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Cam-PC: A Novel Method for Camouflaging Point
Clouds to Counter Adversarial Deception in

Remote Sensing
Bo Wei , Teng Huang , Xi Zhang , Jiaming Liang , Yunhao Li , Cong Cao, Dan Li , Yongfeng Chen ,

Huagang Xiong , Feng Jiang, and Xiqiu Zhang

Abstract—Synthetic aperture LiDAR can generate point cloud
data, which is widely used in 3-D scene reconstruction. However,
existing point cloud object recognition methods are vulnerable to
adversarial attacks, and such attacks are difficult to transfer to
the physical world. Even if adversarial perturbations are added
to physical objects, they are easily detectable by other sensors. Our
proposed method includes two modules, R-D and D-R, which gener-
ate more concealed adversarial point cloud samples by modifying
digital and physical features. The R-D module maps real-world
entities to point cloud data in the digital world and generates
adversarial samples by modifying signal amplitude values. The
D-R module constructs adversarial objects by modifying the sur-
face diffuse reflectance of the target object based on ray tracing
and correspondences between digital and physical features. Our
method is evaluated through experiments on attack effectiveness,
robustness after subsampling and transferability, demonstrating
its effectiveness, and achieving new state-of-the-art performance.

Index Terms—Adversarial attack, physical simulation, point
cloud, remote sensing image.

I. INTRODUCTION

A POINT cloud is a collection of vectors that store a series
of point information about an object’s surface in the 3-D

coordinate system of the world. This point information captures
the object’s 3-D key information and avoids the continuous
combination of irregular and complex images on the object’s
surface [1]. Different sensors capture various key information,
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such as color (RGB) and reflection intensity information (Inten-
sity). Compared to the regular format of 3-D data, point cloud
data is less affected by lighting and image quality, and it contains
less redundant data, thus significantly reducing computing and
storage costs. Point cloud data is widely used in various fields, in-
cluding 3-D matching [2], [3], multiview 3-D reconstruction [4],
[5], object detection and recognition [6], [7], [8], semantic seg-
mentation [9], [10], [11], graph tasks [12], [13], etc. In the field
of remote sensing, synthetic aperture radar generates the point
cloud data of a target by utilizing interferometric measurement
technology to image the same area of the target object twice and
forming a certain geometric relationship between the interfero-
grams and the height, wavelength, and beam direction param-
eters of the sensor [14], [15]. Consequently, point cloud-based
object recognition methods based on deep learning have become
an essential perception tool in the field of remote sensing. Recent
studies [16], [17] have found that existing 3-D point cloud
recognition algorithms are vulnerable to adversarial attacks,
where attackers use a set of artificially generated point cloud
data that is difficult for humans to distinguish to mislead deep
learning network models for point cloud recognition, resulting in
significantly reduced recognition performance. Currently, point
cloud adversarial samples are mainly generated by moving the
spatial coordinates of points or adding new points [18]. For
example, Liu et al. [19] borrowed the idea of 2-D adversarial
attacks and proposed a 3-D adversarial attack method. This
method perturbs the spatial coordinates of points instead of pixel
values and evaluates the perturbations under the infinity norm
and the L2 norm. In contrast, Xiang et al. [20] generated adver-
sarial samples by adding independent adversarial points or point
clusters. These attack methods are mainly based on the digital
world and assume that attackers can not only move some point
data in the point cloud data coordinates, but also accurately add
point data at a certain coordinate. They are not easily transferable
to physical world attack testing [21]. For systems that operate in
the physical world, such as mapping physical entities to the dig-
ital world and constructing corresponding adversarial samples,
and then capturing them through sensors to mislead the model’s
recognition and decision-making [22], is a very challenging
problem.

The substantial differences between remote sensing [23]
and autonomous driving point clouds [24] necessitate
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Fig. 1. Architecture of the Cam-PC. The Cam-PC consists of two basic modules, R-D and D-R, to bridge the real and digital worlds. The details of both modules
are zoomed in Figs. 2 and 3.

tailored adversarial attack methods for each domain. Remote
sensing point cloud data necessitates human intervention and
fusion with images to reconstruct geospatial information
three-dimensionally [25]. The quality of this data critically
influences the structural reconstruction of target objects. Despite
sharing preprocessing steps with autonomous driving point
clouds, like positional correction, remote sensing point clouds
uniquely require manual control points, or image-referenced
positional adjustments. These distinctive attributes pose
challenges for directly employing certain adversarial attack
methods—such as altering point cloud positions—developed
for autonomous driving scenarios [26]. Recognizing these
complexities, our proposed Cam-PC method opts for a subtler
strategy of modifying point cloud data’s reflectance intensity to
create adversarial perturbations, thus effectively addressing the
intricacies associated with remote sensing data.

In response to the aforementioned issues, we propose a novel
adversarial point cloud attack framework. Unlike the afore-
mentioned methods that directly interfere with the coordinate
information of point cloud data by adding perturbation points
or modifying 3-D coordinates, the proposed method does not
directly modify the coordinate information of point cloud data.
Instead, it modifies specific additional attribute information and
attempts to associate the modified data with a simulated physical
environment for attack testing. As illustrated in Fig. 1, the
proposed method consists of two important components: 1) the
R-D module; and 2) the D-R module, which aim to establish a
relationship between the digital world and the physical world.
The R-D module is designed to convert physical world entities
into point cloud data in the digital world. The key design of
this module is to generate corresponding perturbation points
by modifying the signal amplitude of the data points while
keeping their 3-D position coordinates unchanged, based on
the acquired point cloud data from the physical world, i.e.,
to generate point cloud data adversarial samples for the cor-
responding entities. The D-R module is designed to convert
adversarial point cloud data in the digital world into target
physical entities in the physical world. The key design of this
module is to use the ray tracing principle to find the correspon-
dence between the data points in the digital world and the target
physical object in the real world, i.e., to construct the adversarial
samples of point cloud data migrated to the simulated physical
environment.

The main innovations of this article are summarized as fol-
lows.

1) Our proposed method, Cam-PC, bridges the real and
digital worlds by enabling the generation of point cloud
adversarial samples that can be used to attack both LiDAR
and remote sensing radar.

2) In the digital world, point cloud adversarial samples are
commonly generated by modifying the point’s 3-D po-
sition coordinates or adding perturbation points. Thus,
we propose a new module, R-D, to generate adversarial
samples by altering the signal amplitude values of point
cloud data.

3) In the real world, generating adversarial point cloud ex-
amples often involves modifying the target physical en-
tity or sensor directly or injecting false information into
the real point cloud signal, which is complicated and
uncontrollable. Thus, we propose a new module, D-R,
to generate adversarial objects by modifying the surface
diffuse reflectance of the target object.

4) We conduct a series of experiments to evaluate the per-
formance of our proposed Cam-PC algorithm. The results
demonstrate that Cam-PC achieves new state-of-the-art
performance in terms of attack effectiveness, robustness
after subsampling, and transferability.

II. RELATED WORKS

A. Object Detection for Point Cloud

Deep learning-based point cloud object recognition methods
refer to the use of multilayer neural networks to automatically
extract object feature information, thus improving recognition
performance. Currently, deep learning-based point cloud object
recognition methods can be divided into three categories [27],
[28]: 1) projection-based methods; 2) voxel-based methods; and
3) point-based methods. Projection-based methods usually use
projection to obtain multiview data of objects in 2-D space,
and then reproject the features to 3-D space for aggregation to
achieve point cloud object recognition, such as [29] and [30].
However, the projection of point cloud data onto 2-D images will
lose the feature information of objects in other spaces, making
it difficult to further improve recognition performance. In order
to fully retain the shape information of 3-D data, voxel-based
methods divide the point cloud space into multiple regular
subspaces called voxels and classify objects in these subspaces.
For example, the Voxnet model [31] generates a volumetric
occupancy grid in the voxel space using sliding boxes. In the
voxel space, a 3-D convolutional neural network is used to
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extract the recognition features of the object. Voxelnet [32]
divides the point cloud space into equally spaced voxels, and then
uses multiple voxel feature encoding layers [Voxel Feature En-
coding (VFE)] to extract features for each nonempty voxel space.
Finally, voxel features are aggregated through 3-D convolutional
layers to obtain a high-dimensional feature representation of the
object. However, higher resolutions will increase computation
and processing time, leading to poor real-time performance,
while lower resolutions will bring quantization errors and limit
recognition performance. Compared to projection-based and
voxel-based methods, point-based methods design a series of
models with stronger feature expression capabilities and directly
learn features on point cloud data, achieving end-to-end object
recognition. For example, PointNet [33] integrates models to
achieve spatial transformation and feature alignment on point
cloud data, and then uses maximum pooling symmetric func-
tions to fuse the most significant features in local features.
However, the PointNet model only learns the spatial encoding
of isolated points and cannot effectively capture local structural
information of point clouds. PointNet++ [34] is an improved
model that can achieve spatial transformation invariance of point
cloud data, and has achieved good results in performance and
accuracy. Currently, point-based methods have become a main-
stream point cloud object recognition method, and this article
will use two classic models, PointNet and PointNet++, to con-
duct experiments. Among them, the PointNet model will be used
to evaluate the adversarial point cloud generation algorithm, and
the PointNet++ model will be used to test the transferability of
adversarial samples.

B. Adversarial attacks for Point Cloud

Adversarial attacks on point cloud data refer to the generation
of adversarial samples that add false signals to real data in order
to disrupt model detection results. In physical attacks, adversar-
ial point cloud samples are generated by perceiving adversarial
physical objects or injecting false point clouds [35], mainly
targeting LiDARs. Adversarial physical objects are generated by
attackers based on digital point cloud samples using 3-D printing
technology, and can effectively evade detection by LiDARs.
Adversarial object generation methods such as [36] and [37]
have achieved similar results. However, the attack method of
physical objects requires placing 3-D printed adversarial objects
in the scene, which is easily noticed and can lead to attack failure.
Adversarial point cloud samples are generated by attackers
intercepting and tampering with part of the laser signal in the
process of scattering back to the radar based on the ranging
principle of LiDARs, i.e., injecting false node generation. Attack
methods such as [38], [39], and [40] can cause the vehicle control
system to execute emergency braking instructions when driving,
or freeze in place when encountering traffic lights. Black-box
attack methods such as [41] take advantage of the blind spots
of LiDARs when sensing vehicles that are partially obstructed,
reducing the number of injected false point cloud signals and
attacking multiple detection systems. However, this method
requires the use of high-precision equipment to capture and
emit LiDAR signals in real-time, which is difficult to operate
in complex real-world environments.

III. METHODS

We introduce a novel method for generating adversarial ex-
amples tailored to remote sensing point clouds, as depicted in
Fig. 1. This approach seamlessly generates adversarial entities
in the physical domain through the utilization of two crucial
modules, R-D and D-R, without necessitating the addition of
perturbation points or alterations to 3-D coordinates. The R-D
module enables the transformation from physical entities to
digital point cloud data by leveraging gradient-based techniques
and a binary search algorithm for adaptive balancing factor
adjustment, thereby producing perturbations for target samples
in accordance with their distinctive features. Conversely, the
D-R module facilitates the conversion of digital adversarial point
cloud data into physical domain target entities by employing ray
tracing principles to ascertain correspondences between data
points in the digital sphere and real-world target objects, thus
providing a foundation for migrating digitally crafted adversarial
perturbations into the physical environment. All the notations
related to this article are summarized in Table I.

A. R-D Module: From Real World to Digital

Remote sensing-based point cloud data represents the phys-
ical world as sensed by radar sensors through electromagnetic
waves. Each point within the point cloud corresponds to an echo
signal received by the sensor, encompassing both the signal’s
phase center coordinates and amplitude. In the remote sensing
domain, point cloud data containing n points is denoted as
X ⊂ Rn×4, with each point x ∈ R4 represented as a vector
[xs, rs, ss, As]. Here, xs, rs, ss signify the signal’s azimuth,
range, and elevation, respectively, while As indicates the sig-
nal amplitude, reflecting the imaging target’s characteristics.
Leveraging this property, we propose a method for generating
adversarial samples by altering the point cloud signal amplitude.
This approach introduces a meticulously designed perturbation
p ∈ Rn×1 to the fourth dimension of the pristine point cloud
x ∈ X ⊂ Rn×4, resulting in the adversarial sample x′, denoted
as x′ ← x⊕ p.

As illustrated in Fig. 2, the process of creating digital-world
adversarial point clouds involves three key steps: 1) collecting
clean point clouds from the target using interferometric mea-
surement techniques; 2) applying gradient-based optimization
in conjunction with binary search algorithms for adaptive ad-
justment of the balancing factor λ, iteratively deriving minute
perturbations for the signal amplitude of each point in the point
cloud data; 3) employing threshold filtering operations to retain
only significant perturbation points, preserving the adversarial
efficacy of the point cloud attack while reducing the number of
perturbation points, thus establishing a foundation for generating
adversarial samples in physical environments.

1) Adversarial Perturbation: In the adversarial sample
generation process, we adopt the Euclidean distance as
a metric to discretely control and generate subtle, yet
effective perturbations. The perturbation magnitude can
be denoted as ‖p‖

2
=
√∑n

i=1 p2
i
. The objective functions

for targeted and untargeted attacks are formulated as
follows:
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TABLE I
GENERAL NOTATIONS

Fig. 2. Overview of R-D module.

min ‖p‖
2
, s.t.F (x⊕ p) = t′ (1)

min ‖p‖
2
, s.t.F (x⊕ p) 	= t (2)

where t′ denote the target label for targeted attacks, t represent
the true label of the clean sample, and F (•) signify the trained
classifier. The optimization problems for these two objective
functions are challenging to solve directly. Therefore, we trans-
form them into gradient-based optimization algorithms

min {L
adv

(x⊕ p) + λ ∗ ‖p‖2} (3)

In terms of the target attacks, L
adv

(x′) = Max{Maxi	=t′

{Z(x′)i} − Z(x′)t′ , 0}. For the nontargeted attacks,L
adv

(x′) =
Max{Z(x′)t −Maxi 	=t{Z(x′)i}, 0}. In both cases, the Z(x)i
denotes the ith element of the logit output produced by the
classifier.

2) Balance Factor Update: The selection of the balance fac-
tor λ in the R-D module is crucial as it affects both the success
rate of the attack and the magnitude of the added perturbation. To
generate a minimal perturbation with high attack effectiveness,
we propose an adaptive binary search algorithm to adjust the
balance factor in each iteration. The algorithm initializes the
balance factor λ and its upper and lower bounds (λupper and
λlower), and sets the number of search iterations to eps. In each
iteration, the algorithm adjusts the balance factor based on the
size of the perturbation generated by the optimization process.
If the current balance factor results in a smaller perturbation,
the lower bound of the balance factor is updated to the current
value λ, and the average of the upper and lower bounds is used

Algorithm 1: Generate Adversarial Point Cloud Samples in
Remote Sensing Applications.

as the next balance factor. If the current balance factor does not
result in a smaller perturbation, the upper bound of the balance
factor is updated to the current value λ, and the average of the
upper and lower bounds is used as the next balance factor. The
number of iterations is determined based on the attack results,
and it will automatically stop once successful. The purpose of
doing this is to ensure that the added perturbation is minimal.
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Fig. 3. Overview of D-R module.

The complete algorithm for generating adversarial point clouds
for remote sensing imaging is presented in Algorithm 1.

B. D-R Module: From Digital Back to Real World

In order to convert our adversarial example generation to
physical scenarios, we introduce the principle of ray tracing to
construct adversarial objects by directly modifying the diffuse
reflectance of the target object surface. The specific process is
shown in Fig. 3.

Ray tracing is the process of tracking the path of rays in a
scene to obtain multiple reflection signals of the rays interacting
with objects in the scene, thus enabling the determination of the
correspondence between each point in the point cloud data and
the corresponding position on the object surface. Since tracing
electromagnetic wave rays emitted by radar is still challenging,
it is necessary to conduct tracing in a physical coordinate system.
The details of the process are as follows.

Step 1: A physical coordinate system is established for the
modeling of the scene. The 3-D scene where the target is located
is created as shown in Fig. 3, where the x axis represents the
azimuth, the s axis represents the elevation, and the r axis
represents the distance. Second, an orthogonal projection camera
is defined to simulate the radar sensor, which is located on a plane
formed by thex and s axes. At the same time, the plane where the
sensor is located is also the imaging plane of the signal. Finally,
the sensor does not need to move to obtain information about the
target in the azimuth direction. Instead, a static system is used
to emit multiple parallel rays in the target direction, directly
obtaining simulated radar data.

Step 2: Trace the scene objects. In the 3-D scene, two spherical
objects were placed as shown in Fig. 3. The ray tracing process
performs the following operations for each pixel on the sensor
plane. First, a main ray perpendicular to the plane is created
for the pixel center with azimuthal position xp and height
position sp. Next, the ray intersects with object A along the
path, producing intersection point #1. In this case, if there are
multiple intersection points, the closest point to the ray origin is
selected with the coordinates (xp, r1, sp). Next, a shadow test

is performed. A ray is cast from intersection object #1 towards
the signal source. If the ray is interrupted by another object,
the intersection point is in shadow; otherwise, it is illuminated.
Finally, based on the reflection type, specular or diffuse, of the
point, the corresponding signal amplitude value is calculated in
(4) and (5) as

Id = Fd · Isig · ( �N · �L)Fb (4)

Is = Fs · ( �N · �H)
1
Fb (5)

where Fd is the diffuse reflection coefficient, Isig is the intensity
of the incident signal, �N is the surface normal vector, �L is
the normalized vector pointing to the signal source, and Fb is
the surface brightness factor with a default value of 1. Fs is
the specular reflection coefficient. In terms of SAR sensors,
�H is the halfway vector between the vector �L pointing to
the signal source and the surface normal vector �N . Fr is the
roughness factor that defines the sharpness of the specular
highlight.

If a secondary reflection occurs at object A, the reflection
direction is obtained based on both the primary ray and the
normal vector at point#1 on object A. Then, a new ray is shot in
this direction and intersects with object B at point #2. Another
shadow test is performed to determine if this point is illuminated.
To obtain the coordinates of the secondary reflection, a focusing
ray parallel to the primary ray is created starting from point #2.
This ray intersects with the sensor plane at point (x0, s0), and
the coordinates of the second reflection signal can be calculated
in (6)

xs =
x0 + xp

2
rs =

r1 + r2 + r3
2

ss =
s0 + sp

2
· (6)

The amplitude of the signal for the second reflection can be
weighted according to the reflection coefficient of object A. To
continue searching for the third reflection, a new secondary ray
is defined at intersection point #2. If it intersects with object
B, another focusing ray is used to search for the coordinates of
the third reflection signal. This process is repeated until the set
upper limit for the number of reflections is reached.
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In addition, each point of the point cloud can approximately
represent the information of a small rectangular area on the
surface of the object, determined by the sensor’s resolution
and its relative position to the target object. Second, the sur-
face’s diffuse reflectivity is modified by using the mapping
relationship between the signal amplitude of the point cloud
data and the diffuse reflectivity of the object’s surface, i.e.,
Diffuse = f(Amplitude). Therefore, the diffuse reflectivity
of the adversarial object’s surface region corresponding to the
sensitive point can be obtained by the signal amplitude. Further-
more, for objects with different materials, specific materials can
be used to cover the surface to set the modified area’s diffuse
reflectivity to the desired value. Thus, an adversarial object can
be obtained by modifying the surface’s diffuse reflectivity.

IV. MATERIALS

A. Simulation Tool

The RaySAR [42] simulation tool is utilized to construct
various 3-D object models, such as buildings, and generate point
cloud data for these objects using the included simulation radar
sensors. Additionally, based on the world coordinate system
of the constructed 3-D objects, the software can establish a
correspondence between the 3-D objects and the point cloud
data locations. When rendering the 3-D objects, the simulation
tool can output multiple sets of data. Each set of data contains
not only information related to the radar signal, but also the
coordinates of the intersection point between the signal and the
3-D object. Each set of data contains nine elements, which can
be represented as a vector

Ss = [xs, rs, ss, As, bs, fs, Xi, Yi, Zi] . (7)

When rendering the modeled 3-D object, the simulation tool
can output multiple sets of data. Each set of data includes
nine elements represented by a vector, comprising information
related to the radar signal and the coordinate information of the
intersection point between the signal and the corresponding 3-D
object. The first six dimensions represent the information of the
radar signal detected by the sensor. xs, rs, and ss represent the
azimuth, range, and elevation of the radar signal phase center,
respectively.As indicates the amplitude of the detected signal, bs
represents the bounce level corresponding to the detected signal,
and fs indicates the flag for marking specular reflections. The
last three dimensions, Xi, Yi, and Zi, represent the coordinates
of the intersection point between the 3-D object corresponding
to the radar signal in the world coordinate system.

B. Data and Classifier

The choice to utilize remote sensing point cloud data for
experimental validation of our proposed approach was motivated
by its primary function in geospatial information extraction and
analysis. Applications such as terrain modeling and vegetation
classification demand a high level of detail and precision in data
representation, contrasted with autonomous driving data that pri-
marily serves perception and decision-making tasks like obstacle

Fig. 4. Three steps of simulated entities.

TABLE II
PARAMETER SETTING OF SIMULATED STEP ENTITIES

detection and path planning. Remote sensing applications neces-
sitate larger ground coverage and thus, entail the reconstruction
of objects of interest–such as buildings and trees–at varying
levels of detail. This level of detail is critical in comprehending
the structure, functionality, and interrelation of these objects.
Therefore, to emulate the inherent complexity and detail orien-
tation of remote sensing data, we employed a simplified model of
a building for our experimental verification. This strategic choice
has enhanced the relevance and applicability of our findings in
practical, real-world scenarios.

In order to generate the experimental dataset, three types
of simulated entities were first created using RaySAR. These
entities consisted of rectangular prisms and were arranged in
different quantities (1, 2, or 3). Specifically, one entity was a
rectangular prism with dimensions of 40× 20× 40, denoted as
“Step1;” two entities were constructed by combining a rect-
angular prism with dimensions of 20× 20× 20 and another
with dimensions of 20× 20× 40, denoted as “Step2;” and three
entities were constructed by combining rectangular prisms with
dimensions of 12× 12× 12, 12× 12× 24, and 12× 12× 36,
respectively, denoted as “Step3.” These entities were positioned
on a horizontal plane, as shown in Fig. 4. The reflection parame-
ters, environmental conditions, and material information needed
to model the entities and the ground are shown in Table II. These
parameters affect the signal amplitude of the point cloud data
collected by the sensor.

During rendering, the simulated radar sensor was placed on a
circular path centered at the origin (0, 0, 0) with a radius of 60
and a 45° angle with respect to the horizontal plane. The sensor’s
position remained fixed while the models were rotated around
the vertical axis passing through the origin, generating a new
model every 1◦ of rotation. This process was repeated 360 times
for each of the three simulated entities, resulting in 1 sample
for each angle with respect to the sensor. Finally, RaySAR was
used to render the models and collect data, and the first four
dimensions of the RaySAR output were extracted to generate
point cloud data samples.

The resulting point cloud data samples contained not only
information on the radar signals reflected from the target objects,
but also information on the signals reflected from the nontarget
objects. It should be noted that when electromagnetic waves
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are reflected from the nontarget objects multiple times before
reaching the radar target of interest, they carry less information
of interest. To effectively generate adversarial samples, only
the point cloud data with a single reflection was retained, and
the remaining data was filtered out. After preprocessing, the
resulting dataset consisted of 360 × 3 samples. These samples
were used to train a PointNet classifier for the experiments.

For training the PointNet classifier for target recognition and
attack, the dataset was divided into training and testing sets
with a ratio of 80: 20, respectively. The PointNet classifier’s
sampling parameter was set to 512 with random and furthest
distance sampling. The classifier was then trained, resulting in
a training accuracy of 98.1% and a testing accuracy of 99.5%.
In addition, each type of sample was sorted in increasing order
according to the rotation angle, and every fourth sample was
selected, resulting in a total of 90 samples used to generate
adversarial samples (which accounts for 1/4 of the same type
of dataset), with an average of 2564, 2188, and 1317 points for
each category, respectively.

V. RESULTS

In this section, the evaluation of the algorithm covers the
attack performance of the generated adversarial samples, the
robustness of the algorithm under different sampling conditions,
and its transferability.

A. Attack Performance

To evaluate the effectiveness of the attack algorithm, the L2
norm was utilized as the metric for perturbation. A total of 90×3
adversarial samples were generated to attack the classifier under
targeted and untargeted settings. The binary search algorithm
was set to perform 10 iterations, while the optimization process
was set to run for 200 iterations.

In remote sensing point cloud applications, adversarial ex-
amples refer to intentionally designed small perturbations that
can mislead or deceive machine learning models based on
point clouds, causing them to make incorrect predictions or
classifications. These perturbations are often difficult to detect
but are sufficient to generate significant errors in the model’s
output. Cam-PC generates adversarial samples for attacking 3-D
point cloud recognition algorithms by modifying the diffuse re-
flectance of object surfaces, thereby altering the signal amplitude
values of the point cloud data. In this process, the 3-D point
cloud recognition algorithm misclassifies the target object as
either an incorrect object or a specified object. For example, in
practical scenario applications, specific materials are used to oc-
clude surfaces at specific positions of a core building, changing
the surface’s diffuse reflectance and generating perturbed point
clouds as adversarial samples. This manipulation causes the
recognition algorithm to identify the core building as a common
scene. The attacker’s objective is to generate adversarial samples
by modifying the diffuse reflectance of object surfaces, with
the capability to induce erroneous outputs or targeted outputs
from the attacked algorithm, corresponding to nontargeted at-
tacks and targeted attacks, respectively. The attacker possesses
knowledge of the target object’s point cloud data, has sufficient

computational power to compute sensitive points corresponding
to the target point cloud, and has access to the target object to
obtain the material with the desired diffuse reflectance. However,
the attacker lacks knowledge of the internal information and
parameters of the attacked model and instead employs training
models to generate adversarial samples and carry out attacks
against the model.

1) Targeted Attack: This section is to evaluate the perfor-
mance of the algorithm in targeted attacks. The attack target
for each category was set as the other two categories, and the
experimental results were presented from the perspectives of
attack success rate and perturbation size. The attack results are
shown in Table III. From the perspective of attack success rate,
some adversarial samples were able to successfully attack under
various attack settings, indicating that the proposed adversarial
point cloud generation algorithm is effective in targeted attack
scenarios. Particularly, the adversarial samples with the true
categories of Step 1 and Step 2 achieved higher attack success
rates, while the attack success rate for the true category of Step
3 was relatively lower. This result indicates that the difficulty
level of generating adversarial samples varies for different attack
settings. From the perspective of perturbation size, considering
the large number of points in each point cloud, we can infer
that the perturbations of the generated adversarial samples were
relatively small by observing the three perturbation metrics in
the last three columns of the table. In remote sensing point cloud
applications, adversarial examples are intentionally designed
small perturbations that mislead point cloud-based machine
learning models, causing erroneous predictions or classifica-
tions. These imperceptible perturbations can have a significant
impact on the model’s output. In this article, we generate
adversarial examples by modifying the signal amplitudes of
some point cloud data. In remote sensing point cloud appli-
cations, adversarial examples are intentionally designed small
perturbations that mislead point cloud-based machine learning
models, causing erroneous predictions or classifications. These
imperceptible perturbations can have a significant impact on the
model’s output. In this article, we generate adversarial exam-
ples by modifying the signal amplitudes of some point cloud
data.

2) Nontargeted Attack: This section aims to evaluate the
performance of the proposed algorithm in the context of non-
targeted attacks. Similar to targeted attacks, we present exper-
imental results from two aspects: 1) attack success rate; and
2) perturbation size. Adversarial samples were generated for
each class of samples and subjected to nontargeted attacks, and
the attack results are shown in Table IV. As indicated by the
data in the second column of Table IV, the attack success rate
of both Step 1 and Step 2 adversarial samples reached 100%,
while more than half of the Step 3 adversarial samples could
be successfully attacked. This demonstrates the effectiveness
of the proposed adversarial point cloud generation algorithm
under the nontargeted attack scenario. Moreover, overall, the
success rate of nontargeted attacks was higher than that of
targeted attacks. It can be observed from the last three columns
of Table IV that the perturbation size of the generated adversarial
samples was relatively small, considering the large number of
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TABLE III
EVALUATION OF SUCCESS RATE AND PERTURBATION MAGNITUDE FOR TARGETED ATTACKS

TABLE IV
EVALUATION OF SUCCESS RATE AND PERTURBATION MAGNITUDE FOR

NONTARGETED ATTACKS

Fig. 5. Visualization of clean and adversarial samples for the attack. (Left)
Clean sample. (Right) Adversarial sample.

Fig. 6. Comparison of signal amplitude before and after the attack.

points in each point cloud. This further indicates that the gen-
erated perturbation by the proposed algorithm has good attack
stealthiness.

3) Visualization: This section aims to provide a more intu-
itive understanding of the generated adversarial samples. We
visualize the clean sample and the adversarial sample with Step
3 as the attack target, both of which have a rotation angle of
120° and contain 2686 points, as shown in Fig. 5 Left and Fig. 5
Right, respectively. The color depth of the points represents
the magnitude of the signal amplitude. The distribution of data
in the figures reveals the geometric features of the samples,
while the color differences between the points in the two figures
indicate the position and magnitude of the added perturbations.
To accurately observe the changes in the signal amplitude before
and after adding perturbations, we visualize the signal amplitude
of the clean and adversarial samples in a line chart, as shown in
Fig. 6. The yellow and red lines represent the signal amplitude of
the clean sample and the adversarial sample, respectively, while
the blue line represents the perturbations added to each point.
Most of the points in the blue line have only small fluctuations,
indicating that the generated perturbations are relatively small.

When the perturbations represented by the blue line are added to
the clean sample, the resulting adversarial sample represented
by the red line almost overlaps with the clean sample represented
by the yellow line, indicating that the generated adversarial
sample is very close to the clean sample and is not easily
detectable.

4) Robustness: In this section, the robustness of point cloud
adversarial samples after sampling is evaluated using the fur-
thest point sampling algorithm (FPS). The majority of current
deep learning-based methods for point cloud recognition require
preprocessing sampling of the data before classification. Thus,
it is worth studying whether adversarial samples maintain their
attack effectiveness after sampling. In the experiment, a sample
with a true class of Step 3 and an angle of 60° was selected, and an
untargeted adversarial sample was generated using Algorithm 1.
Due to the binary search method used in the algorithm to search
for the minimum perturbation factor, the generated untargeted
adversarial sample had the minimum perturbation. However,
despite the sample successfully misleading the classifier, the
sample’s confidence was low (49.83%). To avoid the influ-
ence of the adversarial sample’s confidence on the sampling
experiment’s results, a high-confidence adversarial sample was
also generated for the above clean sample to form a control
experiment with the low-confidence adversarial sample. The
high-confidence adversarial sample was generated by setting
a stopping criterion for the algorithm, which stopped iterating
when the algorithm produced an adversarial sample with attack
effectiveness and confidence above a specific threshold (set
to 90% in this article). The resulting adversarial sample had
a confidence of 95.93%, and compared to the low-confidence
adversarial sample, this sample had a larger perturbation.

This section presents the visualizations of the changes in the
adversarial samples before and after sampling. We visualize the
changes in the distribution of point cloud data of low-confidence
adversarial samples with decreasing sampling rates, as shown in
Fig. 7. We use PointNet to perform five identifications for both
the adversarial and clean samples at different sampling rates,
and obtain the number of successful attacks on the adversar-
ial samples and the number of correct identifications on the
clean samples at different sampling rates, as shown in Fig. 8.
Furthermore, we obtain the average confidence score of the
adversarial samples that were identified as incorrect classes and
the average confidence score of the clean samples that were
correctly identified, as shown in Fig. 9. To avoid uncertainty
due to random sampling, we perform five identifications for each
sample at the same sampling rate.

The green line in Fig. 8 shows that, despite the decreasing sam-
pling rate, the classifier is still capable of correctly recognizing
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Fig. 7. Features variation of the target in point cloud data at different sam-
pling rates. In this case, x, r, and s represent azimuth, distance, and elevation,
respectively.

Fig. 8. Effect of sampling rates on adversarial attack success and clean sample
recognition.

Fig. 9. Confidence levels of misidentified adversarial samples and correctly
recognized clean samples under different sampling rates.

the sampled clean samples. Similarly, the confidence level of the
sampled clean samples, shown in the green line of Fig. 9, remains
largely unchanged. Strong robustness in identifying clean sam-
ples under sampling conditions is demonstrated. The orange line
in Fig. 8 reveals that, as the sampling rate decreases below 80%,
the number of successful low-confidence adversarial sample at-
tacks gradually decreases, and such attacks cannot be successful
when the sampling rate is below 80%. The blue line in Fig. 8
shows that high-confidence adversarial samples are still capable
of successfully attacking the classifier under different sampling
rates. The experimental results demonstrate that the attackability
of adversarial samples is affected by sampling, and the lower
the sampling rate, the weaker the attackability of adversarial
samples. The robustness of adversarial sample attacks under
sampling conditions must be considered by attackers.

TABLE V
ADVERSARIAL SAMPLE ATTACK RESULTS ON POINTNET++ CLASSIFIER

GENERATED BY THE ADVERSARIAL PERTURBATION METHOD

B. Transferability

In this section, we verify the transferability of radar point
cloud adversarial samples. In this experiment, 512 points were
sampled from each targeted and nontargeted adversarial sample
generated. Table V presents the results of attacking PointNet++
using the two types of sampled adversarial samples. The success
rates of the first two attacks under each real label in the table
indicate that most of the adversarial samples cannot induce
PointNet++ to recognize them as the specified class. These
findings suggest that adversarial samples generated based on
PointNet are not effective for launching targeted attacks on
PointNet++. Furthermore, the success rate of nontargeted attacks
is only slightly higher.

In addition, the success rates of adversarial samples of differ-
ent real classes show that the attack success rate of adversarial
samples with real class Step 3 is significantly higher than the
other two classes, implying that different types of adversarial
samples have varying attack effects on PointNet++. However,
overall, the success rate of adversarial samples generated based
on PointNet attacking PointNet++ is low, indicating weak trans-
ferability of adversarial samples.

C. Physical Environment Attack Simulation

It can be seen from the blue line that the signal amplitude of
each point in the clean sample is the same. From the green line,
it can be seen that most of the added perturbations are relatively
small, with only a few points having large perturbations.

In order to verify the feasibility of the proposed method for
constructing adversarial objects in Section III-B, this experi-
ment conducted nontargeted attacks on a selected sample. For
targeted attacks, all steps were the same except for the generated
adversarial point cloud in the digital world, and thus further
elaboration is omitted. A sample was selected from the dataset
for the experiment. Specifically, a clean sample with a real label
of Step 1 and an angle of 0° was chosen. This sample contains
1775 points, as shown in Fig. 10 Left. The corresponding 3-D
object has two features: 1) each face of the object is parallel to the
coordinate plane, making it easy to determine the modification
locations required to construct an adversarial object; 2) the rays
emitted by the sensor only intersect with the upper and side
faces of the object, and the angle between the sensor and these
two faces is 45°. This ensures that the signal amplitude of each
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Fig. 10. Visualization of a 0° sample with a single step: (Left) Clean sample. (Middle) Adversarial sample (with full perturbation). (Right) Adversarial sample
(with minimal perturbation).

Fig. 11. Signal amplitude of the sample.

point received is the same, so the relationship between diffuse
reflectance and signal amplitude only needs to be considered
in one case. Next, an adversarial sample was generated from
the selected sample and filtered. An adversarial sample with
nontargeted attacks was generated from the clean sample, and
this adversarial sample was recognized by the PointNet classifier
as belonging to Step 2 with a confidence score of 97.81%, as
shown in Fig. 10 Middle. In the filtering process, the threshold
value of perturbation ξ was set to 0.125, and the adversarial
sample was filtered accordingly. The filtered adversarial sample
only retains perturbations of six sensitive points, as shown in
Fig. 10 Right. This sample still maintains a strong attack effect,
as it is recognized as belonging to Step 2 with a confidence
score of 89.57%. It can be used to construct an adversarial
object.

To accurately display the signal amplitude changes of the
samples in Fig. 10, a line chart in Fig. 11 is used to visualize
the signal amplitudes of the three samples. The blue, green, and
red lines represent the signal amplitudes of the clean sample, the
original adversarial sample, and the filtered adversarial sample,
respectively.

From the red line, it can be seen that the filtered adversarial
sample retains only a very few points with perturbations greater
than the threshold value. Furthermore, the mapping relationship
between diffuse reflectance and signal amplitude of the object
surface was obtained. In RaySAR, different diffuse reflectance
values (0.0–1.0) were set for the 3-D object model, and point
cloud data was rendered to obtain the signal amplitude of each
point. By fitting the data, the relationship curve between diffuse
reflectance and signal amplitude was obtained, as shown in
Fig. 12. It can be seen from the curve that there is a linear
relationship between diffuse reflectance and signal amplitude,

Fig. 12. Relationship regression line between diffuse reflectance and signal
amplitude.

withDiffuseRate = 1.41421369× Intensity. Based on this
mapping relationship, the diffuse reflectance corresponding to
the signal amplitude of the 6 sensitive points in the adversarial
sample can be calculated.

Finally, the position of the modified area was determined and
its diffuse reflectance was changed to generate the adversarial
object. The locations of the six sensitive points were obtained
from the point cloud data based on the indices of the pertur-
bation points in Fig. 11. Then, the surface coordinates of the
sensitive points were obtained using RaySAR, as described in
Section III-B. Each point on the object’s surface represents a
small area centered at that point. The upper and side surfaces of
the 3-D object were divided into multiple regions, each centered
at a point and with a size of 0.8 × 1.131371 based on the
resolution of the simulated radar sensor plane and the relative
position of the sensor to the target object in RaySAR. The
diffuse reflectance of each region was modified according to
the calculated diffuse reflectance of the corresponding sensitive
point to obtain the adversarial object. Fig. 13 shows RaySAR
rendering images of original 3-D objects and adversarial 3-D
objects. The six bright spots in the right picture of Fig. 13 are
generated by Algorithm 1, corresponding to the positions of the
six points where the diffuse reflectance is modified.

To validate the effectiveness of the generated adversarial
object, we first collected point cloud data of the 3-D adversarial
object using the RaySAR software and visualized it, as shown
in Fig. 14. Additionally, the signal amplitudes of each point
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Fig. 13. Rendered 3-D object images generated by RaySAR software: (Left)
Original 3-D object. (Right) Modified 3-D object.

Fig. 14. Visualization of physical adversarial samples.

Fig. 15. Signal amplitude of physical adversarial samples.

were visualized, as shown in Fig. 15. Comparing the blue line
in Fig. 15 and the red line in Fig. 11, the obtained point cloud
data is almost identical to that of Fig. 10 (Right). Using the
PointNet classifier to recognize the point cloud data, the classi-
fier recognizes it as Step 2 with a confidence score of 89.57%,
indicating that the adversarial object can successfully attack the
classifier, demonstrating the feasibility of the proposed approach
for constructing adversarial objects.

VI. DISCUSSION

The discussion section focuses on the vulnerability of deep
learning-based point cloud recognition methods to adversarial
attacks and the proposed solution, Cam-PC, which bridges
the real and digital worlds. Our proposed approach, Cam-PC,
generates more concealed adversarial point cloud samples by
modifying digital and physical features.

In the digital world, point cloud adversarial samples are
commonly generated by modifying the 3-D position coordinates

of the points or adding additional perturbation points. Our R-D
module generates adversarial samples by modifying the signal
amplitude values of the point cloud data, which offers better
concealment and operability.

In the real world, generating adversarial point cloud examples
often involves directly modifying the target physical entity or
sensor, or injecting false information into the real point cloud
signal. However, these methods are complicated and uncon-
trollable. To address this issue, our D-R module constructs
adversarial objects by modifying the surface diffuse reflectance
of the target object based on ray tracing and correspondences
between digital and physical features. This approach provides
good concealment and operability and can be used to extend
the physical attack objects of point cloud data from the LiDAR
domain to the remote sensing radar domain.

We conducted a series of experiments to evaluate the per-
formance of our proposed Cam-PC algorithm. Our method
achieved new state-of-the-art performance in terms of attack
effectiveness, robustness after subsampling, and transferability.
The experimental results demonstrate that the adversarial sam-
ples generated using the modified signal amplitude approach
have attack effectiveness and, under certain sampling condi-
tions, exhibit a certain degree of transferability. Moreover, we
demonstrated the feasibility of creating physical adversarial
samples using RaySAR software, which effectively deceived
deep learning-based target recognition algorithms.

In future work, we plan to investigate the use of our method
for other applications, such as autonomous driving and robotics.
Additionally, we will explore the use of other physical features to
generate adversarial samples and investigate the effectiveness of
these features in the physical world. Another direction of future
research is to investigate the robustness of our method against
advanced attacks, such as black-box attacks. We believe that our
proposed method can be extended to address other challenges
in the field of deep learning-based point cloud recognition and
has the potential to contribute to the development of more robust
and reliable point cloud recognition systems.

VII. CONCLUSION

In conclusion, this study marks a significant advancement in
the exploitation and augmentation of LiDAR point cloud data,
introducing a novel Cam-PC method adept at addressing the
intricate nature of artificial object rendering in 3-D reconstruc-
tion. A distinctive element of the Cam-PC method is its em-
ployment of a covert strategy designed to mislead deep learning
algorithms, utilizing simplified models to authentically mimic
real-world structures. This effectiveness positions the method as
a valuable resource in disrupting LiDAR remote sensing target
analysis, and thereby serves as a pivotal reference for enhancing
LiDAR security defense protocols.

As the field of LiDAR data analysis broadens, the proposed
Cam-PC method presents a unique value in informing and
improving adversarial attack and defense strategies, particularly
relevant to the increasingly critical sector of autonomous driving
point cloud data. Furthermore, our approach proves the potential



WEI et al.: CAM-PC: A NOVEL METHOD FOR CAMOUFLAGING POINT CLOUDS TO COUNTER ADVERSARIAL DECEPTION 67

of bridging the real and digital worlds, using R-D and D-R mod-
ules to generate concealed adversarial point cloud samples with
unparalleled performance in attack effectiveness, robustness
after subsampling, and transferability. By leveraging ray tracing
technology, our physical attack scheme effectively deceives
deep learning-based target recognition algorithms in real-world
scenarios. Thus, our work not only significantly contributes to
bolstering the security of point cloud recognition methods, but
also pioneers the extension of physical attack objects from the
LiDAR domain to the remote sensing radar domain. This robust
and versatile method is primed to shape the future of LiDAR
data handling, advancing the scientific and technological facets
of this field.
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