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Abstract—Precipitation plays a significant role in global water
and energy cycles, largely affecting many aspects of human life,
such as transportation and agriculture. Recently, meteorologists
have tried to predict precipitation with deep learning methods
by learning from much historical meteorological data. Under this
paradigm, the task of precipitation nowcasting is formulated as
a spatiotemporal sequence forecasting problem. However, current
studies suffer from two inherent drawbacks of the definition of
the problem. First, considering that the weather patterns vary
in spatial and temporal dimensions, a spatiotemporally shared
kernel is not optimal for capturing features across different regions
and seasons. Second, these methods isolate the precipitation from
other meteorological elements, such as temperature, humidity, and
wind. The disability of cross-model learning prevents the possi-
bility of the promotion of precipitation prediction. Therefore, this
article proposes a spatiotemporal inference network (STIN) to
produce precipitation prediction from multimodal meteorologi-
cal data with spatiotemporal specific filters. Specifically, we first
design a spatiotemporal-aware convolutional layer (STAConv), in
which kernels are generated conditioned on the incoming spa-
tiotemporally features vector. Replacing normal convolution with
STAConv enables the extraction of spatiotemporal specific infor-
mation from the meteorological data. Based on the STAConv, the
spatiotemporal-aware convolutional neural network (STACNN)
is further proposed, fusing the multimodal information, includ-
ing temperature, humidity, and wind. Then, an encoder–decoder
framework composed of RNN layers is built to extract representa-
tive temporal dynamics from multimodal information. To investi-
gate the practicality of the proposed method, we employ STIN to
predict the following precipitation intensity. Extensive experiments
on three meteorological datasets demonstrate the effectiveness of
our model on precipitation nowcasting.

Index Terms—Data mining, multimodal knowledge discovery,
precipitation nowcasting.
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I. INTRODUCTION

PRECIPITATION nowcasting is forecasting rainfall inten-
sity in the short term up to a few hours. It is conditioned on

the known meteorological elements collected by radar, satellite,
and surface weather meteorological stations. Accurate predic-
tion is crucial for the production and people’s livelihood, in-
cluding agriculture planting, energy management, transportation
control, disaster warning, and so on [1], [2]. It is challenging
to provide accurate predictions since rainfall distribution is
spatiotemporal specific and multiple meteorological factors are
involved.

The paradigm of numerical weather prediction (NWP) [3], [4]
has dominated precipitation forecasting for a few decades. NWP
method is the one that is constructed on physical models for
predicting the weather with current meteorological elements [5],
which could make an hourly prediction with reasonable accu-
racy [6]. Still, it could be computationally expensive and be
constrained in short-term forecasts due to the high complexities
of the mathematical models [7]. Beyond that, extrapolation-
based methods [8], which are faster than the NWP approach, are
often adopted for precipitation nowcasting systems. Given the
intensity distribution and movement tendency of the radar echo
maps collected by the weather radar, radar echo extrapolation
predicts a certain value in a linear or nonlinear way [9]. However,
these methods are indirect prediction methods for the precipita-
tion calculated by Z–R relation [9]. Limited by the inadequate
description of the physical process between radar reflectivity
factor and rain rate, there are prediction errors naturally in these
methods.

Recently, deep learning techniques have dominated the ma-
chine learning fields, benefitting from massive data collect-
ing and graphics processing unit development. Inspired by its
tremendous advances in many traditional challenging tasks [10],
[11], [12], [13], [14], [15], [16], researchers have applied
deep learning to precipitation predictions. Current methods for
precipitation nowcasting under deep learning frameworks are
mainly developed on surface weather station data [17], [18],
radar echo maps [19], [20], and satellite data [21], [22].

Considering the surface weather station data with non-
Euclidean, graph convolutions have been employed to model
the spatial correlation [23]. For example, Wilson et al. [24]
proposed weighted graph convolutional LSTM (WGC-LSTM),
in which the fully connected layers are replaced with graph con-
volutional layers within each LSTM cell. However, on account
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Fig. 1. Visualization of multimodal meteorological data, including temperature (K), relative humidity (%), u-component, and v-component of the wind (m/s) at
8 A.M. UTC, 1 January, 2020. (a) Temperature. (b) Relative humidity. (c) u-component of the wind. (d) v-component of the wind.

Fig. 2. Illustration of precipitation at 1 A.M. UTC, 1 February, 2016, and 1 A.M. UTC, 1 July, respectively. The deeper color means more precipitation. At the
same time, the rainfall in the interior is smaller than the rainfall close to the ocean, whether in summer or winter. In addition, in the same area at different seasons,
the precipitation in summer is more significant than in winter. Considering the vagaries of precipitation patterns, a spatiotemporal-specific kernel makes sense in
adapting to diverse patterns with respect to different spatial positions and seasons. The figure shows that the kernels vary from position to position and season to
season. (a) Hourly precipitation in winter. (b) Hourly precipitation in summer.

of the continuity of the weather system in the spatial dimension,
surface weather station data subjected to discrete and sparsity
are insufficient to reason weather patterns.

Technically, radar echo maps are widely employed in main-
stream approaches, which convert the radar maps to predict
rainfall intensity maps. Essentially, these frameworks regard pre-
cipitation nowcasting as a spatiotemporal sequence forecasting
problem. For instance, Shi et al. [25] proposed convolutional
LSTM (ConvLSTM) for predicting radar maps, in which fully
connected structures are replaced with convolutional structures.
Although approaches based on radar echo maps outperform
traditional methods [26], they could not predict precipitation in
an end-to-end way. Furthermore, radar echo maps are far from
completely depicting the weather system whose characteristics
are affected by the interaction of multiple factors.

Another source of meteorological data is geostationary satel-
lites, which provide visible and infrared spectrum images of
clouds and precipitation. In [27], Lebedev et al. used a variant
of UNet on satellite imagery, including four visible and eight
infrared channels, to produce nowcasting. Nevertheless, due to
the orbit of satellites being higher than the troposphere, where
most weather phenomenon occurs, it is hard for satellites to sense
the meteorological elements.

Unlike existing deep-learning-based works, this article pro-
poses a novelty and effective scheme for precipitation now-
casting. Specifically, as illustrated in Fig. 1, multimodal me-
teorological data, including temperature, relative humidity, and
wind velocity along the longitude and the latitude, are used in

this article. Although deep learning could automatically learn
discriminative features from a large amount of meteorological
data without knowledge of meteorology, it is still challenging
to employ existing studies to make predictions. For clarity, we
explain the peculiarity of meteorologic data, such as spatiotem-
poral variance in the meteorological system, the heterogeneity
of multiple modalities, and the long-tailed distribution of pre-
cipitation as follows.

Spatiotemporal Variance: Convolution neural networks are
inherently subject to spatial-agnostic filters due to the local
invariance in images [10]. Nevertheless, this hypothesis is not
held in the meteorological system. On the one hand, precipitation
does not have a uniform distribution in the temporal and spatial
dimensions. For example, the precipitation in seaside areas could
simultaneously be more prominent than in interior regions, as
illustrated in Fig. 2. In the same region, winter precipitation is
usually smaller than summer precipitation. On the other hand,
the mechanism of precipitation in different latitudes and longi-
tudes is different. For example, Wegener–Bergeron–Findeisen
process frequently occurs in middle and high latitudes, which
refers to the rapid growth of ice crystals in mixed-phase clouds.
At the same time, the precipitation in the tropical region is
mainly produced by the collision process, also called the warm
rain process. Hence, the spatial-agnostic kernels are not exactly
applicable to meteorological data, which could be developed
nonidentically across the whole space.

Multimodal Data: In meteorology, precipitation nowcasting
involves multiple weather parameters, such as surface weather
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station data and wind profiler data. In this article, we consider in-
tegrating multimodal, including temperature, relative humidity,
and wind velocity along the longitude and the latitude. Capturing
correspondences between modalities makes it possible to gain
a more thorough understanding of precipitation nowcasting.
Nevertheless, due to the heterogeneity of multimodal [28], it
is challenging to construct complementary representations from
multiple modalities.

Long-tailed Distribution: Another significant challenge is
that precipitation follows long-tail distribution: heavy rain and
rainstorm infrequently occur, whereas rainless is an overwhelm-
ing majority. The long-tailed distributions [29] makes many
standard approaches unlikely to fit these distributions correctly
and resulting in a significant drop in less represented classes.

To solve these problems, we propose a precipitation nowcast-
ing model named SpatioTemporal Inference Network (STIN).
Beyond existing indirect methods, our method aims at learning
a more efficient representation of the underlying dynamical and
physical equations between precipitation and other multimodal
meteorological elements with an end-to-end mechanism. Specif-
ically, a spatiotemporal-aware convolutional layer (STAConv)
is first designed to extract features across different regions and
seasons. In STAConv, spatiotemporal-specific kernels are gen-
erated conditioned on the incoming spatiotemporal information.
Based on the STAConv, we build the spatiotemporal-aware
convolutional neural network (STACNN) for capturing informa-
tion from multimodal meteorological data. STACNN comprises
two subnetworks, the generation subnetworks and the stem-
subnetworks. The generation subnetworks produce parameters
spatiotemporal-specifically, and the stem-subnetworks apply the
generated kernels to capture the meaningful representations of
the multimodal meteorological data. Furthermore, a parameter-
free multimodal fusion operation is adopted, strengthening the
multimodal feature interactions across channels. Then, a Con-
vLSTM layer is employed to model the temporal information.
Finally, a linear classifier with five intensities is adopted, and a
dice loss is utilized to evaluate the long-tail distribution.

The main contributions of this article are highlighted as fol-
lows.

1) To predict precipitation intensity from multimodal mete-
orological elements, we devised a novelty and effective
framework, STIN. STIN performs multimodal meteoro-
logical elements modeling dynamically and enables the
forecast.

2) A spatiotemporal-aware convolutional layer (STAConv) is
presented, which could dynamically allocate the weights
over different periods and positions, leading to prioritizing
the most informative meteorological modal in the spa-
tiotemporal dimension.

3) An STACNN is proposed to extract multimodal spatial
dependencies. An STACNN could fuse multimodal fea-
tures without introducing significant extra parameters at
multilayer practicality and efficiency.

II. DATASETS

1) ERA5 Dataset: Scratched from the public website, the
ERA5 dataset is a comprehensive reanalysis of global climate

and weather for the past four decades, from 1979 to the present.
It provides hourly estimates for a significant number of meteo-
rological data, which comprise single level parameters and pres-
sure level parameters with 37 pressure covered from 1000 hPa
to 1 hPa. Both of them have been gridded to a regular 0.25◦

latitude–longitude grid. Since the raw dataset is enormous, we
select East Asia as the study area. Such cropped region covers
from 140◦ east to 70◦ west, from 55◦ north to the equator, with
221 × 281 resolutions. Also, the regional dataset comprises up-
per air field quantities (cropped from pressure level parameters)
and land surface data (cropped from single level parameters).
In the upper air field quantities, four variables of temperature,
relative humidity, u-component, and v-component of the wind
velocity are selected in three vertical levels: 500, 850, and
1000 hPa. The land surface data are the precipitation between
adjacent observations. It should be noticed that the values at the
grid denote the average physical quantities of a local region.

2) WeatherBench Dataset: Regriding the ERA5 data to lower
resolution, WeatherBench is presented as a benchmark of global
meteorological data for data-driven weather forecasting [30].
Concretely, they are the resolution of 5.625◦, 2.8125◦ and
1.40625◦ at 13 vertical levels. Like the ERA5 dataset, tempera-
ture, relative humidity, u-component, and v-component of wind
on the WeatherBench dataset are applied to predict precipita-
tion. Three vertical levels are considered for vertical resolution:
500 hPa is approximately at 5.5 km height, 850 hPa is about
1.5 km height, and 1000 hPa is around sea level. Moreover,
we choose the data at 1.40625◦ for horizontal resolution, with
128 × 256 resolution.

3) RainBench Dataset: The RainBench dataset, introduced
by Witt et al. [31], serves as a comprehensive multimodal
benchmark for precipitation forecasting. It comprises three cat-
egories of data: simulated satellite data, numerical reanalysis
data, and global precipitation estimates. To facilitate efficient
experimentation, all datasets were converted to resolutions of
either 1.40625◦ or 5.625◦ from their original resolutions. In this
study, we utilized the numerical reanalysis data as input and
employed the global precipitation estimates as the ground truth,
both at a resolution of 1.40625◦.

III. PRELIMINARIES

A. Dynamic Convolution

In the past years, modern neural networks have witnessed a
tremendous surge in computer vision. Considering the inherent
translation-invariant of vision datasets, the core assumption of
convolutional layers is that kernels should be shared for all
spatial locations. Given an input X and filter W, the output
Yi,j at position (i, j) of standard convolutional layers is

Yi,j = (W ∗X)i,j (1)

where ∗ denotes the convolution operator, and the filter W is
shared across spatial locations. Nevertheless, as illustrated in
Fig. 2, not all data are subject to translation invariance, especially
for meteorological data.

To broaden the application of standard convolutional layers,
researchers emerged increasing attention to dynamic convolu-
tion. Dynamic convolution filters are generated dynamically
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Fig. 3. Whole structure of STIN of our article. First, meteorological data at each observation are embedded by the STACNN. Then, based on the ConvLSTM,
the encoder–decoder framework is employed to capture spatiotemporal dependencies and generate features in the following observations. Finally, the classification
module makes predictions of rainfall intensity. “S-subnetworks” means stem subnetworks, and “G-subnetworks” means generation subnetworks.

conditioned on the input feature maps as opposed to static
counterparts. Jia et al. [32] proposed dynamic filter networks in
which a dynamic filter-generating network is devised to produce
kernels conditioned on the input. In dynamic filter networks, the
kernel is spatial-specific: for each location (i, j) of the input X,
the generated local kernel Wθ is employed to capture features
as follows:

Yi,j = (Wθ ∗X)i,j = (Gθ(x) ∗X)i,j (2)

where θ is the parameters of filter-generating network G. With
the increase of complexity, attributing to its location-specific,
dynamic convolution has more representation power and signif-
icantly boosted performance. DynamoNet [33] applied dynamic
filters to capture video-specific representation for future frame
prediction. Mildenhall et al. [34] proposed kernel prediction
networks to denoise frames with spatial-specific kernels. Ma
et al. [35] employed grouped fully connected layers to predict
convolutional weight for image recognition. Despite the fact
that dynamic convolution enables accuracy improvements, it
increases the number of network parameters and computational
complexity. Several studies have devised sophisticated dynamic
kernel generation mechanisms to handle this limitation. For
example, Li et al. [36] replaced dynamic convolution with
the dynamic convolution decomposition method, which brings
significantly fewer parameters without a performance reduction.
The involution [37] leverages shared kernels along the channel
dimension to alleviate the redundancy of parameters. In decou-
pled dynamic filter networks [38], dynamic filters are decoupled

along the spatial dimension and channel dimension to reduce the
number of parameters.

B. Batch Normalization

Batch normalization (BN) [39] has been proven the core
ingredient of modern neural networks, which is devised to
eliminate internal covariate shifts. A BN layer first normalizes
the features over a mini-batch independently and then transforms
the normalized to other scales ensuring the normalizing would
not constrain the representative of features. Formally, the BN
layer can be performed as follows:

X′ = γ
X− μ√
δ2 + ε

+ β (3)

where X and X′ are the input and output features of the BN
layer, μ and δ are the mean and standard deviation values of
input features across all locations for the current mini-batch, γ
and β are the learnable scaling factor and shift factor, and ε is a
small constant to avoid divisions by zero.

C. ConvLSTM

The ConvLSTM layer comprises memory cell stateC, hidden
state H, and three gates of the input gate, forget gate, and
output gate. Along the temporal dimension, the forget gate f
is first activated to decide which memory cell state C could be
“forgotten.” Then, the new information would be accumulated
in the memory cell state by input gate i. Last, the output gate o
would control what information will be propagated to the next
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Fig. 4. Schematic illustration of STACNN. The STACNN are based on the residual block and consist of four multimodal branches for relative humidity,
temperature, u-component and v-component of the wind velocity, and a spatiotemporal branch for solar elevation angle. “G-block” means generation block for
embedding spatiotemporal information. “S-block” means stem block for capturing spatial features given spatiotemporal information. The convolutional layer and
STAConv layer are shared between different modalities, but BN is private.

moment. Formally, given the input Fτ , the ConvLSTM can be
formulated as the following equations:

iτ = σ(Wxi ∗ Fτ +Whi ∗Hτ−1 + bi)

fτ = σ(Wxf ∗ Fτ +Whf ∗Hτ−1 + bf )

Cτ = fτ ◦Cτ−1+iτ ◦ tanh(Wxc ∗ Fτ+Whc ∗Hτ−1+bc)

oτ = σ(Wxo ∗ Fτ +Who ∗Hτ−1 + bo)

Hτ = oτ ◦ tanh(Cτ ) (4)

where “∗” stands for the convolution operator and “◦” denotes
the Hadamard product; W and b is the parameters of each gate;
σ is the sigmoid function.

IV. METHOD

A. Problem Formulation

Suppose there are s historical observations at the given times-
tamp τ . We use R, T, U, and V to denote the inputs of the
relative humidity, temperature, u-component, and v-component
of the wind velocity successively. Furthermore, Rτ , Tτ , Uτ ,
Vτ ∈ Rl×m×n represent the value at τ th observation, where
l enumerates pressure in hecto-Pascals as a vertical coordinate
and a spatial region is represented by anm× n grid. To simplify
the notation, the observation at given timestamp τ can be rep-
resented by a tensor Xτ ∈ R4×l×m×n that consists of Rτ , Tτ ,
Uτ , and Vτ . Given the previous s observations (including the
current one), the goal of precipitation nowcasting is to predict
the most likely precipitation sequence of length j in the future

P̂τ+1, P̂τ+2, . . ., P̂τ+j = F(Xτ−s+1,Xτ−s+2, . . .,Xτ ) (5)

where Pτ+1 ∈ Nm×n denotes precipitation between τ th obser-
vation and τ + 1th observation in a certain area.

B. Overview

To address the precipitation nowcasting with multimodal
meteorological data, we propose the STIN. STIN includes an
STACNN, an encoder–decoder framework, and a classification
module, as shown in Fig. 3. Specifically, considering the spa-
tiotemporal variance of meteorological data, the STACNN is
first applied to capture the spatial features of the raw multi-
modal meteorological data X ∈ R4×l×m×n from τ − s+ 1th
observation to τ th observation. The overall structure of the
STACNN is illustrated in Fig. 4, which consists of two sub-
networks, a generation subnetworks, and the stem subnetworks.
The generation subnetworks generate filters to capture the spa-
tiotemporal variance representations conditioned on spatiotem-
poral information. Then, the stem subnetworks allocate the
generated filters over each spatiotemporal location of the input,
helping the spatiotemporal-aware convolutional layer construct
the dynamic representations. Meanwhile, a multimodal fusion
strategy is exploited to fuse multimodal features at multiple
stages of the network. Formally, let F ∈ Rcf×mf×nf denote the
multimodal spatial representations, where cf is the number of
channels, and mf and nf represent the height and weight of
features, respectively. Then, given the spatial representations
Fτ−s+1,Fτ−s+2, . . .,Fτ , the spatiotemporal encoder network
is employed to model the spatiotemporal dynamics. Along the
temporal dimension, the decoder network exploits the spa-
tiotemporal representations to generate the predicting features
Hτ ,Hτ+1, . . .,Hτ+j in the next j observations. Finally, the
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Fig. 5. Schema of the STAConv. With the spatiotemporal information as
auxiliary input, we employ the nonlinear transformation f described in (8) to
generate kernels dynamically. “S” stands for the spatiotemporal information and
“X” denotes the input features.

classifier is applied to predict rainfall intensity by employing
the dice loss [40].

C. SpatioTemporal-Aware Convolutional Neural Network

This section describes our STACNN, which includes two
subnetworks, a generation subnetworks that produce kernels
with spatiotemporal information and a stem subnetworks that
applies the generated kernels to the input. The generation sub-
networks take the spatiotemporal information S ∈ Rcs×ms×ns

as input, where cs, ms, and ns are the number of channels,
height, and width of spatiotemporal information S, respectively.
It outputs spatiotemporal variance kernels Wθ parameterized
by parameters θ. The generated kernels are employed to capture
features.

1) SpatioTemporal-Aware Convolutional Layer: The stan-
dard convolution operation allocates the same weights over
different positions. The shared kernels reduce parameter load
and capture translationally invariant features, which would be
helpful in some applications, such as computer vision. Let
X ∈ RC×H×W stand for the input, where C denotes the in-
put channels and H and W represents the height and weight,
respectively, and W ∈ RC×K×K with the fixed size of K ×K
stands for the kernel, the output Yk,i,j at the kth channel on
location (i, j) is

Yk,i,j =

C∑
c=0

K∑
p=0

K∑
q=0

Wc,p,q ·Xc,i−�K/2�+p,j−�K/2�+q. (6)

It allows convolution to filter data with translation invariance,
such as images. Nevertheless, due to the spatiotemporal variance
of meteorological data, dynamic convolution is more suitable
for the precipitation nowcasting problem. Thus, spatiotemporal-
aware convolutional (STAConv) layer is developed to eliminate
the invariance. Technically, we generalize the kernels in the
classical convolution and model the spatiotemporal information
at the vertex into the generalized filters as illustrated in Fig. 5.
Specifically, given spatiotemporal informationS aligned to input
X and a kernel generation function G, the STA convolution can
be defined as

Yk,i,j =

C∑
c=0

K∑
p=0

K∑
q=0

G(Si,j)�cg/C�,p,q

·Xc,i−�K/2�+p,j−�K/2�+q (7)

where g is a hyperparameter to reduce the interchannel redun-
dancy inspired by RedNet [37].

Unlike RedNet and standard convolution filters, the kernels of
STAConv rely on spatiotemporal information, which can be en-
coded via alternative data, such as a concatenation of longitude,
latitude, and time. Previous meteorological-related work has
also recognized the importance of spatiotemporal information.
For example, Bai et al. [41] proposed a perceptron to extract
the spatiotemporal information from season, month, date stamp,
geographic longitude, and latitude. Zhao et al. [42] introduced
geo-queries to model similar semantic ingredients by embedding
different labels with spatiotemporal information. In this work,
spatiotemporal information S is generated, conditioned on a
solar elevation angle αs, which is the angle between the sun’s
rays and the horizontal plane. Specifically, benefits can be listed
as follows. On the one hand, the solar elevation angle is a
hand-crafted feature obtained through a nonlinear mapping of
temporal and spatial information, calculated as follows:

cosαs = sinΦ sin δ + cosΦ cos δ coshs (8)

where hs is the local solar time, Φ is the local latitude, and δ is
the current declination of the sun. On the other hand, the solar
radiation is the primary driving energy for the movement of
the Earth’s atmosphere, and the solar elevation angle can reflect
solar radiation intensity.

To build the entire STACNN, the encoder of the stem sub-
networks and generation subnetworks are first described. Then,
the decoder of stem subnetworks is depicted to recover the
resolution of features. For the encoder of the stem subnetworks,
we follow the same spirit as ResNet, which stacks residual blocks
for capturing different scale features. We remain all the 1× 1
convolution in bottleneck blocks of ResNet unchanged but re-
place the 3× 3 convolution with 7× 7 STA convolution. By the
way, the spatiotemporal information S should be comfortably
aligned to the input at different stages to generate kernels.

To produce spatial alignment spatiotemporal information
from the solar elevation angle, a ResNet50 network is employed
within the generation subnetworks. We take the output of 3× 3
convolution in ResNet50 bottleneck blocks as spatiotemporal
information S for which spatial and channel information inter-
weaves simultaneously, ensuring the representation capability.
Then, to span each kernel from spatiotemporal information S, a
simple nonlinear transformationG : RC 	→ RK×K×G is devised
as follows:

G(Si,j) = W2(ReLU(BN(W1Si,j))) (9)

where W1 ∈ R
C
γ ×C and W2 ∈ RK×K×G×C

γ form a two-layer
bottleneck block with a reduction ratio γ to reduce dimensions.
In a word, the spatiotemporal information generated by the
channel–spatial interactions is applied to implicitly encode pre-
cipitation patterns via channel information exchange (realized
by G). After that, the spatiotemporal information in a neigh-
borhood is aggregated dynamically. Different from us, the DY-
CNNs [43] enhances model capacity by aggregating multiple
convolutional kernels through attention mechanisms. However,
their dynamically generated convolution still conforms to the
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spatial-agnostic, which is not conducive to meteorological data
modeling.

In the decoder of the stem subnetworks, an atruos spatial
pyramid pooling (ASPP) [44] module, which is made up of
five parallel pathways with different receptive field, is first
applied to extract and fuse multiscale features. Then, to re-
cover the resolution of feature maps, we mirror the decoder in
DeepLabv3plus [44]. Concretely, the output of ASPP is upsam-
pled by a factor of four to align with the low-level features. Then,
low-level features are fed into a 1× 1 convolution to reduce the
number of channels. Afterward, we apply a 3× 3 convolution to
refine the concatenation of the high-level and low-level features.
We can obtain spatial features that could be utilized as input to
the encoder–decoder framework.

D. Multimodal Fusion

As mentioned before, the precipitation nowcasting problem
involves multiple weather elements, and four modalities are cho-
sen in this work. However, given the heterogeneity of the mul-
timodal data, some unique challenges are brought for machine
learning researchers, such as aligning features from different
sources [28].

Extensive research has been conducted on multimodal fusion.
For instance, Zhuang et al. [45] introduced additional infor-
mation to enhance spatial fusion. Guo et al. [46] proposed a
nonlinear fusion strategy for spatial fusion in the multigradi-
ent domains. TransFuser [47] developed a multimodal fusion
transformer. Nagrani et al. [48] utilized cross-attention to fuse
multimodal features. The CSMFormer [49] is designed to fuse
hyperspectral and multispectral images by combining the long-
range dependencies and the local information. Gao et al. [50]
proposed DFINet to extract self-correlation and cross correlation
from multimodal feature pairs. The ACL-CNN [51] integrate
the adversarial complementary learning strategy into the CNN
to extract the complementary information of the multimodal
data. In the MDA-NET [52], a mutual-aid classifier is used to
aggregate all the discriminative features for different modalities.
Zhang et al. [53] developed SOT-Net for strengthening the
semantic relatedness of multimodal data.

However, these methods are not well suited to our specific
task. For fusing multimodal features as in previous work, indi-
vidual STACNN could be applied to different modalities. Except
that individual networks bring heavy parameters, it also hinders
the implicit fusing of multimodal. In multiple tasks or domains,
sharing convolution layer parameters with independent BNs has
been leveraged to be effective for model adaption [54], [55].
Inspired by this, we boost this idea for dynamic convolution.
The generation subnetworks and stem subnetworks are shared
for all modalities except the normalization and transformation
of multimodal acts separately. On the one hand, we can vastly
reduce model parameters for learning features from multimodal
meteorological data. On the other hand, features from different
modalities could interact implicitly with each other through the
shared convolutional layer.

To fuse the multimodal information at multiple layers, we
adapt the channel shuffle operation [56]. Concretely, we split

the features into four groups by channels, given the four feature
maps XR, XT , XU , and XV . Then, four feature maps are
exchanged with each other as follows:

XR
new = concat

(
XR

1 ,X
T
1 ,X

U
1 ,X

V
1

)

XT
new = concat

(
XR

2 ,X
T
2 ,X

U
2 ,X

V
2

)

XU
new = concat

(
XR

3 ,X
T
3 ,X

U
3 ,X

V
3

)

XV
new = concat

(
XR

4 ,X
T
4 ,X

U
4 ,X

V
4

)
(10)

where XR
1 , XR

2 , XR
3 , and XR

4 are features of the first, second,
third, and fourth groups, respectively.

E. Encoder–Decoder Framework

Given the spatial features Fτ−s+1,Fτ−s+2, . . .,Fτ from
τ − s+ 1th observation to τ th observation, we further explore
the temporal dependencies by RNN-based models. The RNN-
based models form an encoder–decoder structure in which the
precipitation in the following few observations could be pre-
dicted successively. Here, the ConvLSTM layer is employed
as an ingredient of the encoder–decoder structure. Specifically,
at the τ th observation, the ConvLSTM layer take multimodal
meteorological features Fτ , previous hidden state Hτ−1, and
previous cell stateCτ−1 as input. In the following j observations,
the ConvLSTM layer generates predicting features conditioned
on the previous hidden state and cell state.

F. Supervised Learning

At last, a classification module is adopted to predict rainfall
intensity given Hτ ,Hτ+1, . . .,Hτ+j . With a stacked convolu-
tional layer and activation functions, the classification module
makes predictions P̂τ+1, P̂τ+2, . . ., P̂τ+j . To align the predic-
tions with input, the original P̂τ+1, P̂τ+2, . . ., P̂τ+j are upsam-
pled by a factor of four. To relieve the imposed by long-tailed
distribution, we adapt the dice loss [40] to provide supervision
information. The dice loss can alleviate biases imposed by head
classes. Given predicted categorical probability pi,j(Ŷc|X) at
pixel i, j w.r.t. its categorical i. Then, the dice loss at pixel i, j
is written as follows:

Loss =

∑C
c=1 pi,j(Ŷc|X)Yc∑C

c=1 p
2
i,j(Ŷc|X) +

∑C
c=1 Yc

. (11)

G. Theoretical Comparison to NowcastNet

The NowcastNet [57] and our method are both designed
to predict precipitation in the short term. However, the two
methods adopt distinct approaches in modeling precipitation
prediction, leading to a customized framework. In Nowcast-
Net, precipitation forecasting is viewed as video generation
that predicts future radar ds given past radar fields. A deep
generative model is introduced to generate predictions from
the physics-informed evolutions and latent Gaussian vector. At
the same time, our method addresses the task of precipitation
forecasting as a multimodal spatiotemporal prediction problem
that takes multiple meteorological data as its input and directly
predicts precipitation in the short term. The STIN is introduced
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to learn representative spatiotemporal-specific correlations be-
tween precipitation and multiple meteorological data.

V. EXPERIMENTS

To verify the effectiveness of our model, we conducted several
experiments, which can be listed as follows: First, we estimate
our model’s performance on precipitation nowcasting. For both
datasets, STIN and comparison models are trained from scratch
to predict hourly precipitation in the next six hours, which
receives hourly multimodal meteorological data from the past
six hours as input. Then, we evaluate the effectiveness of each
component in our model, including the STACNN, the multi-
modal fusion, and the encoder–decoder framework. Moreover,
extensive ablation experiments are performed to explore the
hyperparameters, such as the number of training epochs, the
scale of training data, and the learning rate.

A. Implementation

1) Experiment Settings: For the ERA5 and WeatherBench
datasets, STIN is trained for 20 epochs with the standard Adam
optimizer. The initial learning rate is set to 5× 10−4, and the
learning rate is decayed as exponential with the gamma of 0.9.
The batch size is set to 32, and the training is conducted on
eight NVIDIA RTX GPUs. The ERA5 regional dataset contains
hourly meteorological data from 2016 to 2020, and the Weath-
erBench dataset used in this article is a subset of five years
from 2014 to 2018. For both of them, the meteorological data
of the first three years are used as the training set, and that of
the fourth year and fifth year are adopted as the validation and
testing dataset, respectively. For the ERA5 dataset, a 192× 256
patch is cropped from the regional data. After that, the upper air
field quantities are normalized. For the WeatherBench dataset,
normalization is adopted on the modalities.

2) Evaluation Metrics.: This article predicts hourly precipi-
tation intensity in the next six hours, given the historical me-
teorological elements of the past six hours. To evaluate the
performance of the proposed method quantitatively, multiple
criteria are used, including the threat score (TS), the false alarm
ratio (FAR) as well as the missing alarm rate (MAR), and the
intersection over union (IoU). The TS and IoU metrics assess
the overlap between the predicted and actual precipitation areas.
The FAR quantifies the proportion of forecasted precipitation
areas where no actual precipitation occurs, whereas the MAR
signifies the proportion of missed precipitation areas within
the genuine precipitation region. Among them, TS, FAR, and
MAR are primarily used in the meteorological field, and IoU
is extensively employed in machine learning. The threshold of
precipitation intensity is illustrated in Fig. 6, drawing from the
research by Jebson [64]. IoU is defined as follows:

IoU =
P̂ ∩ P

P̂ ∪ P
(12)

where P̂ is the predictions and P is the ground truth, and ∩ and
∪ means intersection and union operations, respectively. Unlike
the IoU, which evaluates the precision of predictions, the me-
teorological metrics allow the model to make larger predictions
of precipitation intensity. In meteorology, the positive sample is

Fig. 6. Distribution of precipitation intensity in an hour on the ERA5 dataset.
We classify precipitation intensity as the threshold shown in the upper right
corner.

defined when the value at the grid point is equal to or greater
than the threshold. Contrary, when the value at the grid point
is equal to or less than the threshold, the sample is defined as
negative. Before giving the calculation of TS, FAR, and MAR,
we first introduce hits, correctnegatives, falsealarms, and misses

hits = (P >= TH)&
(
P̂ >= TH

)

correctnegatives = (P < TH)&
(
P̂ < TH

)

falsealarms = (P < TH)&
(
P̂ >= TH

)

misses = (P >= TH)&
(
P̂ < TH

)
. (13)

After that, the TS, FAR, and MAR can be defined as follows:

TS =
hits

hits + misses + falsealarms

FAR =
falsealarms

hits + falsealarms

MAR =
misses

hits + misses
. (14)

For TS, FAR, and MAR, it should be noted that the rainless is
ignored in their calculation. This article pays more attention to
the IoU and TS; other metrics are only for reference.

B. Comparsions

Several models are compared with the proposed method,
including statistical methods and deep learning-based methods.

1) Baselines. Statistical methods: Statistical methods in-
clude climatology, weekly climatology, and persistence, all pro-
posed in WeatherBench [30]. For climatology, the prediction is
the mean of precipitation over the training dataset. Except for
climatology, weekly climatology is an another straightforward
but practical method. Given the periodicity of meteorology, the
average weekly precipitation in adjacent years is highly related.
For weekly climatology, the average precipitation of each week
is first computed, and then the corresponding week takes the
average weekly precipitation as the prediction. Persistence is an
another simple method in which precipitation in the following
observations is close to the past rainfall. In this article, we take
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TABLE I
OVERALL PERFORMANCES OF THE PROPOSED METHOD ON ERA5 DATASET

the average precipitation from the past six hours as the prediction
of hourly precipitation in the next six hours.

Deep learning-based methods: To prove the effectiveness of
our method, STIN is compared with ConvLSTM, ConvGRU,
TrajGRU, PredRNN, MIM, CausalLSTM, and PFST. Although
these methods are designed for sequence forecasting problems,
for fair comparisons, they all take the temperature, relative
humidity, and wind as input to predict the following precipi-
tation. For the encoder–decoder structure, such as ConvLSTM,
ConvGRU, and TrajGRU, we follow the network architecture
proposed in TrajGRU [59] where all of them contain encoding
network and forecasting both formed by stacking RNN layers.
Apart from these, PredRNN, MIM, CausalLSTM, and PFST are
reimplementation to adapt to our task where input and output are
different.

C. Result

In this section, STIN is compared with the comparison meth-
ods on the three datasets. The results of the experiments are given
in Tables I–III, and Fig. 9, which illustrate the performance of
the comparison methods. Meanwhile, the visualization of pre-
diction errors is shown in Fig. 7. Table I reports the IoU and TS of
different methods on the ERA5 dataset. Compared with the sta-
tistical methods, STIN achieves a considerable margin of higher
overall metrics due to the dynamic of the meteorological system.
Likewise, it is seen that similar performance gains in compari-
son with deep learning-based methods. For the WeatherBench
dataset, STIN still achieves better performance than others, as
given in Table II. Nevertheless, due to the grid of WeatherBench
being bigger than the regional dataset, quantities at every grid are
smoother statistically, leading to a more imbalanced distribution
of precipitation. The more imbalanced distribution results in a
smaller margin than other methods. Different from the indirect
methods such as sequence-to-sequence learning which predict

TABLE II
OVERALL PERFORMANCES OF THE PROPOSED METHOD ON THE

WEATHERBENCH DATASET

TABLE III
OVERALL PERFORMANCES OF THE PROPOSED METHOD ON RAINBENCH

DATASET

radar echo sequences with historical radar echo maps, our work
employs multi-modal data including temperature, humidity,
wind speed, and others to predict precipitation. This is because
precipitation is a multifaceted weather phenomenon arising
from the interaction of multiple meteorological elements. Thus,
compared with the sequence forecasting methods, we devise
STACNN exquisitely for capturing multimodal spatial features
dynamically and simplifying the encoder–decoder framework.
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Fig. 7. Visualization of prediction errors is calculated by cross-entropy of each deep learning-based method. the deeper color means more error.

The performance gains can be briefly concluded that spatial
feature extraction is more significant than modeling temporal
dependencies in sequence inference problems, which could be
proved by comparing STIN with ConvLSTM. Tables I and II
also report the TS of different methods. The performance of our
method is optimal or suboptimal.

Furthermore, Fig. 9 conveys the FAR and MAR of each
method. Our model performs better than other approaches on
MAR and only falls behind PFST on FAR. STIN tries to produce
distinct decision boundaries for each level as far as possible,
whereas PFST biases the decision boundaries toward dominated
classes, resulting in fewer predictions on the tail class. On the
one hand, the fewer predictions lead to a more significant amount
of missing alarms and fewer false alarms of the tail class. On the
other hand, fewer predictions in the tail class mean larger predic-
tions in other classes, contributing to the larger false alarms in
other classes. Thus, PFST performs better on FAR but degrades

TABLE IV
RESULTS ON THE ERA5 DATASET OF EACH PRECIPITATION NOWCASTING FAR

AND MAR FOR MULTIPLE LEVELS

on MAR of the rainstorm, whereas STIN achieves better perfor-
mance on light, moderate, and heavy rain for both metrics, as
reported in Table IV. However, in practical forecasting, MAR is
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Fig. 8. Case study of performance on precipitation starting on 2019-06-17 at 23:00. Compared with other models, STIN has predicted heavy precipitation events
in eastern India across several lead times.

more significant than FAR because missing alarms are more
hazardous than false alarms, especially for extreme weather,
such as rainstorms (i.e., tail class). The mean values of TS, IoU,
MAR, and FAR overall forecast times are reported in Table III
for the RainBench dataset. The results indicate that the STIN
outperforms other methods across all metrics. These findings
suggest that the key to achieving excellent performance lies in
the elaborate structure and convolutional layer that dynamically
captures multimodal meteorological features.

As shown in Fig. 7, we visualize the prediction errors cal-
culated by cross-entropy that darker color means greater er-
ror. Our method is lighter than others, demonstrating that the
STIN achieves superior performance. The errors that grow with
sequence increases are consistent with objective phenomena
and laws. The STIN outperforms other models on the overall

sequence. Moreover, we provide a case study for comparison
with our model and other methods. Fig. 8 depicts heavy precip-
itation occurring in eastern India within the next five hours. The
ConvLSTM, CausalLSTM, and PFST fail to predict this heavy
precipitation event. The ConvGRU, TrajGRU, PredRNN, and
MIM are only able to predict heavy precipitation in a few lead
times. In comparison with these methods, STIN has predicted
heavy precipitation events across several lead times.

Analyzing the convergence of the training process for deep
models poses significant challenges due to the highly nonlinear
nature of deep models and the utilization of mini-batches in each
iteration. To attain a satisfactory point in the parameter space,
samples are divided into training and validation subsets during
the training process. The performance on the validation subset
serves as an indicator to determine whether the iteration should
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Fig. 9. FAR and MAR for deep learning-based methods on ERA5 regional
dataset, WeatherBench dataset, and RainBench dataset.

Fig. 10. (a) mIoU curves and (b) loss curves of the STIN on the ERA5,
WeatherBench, and RainBench datasets.

continue or be terminated. Fortunately, gradient backpropaga-
tion, developed within the framework of gradient descent, is a
powerful technique for achieving this objective. To validate this,
we plot the mIoU curves of the validation datasets, as shown in
Fig. 10(a). Notably, the mIoU curves consistently increase and
eventually stabilizes. Furthermore, with the assistance of the
Adam optimizer, the training process consistently converges to
a local optimum, ensuring stability. Consequently, the value of
the loss function consistently decreases until it stabilizes. To
verify this, we illustrate the loss evolution during the training
process, as depicted in Fig. 10(b). Notably, the loss consistently
decreases and eventually stabilizes.

D. Ablation Experiments

1) Different Backbone: To verify the capability of STACNN
on spatiotemporal variance, the STACNN are replaced by
ResNet50 [65] and RedNet50. It should be noticed that
ResNet50 and RedNet50 are modified to adapt the fusion
strategy with STACNN. Meanwhile, considering the input of
STACNN, including modality and solar elevation angle, the

TABLE V
COMPARISON OF DIFFERENT BACKBONES ON THE ERA5 DATASET

TABLE VI
COMPARISON OF DIFFERENT DYNAMIC LAYERS ON THE ERA5 DATASET

original ResNet50 and RedNet50 are modified to adapt to the
modification of the input tensor, which is the concatenation
of modality and solar elevation angle. As given in Table V, a
steady improvement could be observed that STACNN yields
better results than other backbones. These observations prove
that the performance gain does not come from the auxiliary
input tensor but benefits from the kernels encoded in spatial-
temporal variance. Furthermore, despite the fact that STACNNs
and RedNet share the kernels of location variant, STACNN
imports spatiotemporal information to generate kernels other
than features from itself, leading to an improvement from 39.1%
to 40.4% without more parameters and computation complexity.
To evaluate the influence of spatiotemporal information on the
backbone’s performance, we remove the spatiotemporal infor-
mation and replace it with spatial attention. As illustrated in
Table V, the performance of these alternative approaches drops
when compared with the incorporation of spatiotemporal infor-
mation. This substantiates the significance of spatiotemporal-
specific kernels generated based on spatiotemporal information
for the modeling of meteorological features.

2) Different Dynamic Layer: To investigate the effectiveness
of the STAConv, we replace it with the dynamic convolution (Dy-
Conv) proposed in DY-CNNs [43]. As indicated in Table VI, the
performance of STAConv outperforms than Dyconv. We argue
that the reason behind this phenomenon stems from DyConv
being subjected to spatial-agnostic, which is not completely fit
to the modeling meteorological data features.
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Fig. 11. Hyperparameter experiments about several hyperparameters, including the scales of the training dataset and the learning rate.

TABLE VII
COMPARISON OF DIFFERENT FUSION STRATEGIES ON THE ERA5 DATASET

TABLE VIII
COMPARISON OF DIFFERENT RNN LAYER ON THE ERA5 DATASET

3) Different Fusion Strategies: In the multimodal dimension,
we probe the effect of fusion strategies. Specifically, the channel
shuffle strategy is compared with the nonshuffle approach. The
result of the comparisons is illustrated in Table VII. Benefitting
from the channel exchanging process, the channel shuffle strat-
egy achieves better performance than the nonshuffle approach
with almost the same complexity and parameters. This observa-
tion proves that the interweaves between modality and channel
information provide abundant features for modality fusion.

4) Different RNN Layer: In Table VIII, we evaluate the im-
pact of different RNN layers on the ERA5 dataset. For fair
comparisons, each sequence model’s hidden states and convo-
lutional kernels are set to 128 and 3, respectively. It is observed
that STIN with ConvLSTM layer outperforms others in TS and
IoU. Moreover, STIN with a different RNN layer outperforms
corresponding RNN networks. For ConvLSTM, ConvGRU, and

TABLE IX
COMPARISONS OF DIFFERENT SPATIOTEMPORAL INFORMATION

TrajGRU, STIN brings 1.9%, 1.4%, and 3.2% improvement
on IoU. These improvements further prove that spatial feature
extraction is more significant than modeling temporal depen-
dencies in our tasks.

5) Different Spatiotemporal Information: To investigate the
effectiveness of the solar elevation angle, we replace it with
the directly input concatenated hs, Φ, and δ. The results are
presented in Table IX and our approach surpasses the input
concatenation evidently. We argue that the solar elevation angle
serves as a nonlinear mapping of temporal and spatial informa-
tion, effectively amalgamating these two domains. In contrast,
concatenation necessitates the model to first align temporal and
spatial information in the feature space considering heterogene-
ity, rendering it less efficient than the solar elevation angle.

6) Effectiveness of Each Component in the STACNN Model:
Ablation experiments were conducted to assess the effectiveness
of each component in the STACNN model. To investigate the
impact of the proposed STAConv and STACNN, the STAConv
was replaced with a normal convolutional layer and an invo-
lutional layer, and the structure of the STACNN was modified
to include both a single branch and a multibranch. The results
are presented in Table X. STAConv performs better than both
the normal convolutional layer and the involutional layer with
the same structure, which can be attributed to the suitability of
STAConv for meteorological data with spatiotemporal variance.
Similarly, the STACNN outperforms the others with the same
convolutional layer by effectively fusing multimodal features.
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TABLE X
ABLATION STUDIES ON THE EFFECTIVENESS OF EACH COMPONENT OF

STACNN ON THE ERA5 DATASET

E. Hyperparameter Experiments

In this section, several ablation experiments are conducted
to verify the contributions of each hyperparameter. All abla-
tion experiments are conducted on the ERA5 dataset. For each
experiment, we report the mean value of the overall forecast-
ing sequence of every modality. Other hyperparameters inherit
directly from the statements in Section V-A except for the
hyperparameter of the experiment.

Study about the scales of training data: In order to explore
the impact of the scales of training data, we train the proposed
model with different years and report the result in Fig. 11. As
the scales of training data drop, the performance of the proposed
model decrease due to the lack of enough samples to improve
the generalization.

Study about the learning rates: To analyze the sensitivity of
the learning rate, we train the proposed model with a different
learning rate, and the result is illustrated in Fig. 11. The perfor-
mance of the proposed model varies slightly as the learning rate
changes except for the FAR, which indicates that the proposed
method is robust for learning. When the learning rate equals
1e−3, the IoU and TS are slightly larger than others. Thus, we
choose the initial setting of the learning rate equal to 1e−3.

VI. CONCLUSION

In this article, STIN is proposed for precipitation nowcasting
based on historical meteorological data. Our model is divided
into three parts. In the first part, the STACNN is applied to cap-
ture the correlation between different modalities and scales. The
second part employs the encoder–decoder framework to infer
the temporal dependencies. Moreover, our model considers the
imbalance in precipitation, and dice loss is employed to provide
supervision information. The performance of the STACNN is
evaluated for predicting hourly precipitation intensity in the next
six hours, utilizing multimodal meteorological data from the
preceding six hours. The model’s performance is comprehen-
sively analyzed using four metrics: IoU, TS, FAR, and MAR.
Among them, TS and IoU metrics assess the overlap between
the predicted and actual precipitation areas. FAR quantifies the
proportion of forecasted precipitation areas where no actual
precipitation occurs, whereas MAR signifies the proportion
of missed precipitation areas within the genuine precipitation
region. These experiments on regional and global meteorolog-
ical datasets demonstrate that our model outperforms all the

baselines. For future work, we will extend our method to address
the problem of long-term prediction and focus on capturing
temporal dependencies effectively.
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