4420, for the core and transfer challenges, respectively (IEEE
Big Data Weather4Cast2021 [88]). The proposed model has
only three blocks of Swin-transformers in both the encoder
and decoder parts. It uses cross-attention in the decoder to
merge data from the encoder with the upsampled decoding
data. This ensures that the model focuses only on important
information. We intend to investigate different types of atten-
tion layers in the future. Similarly, we intend to investigate
token mixing using hypercomplex networks, e.g., sedenion
networks [21].
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