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Adversarial Network With Higher Order Potential

Conditional Random Field for PoISAR
Image Classification

Zheng Zhang"“, Hui Guo, Jingsong Yang

Abstract—Effective and efficient pixel-level classification of po-
larimetric synthetic aperture radar (PolSAR) images represents
an important step toward their interpretation and knowledge dis-
covery. After the extraction and representation of discriminative
features, the related important issues are how to enforce consistency
and coherency of labeling using contextual information, and how
to make the process computationally efficient. In this article, we
propose a method to approach these two issues. The first issue is
dealt with from three different levels, namely, first, to combine fea-
tures at coarse resolution with pixel-wise information for pixel-level
classification, we adopt the idea of Unet; second, to reduce labeling
inhomogeneity among similar pixels, we relate the PoOISAR image
with graph theory through the conditional random field (CRF),
and develop third-order potentials for a fully connected CRF to
account for both higher order effects and long-range interactions;
and, third, to utilize adversarial network to improve learning of the
label distribution. The efficiency issue is handled by, first, adopting
fully convolutional network for the contracting arm of the Unet
to speed up hierarchical feature extraction; and, second, for the
fully connected third-order potential, by making connection with
the pairwise potential, to reduce the computational complexity of
the most expensive message passing procedure from quadratic to
linear in the number of variables. The effectiveness of the proposed
method has been demonstrated by its application to the pixel-level
classification of ALOS-2, RADARSAT-2, and ESAR PolSAR im-
ages, where its performance has qualitatively and quantitatively
shown superiority over several other state-of-the-art models.

Index Terms—Adversarial network, autoencoder (AE), condi-
tional random field (CRF), feature extraction, higher order
potential.
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1. INTRODUCTION

ECENT years have witnessed the rapid progress of polari-

metric synthetic aperture radar (PolSAR) as a major mi-
crowave remote sensing technique for Earth observation, urban
planning, geological exploration, and environment monitoring.
A deluge of Earth system data has been rapidly expanding
enabled by the much enriched sensing capabilities. Yet our
ability to collect and create geoscience data far outpaces our
ability to understand it [1]. To fill the gap, effective and efficient
classification of PolSAR images represents an important step
toward their interpretation and knowledge discovery, thus, forms
a line of active research.

Pixel-level classification or labeling is an important task for
image understanding. It is also known as full-scene labeling,
or scene parsing in the computer vision literature. High quality
pixel labeling enables the delineation and tagging of regions and
objects in the image, which becomes increasingly pragmatic and
important with the ever improving spatial resolution of SAR
images. The related important issues include how to extract and
represent features, how to enforce consistency and coherency
of labeling using contextual information, and how to make the
process computationally efficient and flexible.

The first issue has been addressed satisfactorily with the ad-
vance of deep learning and its applications in image processing,
so it is not a concern of this article. Briefly speaking, traditional
manual feature engineering, such as GLCM has been replaced by
automatic feature extraction, and usually in hierarchial manner.
For instance, convolutional networks composed of multiple
stages can automatically learn hierarchical feature representa-
tions. This part of network for feature extraction is usually called
the encoder. Using a small region around a pixel for labeling
is often insufficient, since the category of a pixel may depend
on long-range information as well, a multiscale convolutional
network has been proposed to capture large input windows while
maintaining minimum number of free parameters. One common
choice for the encoder network is the VGG16 classification
network, yet its large number of weights is typically pretrained
on the large ImageNet object classification dataset [2]. In the
work, we choose an approach similar to the fully convolutional
network (FCN) for hierarchical feature representations.

We approach the second issue from three different levels. At
first level, to combine features at coarse resolution with pixel-
wise information for pixel-level classification, we adopt the idea
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of Unet [3], whose appeal lies in the simultaneous attainment
of localization accuracy and contextual scope. Deep, semantic,
and coarse-grained feature maps are offered by a contracting
subnetwork, whereas shallow, low-level, and fine-grained fea-
ture maps resulted from the upsampling expansive sub-
network; skip connections at the same-scale feature maps
of the contracting and expansive subnetworks provide the
needed information fusion. Such structures have demon-
strated effectiveness in their good segmentation/classification
performance.

The Unet-like network, although capable of modeling global
relationships within an image already, might still be error-prone
and not lead to the desired performance. Due to the coherent
imaging mechanism of PoISAR systems, the resulting speckle
noise degrades the quality of PoOISAR images and presents a
big challenge to PoISAR image classification task. Moreover,
natural scene often contain complex undulating topograph, lead-
ing to more complicated special texture structure and spatial
arrangement, such as foreshortening, shadow, and layover in the
PolSAR image, which adds complication to the classification
efforts.

One common way to address this issue is to adopt the idea of
ensuring classification label agreement between similar pixels
by maximum a posteriori inference in a conditional random field
(CRF) defined over pixels or image patches, where its potentials
incorporate smoothness terms to maximize label agreement.
Conventional CRF models use neighborhood pairwise potentials
to account for connections among neighboring pixels or patches,
hence, limited their ability to model long-range connections
within the image. A recently advanced fully connected CRF [4]
establishes pairwise potentials on all pairs of pixels in the image
to capture richer semantic information for refined segmentation
and labeling. This approach will be adapted to our end in this
study to train the whole deep network end-to-end with the usual
back-propagation algorithm, avoiding artificial offline postpro-
cessing.

However, the fully connected CRF [4] does not account for
higher order potentials. It is observed [5] that pairwise CRFs
generally result in oversmoothing the actual object contour, and
higher order CRFs are needed for further improvement. Some
forms of higher order CRFs have been proposed [5], [9], yet
they are based on image patches, without taking into account
the effect of long-range connection.

In this work, we consider the case of the third-order potentials
in the context of fully connected CRF, bringing together the
discriminative power rendered by higher order potentials and
long-range interaction. This treatment forms the second level of
our approach to the second issue.

However, for image understanding one has to consider the
observation level problem, which refers to the situation where
an object or its part can be easily classified provided that its
segmentation is performed at the right level [7]. The abovemen-
tioned two levels in combination may still not adequately address
the observation level problem in that there is certain degree of
arbitrariness in their segmentation of the image by the resultant
segments being too small or too large. Unlike the strategy of [7]
to form and prune a segmentation tree, we treat this problem as
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a problem of learning the true distribution of random labeling
field. We design an adversarial network to this end.

The inspiration of our work on adopting adversarial networks
comes from the generative adversarial networks (GANs) [8].
GANSs are recently advanced powerful framework and have
made impressive progresses in image generation, image edit-
ing, and representative learning. More recent methods, such as
text2image and img2img, also have been inspired by GANs.
In general, GANs are powerful for learning generative models
through the idea of an adversarial loss that forces the generated
images to demonstrate a distribution maximally indistinguish-
able from the true distribution of true images. The assumption
here is that in carrying out the third level of incorporating contex-
tual information, a truly learned distribution of the random label
field will more likely to help set the segmentation at the right
level so as to avoid the over- or undersegmentation problem,
which in turn is beneficial to approach the observation level
problem.

On the other hand, keep in mind that one has to deal with
several million pixels typically contained in one PolSAR image,
the training and inference need to be computational efficient
and capable of working with arbitrary image size. For hier-
archial feature extraction, we use the FCN so as to capture
large input windows while maintaining minimum number of
free parameters. For the third-order potential, upon making an
assumption about the first pixel severing as separating point
of the other two, we are able to preserve the nice properties
of the fully connected CRF [4]. Specifically, by modeling the
pairwise edge potentials as a linear combination of Gaussian
kernels in an arbitrary feature space, and further adopting a mean
field approximation to the CRF distribution, a highly efficient
inference algorithm is resulted, which allows for reduction of the
computational complexity of message passing from quadratic to
linear in the number of variables.

The main novelties and contributions of our proposed method
are as follows.

1) We proposed an architecture for high performance Pol-
SAR image pixel-level classification by integrating coarse
resolution with pixel-wise information in an FCN, which
not only capable of dealing with the contextual informa-
tion at feature level, but also enables the efficient training
and inference of large-scale POISAR images.

2) We developed an efficient algorithm for third-order po-
tential of fully connected CRF to account for higher order
effects and long-range interactions. Specifically, the third-
order potential can be factored as the product of two pair-
wise potentials, allowing for the interpretation in terms of
Markov properties. The corresponding optimal marginal
distribution, which minimizes the Kullback—Leibler diver-
gence, captures the interaction among multiple labels and
propagate efficiently, with a linear time complexity in the
number of variables during the message passing phase.

3) We presented an adversarial network that learns the true
distribution of random labeling fields, enhancing label
consistency and coherence at the observation level. Ad-
ditionally, we systematically dealt with contextual infor-
mation from these three different levels to maximize its
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utilization for PolSAR image classification in an end-to-
end trainable network.

The rest of this article is organized as follows. In Section II,
we briefly review some related works. The proposed method is
described in Section III. In Section IV, we apply the proposed
method to three PoISAR images to demonstrate its effectiveness.
Comparison is also made to other state-of-the-art methods.
Finally, Section V concludes this article. Before passing, we
would like to mention that the terms segmentation and (pixel
level) classification are used interchangeably in the text.

II. RELATED WORKS

Deep learning, as a hierarchical feature learning method, has
been widely used in image processing tasks (e.g., [10], [11],
[12], [13]). Recent years also have witnessed its numerous ap-
plication in remote sensing [1], [17], [18], [46]. In contrast to the
traditional manual feature engineering method [19], [20], [21],
[22], DL allows the automatical feature extraction pertaining to
specific tasks. Furthermore, deep learning-based models possess
attractive properties, such as unique hierarchical representations
and nonlinear expressiveness. These excellent deep learning
methods are powerful tools for feature extraction and expression
in remote sensing image classification task. The applications of
deep learning to remote sensing image classification was initially
on unsupervised feature learning using stacked autoencoders
(AEs) and restricted boltzmann machines [23], [24], [25], with
the aim of learning higher level feature representations from
spectral information of optical image or polarimetric feature
of the SAR/PolSAR image. This process has been shown to
provide better land cover classification accuracy than using raw
features. The application of the convolutional neural networks
(CNNGs) represents a great advance in deep learning assistance
to remote sensing image classification [26], [27], [28], with
even shallow learned layers achieving significantly better perfor-
mance than traditional methods, such as random forest or support
vector machine classifiers. Modern deep learning classification
architectures for remote sensing have grown much larger and
more complex compared to earlier networks, where some utilize
designs originally developed for computer vision applications,
including VGG, Inception, and ResNet, which are tailored with
additional classification layers for remote sensing tasks. These
advanced architectures have consistently achieved excellent
classification accuracy [29], [30]. Graph convolutional networks
(GCNs) have been shown to achieve state-of-the-art results in
several remote sensing tasks [31], [32] due to their capability of
effectively capturing the spatial relationships between pixels in
an image, an important aspect in remote sensing tasks since
neighboring pixels are often highly correlated. Furthermore,
domain adaptation techniques, such as multimodal learning
and transfer learning [33], [34] are promising in handling the
discrepancies between heterogeneous data, and thus increasing
the model’s generalizability and robustness.

In the following content, we mainly overview the previous
work related to our two focuses, that is, how to enforce consis-
tency and coherency of labeling using contextual information,
and how to make the process computationally efficient and
flexible.
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A. Pixel-Level Classification

The pixel-level classification framework is to assign a label to
each pixel of the inputimage. Inrecent years, many excellent net-
works have emerged, such as FCN [35], Unet [3], SegNet [36],
PSPNet [37], and DeepLabV3 [38]. Some of the abovemen-
tioned models have been applied to PoISAR classification. FCN
is the first network structure to deal with PoISAR image clas-
sification in the pixel wise way, due to its simplest upsampling
operation. In [9], semantic features integrated with sparse and
low rank representation utilized for PolISAR classification is
proposed. The semantic features are generated by the final layer
of the unsupervised FCN. However, this approach does not
directly use FCN structure for pixel-level classification. In [39],
a sliding window fully convolutional network and sparse coding
is proposed, which provides an FCN scheme in a supervised
manner for PolSAR image classification. In [40], in order to
make full use of the phase information in PolSAR data and re-
duce the loss of spatial information caused by pooling operation,
a complex-valued FCN is proposed for POISAR image classifi-
cation. The decoder of SegNet uses pooled indexes calculated in
the max pooling step of the corresponding encoder to perform
nonlinear upsampling in order to preserve the edge information,
which is beneficial to smooth the edge of terrain. PSPNet adopts
a spatial pyramid pooling to get multiresolution feature map
and concatenates them after upsampling. DeeplabV3 proposes
an atrous spatial pyramid pool, which uses atrous convolution.
These two networks can obtain multiscale information. In [41],
a refined pyramid scene parsing (PSP) network is proposed,
which adopts a multilevel features fusion design in its decoder to
effectively exploit the features learned from its different encoder
branches. The experimental results demonstrate its effectiveness
in keeping the boundary information of agricultural area. In [42],
a lightweight complex-valued DeepLabV3+ is proposed to deal
with insufficient POISAR data samples. Although the abovemen-
tioned method improves the process efficiency in a pixel wise
manner for PoISAR image classification, they do not consider
the label consistency problem.

It should mentioned that PolSAR semantic segmentation is
also an active research area (e.g., [15], [16]). It would be inter-
esting to seek synergy between these two lines of research.

B. Conditional Random Field

CRF regularization is a common method to deal with la-
bel consistency problem. A recently advanced fully connected
CRF [4] establishes pairwise potentials on all pairs of pixels
in the image to capture richer semantic information for refined
segmentation and labeling. In [43], a semisupervised term is
incorporated into the energy function to improve the classi-
fication accuracy of PolSAR images with small samples by
using unlabeled terrain. In [44], a hybrid CRFs model based
on complex-valued 3-dimensional CNN is proposed, which
incorporates a relative entropy pairwise potential and a product
of expert potential term to regulate label interaction for the
PoISAR image classification. In [45], a high-order potentials
generated by superpixels is incoporated in CRF to deeply capture
the structure information for PolISAR images. The high-order
potentials enforce all pixels in homogeneous clique to take the
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same label. The classification network of the abovementioned
methods is still image-level CNN and is independent from CRF
training. More importantly, both pairwise and high-order po-
tentials they use are short connected versions that only consider
local structures. In short, although the abovementioned methods
use CRF to deal with the problem of label consistency, they are
still insufficient in the consideration of processing efficiency and
the contextual information of label distribution. This is mainly
because these CRF methods still address local information,
and cannot achieve end-to-end training with feature extraction
network.

C. Adversarial Learning

The typical network of adversarial learning is GANs [8],
which learn data distributions through adversarial training. Re-
cently, some GAN-based networks have been proposed succes-
sively for SAR/PoISAR classification. In [46], to tap into the
strength of GAN’s and its more stable variant deep convolutional
GAN:s, itis proposed of its combination with AE for intermediate
feature extraction and reconstruction, and with multiclassifier
for better context treatment. The aggregate learned features
are fed into a CRFs model, which is trained by the structured
support vector machine, to obtain the classification. In [47], to
utilize simultaneously statistical features and spatial features,
a distribution and structure match auxiliary classifier generative
adversarial network is proposed for discriminative feature learn-
ing. This is in spirit similar to [46], with the major differ-
ence that CRF is not considered in this work. In [54], to en-
force the generator for learning useful feature representation, a
task-oriented GAN is proposed for PoOISAR image classification.

Adversarial network with third-order potentials for PoISAR image pixel-level classification.

Variants of GAN networks in the abovementioned methods
have been used to obtain rich statistical features of terrain.
The abovementioned methods take GANSs as feature extraction
network. A cycle-consistent adversarial networks [49] is pro-
posed, which incorporates an adversarial loss to solve the highly
underconstrained problem that may arise when mapping image
from one domain to another. It brings a new insight to POISAR
classification, that is, the classification problem can be regarded
as a mapping from image domain to label domain.

III. PROPOSED METHOD

The overall architecture of the proposed classifier is composed
of two subnetworks: 1) a forward classifier for pixel level label-
ing, which consists of a feature extraction network, a CRF, and
an AE and 2) a discriminator for adversarial learning, as shown
in Fig. 1.

For a PolSAR image, its image features can be expressed
X € RN1xN2xNs where N, and N, represent the height and
width of the image, respectively, N3 the raw feature of the image,
and T € RM*N2xC i the corresponding ground truth for a
total of C' classes/categories. The proposed model will assign a
predicted label to each pixel.

A. Raw Feature Extraction From PolSAR Data

For PolISAR radar data, the scattering matrix is a 2 X 2 com-
plex matrix that describes the polarization properties of a target,
based on the complex-valued radar signals received in the H
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and V polarization channels. It is formed as

g {SHH SHV} ‘ )
Sva Svv

There are several polarimetric decomposition methods used
in PoISAR data analysis, including the Pauli decomposition,
Freeman—Durden decomposition, and the Cloude—Pottier de-
composition. These decompositions provide different ways of
separating the polarimetric scattering mechanisms of the tar-
get, based on various assumptions and constraints. In [67], a
physically-based assessment of the assumptions of the Freeman—
Durden decomposition is provided.

In this work, the Pauli decomposition is adopted, which
represents scattering information in terms of three fundamen-
tal scattering mechanisms: single bounce, double bounce, and
volume scattering. By projecting the scattering matrix onto the
Pauli bases, the scattering coefficients associated with each
mechanism are obtained. This technique offers several advan-
tages, such as computational efficiency, generating pseudo-RGB
images with higher contrast for visualization as demonstrated in
Section IV, and bypassing the need for estimating the coher-
ence/covariance matrix through a sliding window, thus elimi-
nating associated estimation errors.

For monostatic scattering case which satisfies the reciprocity
condition, given the Pauli bases the measured scattering matrix
can be expressed as follows:

a1 0], B[t 0 !
s=ib b Sk e
where a:&lhi*fw,ﬁ:“qhhi\/_;w,yzﬁShv. The polari-

metric information of S could be represented by the combination
of the intensities |a|?, | 3|2, |y|? in a single RGB image.

B. Feature Extraction: From Fully Connected CNN to Fully
Convolutional-Based Neural Network

Contracting subnetwork of a Unet structure is used for feature
extraction. However, we make modifications to facilitate the
computation. In the typical deep learning-based PolSAR image
classification network (e.g., [27], [46], [54]), the input is a
fixed size patch; the fully connected layers are of fixed size,
and this layer converts the two-dimensional feature map of the
convolutional layer into a one-dimensional feature vector, thus
losing certain amount of spatial information. However, the fully
connected layer can be regarded as a special convolutional layer,
which enables the network to take input images of arbitrary size,
and produce corresponding classification map. Fig. 2 shows a
schematic representation of this convolutional transformation.
The block diagram of (1) in Fig. 2 shows the model proposed
in [27], where the input building patch is of size 16 x 16.
After three layers of convolution layers and two layers of full
connection, the output is the probability of five categories. The
fully connected layer can be regarded as the processing of the
third convolutional layer with a convolution kernel of size 4 x 4
and stride 1, as shown in the block diagram (2). This process can
be readily extended to an image of size N; x Ns, as shown in
block diagram (3). In this way, only one forward propagation is
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required, and the input image can be of arbitrary size, allowing
more flexible processing.

C. Contextual Information Through CRF

The labels Y; of all pixels ¢ in the PoISAR image form a
random field Y = (Y7, Y5, ..., Yn). Let X be all possible input
images of size N, then the CRF P(Y = y|X) is characterized
by a Gibbs distribution

P(Y =y|X) = exp(—E (y[X))/Z(X) (©)

where Z(X) is the partition function and E(y|X) is the Gibbs
energy of a labeling y. For notational convenience, the condi-
tioning will be dropped in the rest of this article.

The Gibbs energy based on consideration of the unary poten-
tial, pairwise potentials, and triplet potentials of CRF is

E(y) = Zwu () + Y ep (Wi y5)

1<J

+ > e Wi yisuk) )
i<j<k

where the unary potential ¢, is the cost associated with assigning
label y; to pixel ¢, the pairwise potentials ¢, are to maintain the
consistency of similar feature map classes in adjacent locations
and to enhance the smoothness of the estimated class labels.
Notice here that we do not explicitly denote the clique c because
we intend to adopt the fully connected form in this article. We
go beyond the pairwise potential to include the effect of higher
order potentials to capture the interaction among multiple labels.
For the purpose of illustration, we treat the third-order potential
¢ in (4) explicitly.

1) Unary Term: The unary potential ¢, (y;) is the negative
log of the likelihood of pixel ¢ being assigned a label y;. Its
discriminative feature depends on many factors including the
pixel values, texture, location, appearance model. This complex
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mapping is represented by a Unet structure in this work, which
outputs a feature map with the same size as the original image, as
shown in Fig. 1. For the Unet, the contracting path is composed
of two blocks, where each block uses two 3 x 3 convolutional
layers, one group normalization layer, one Relu layer, and one
2 x 2 maxpooling layer; so after each downsampling, the feature
map is reduced by half in size, and the number of channels is
doubled. Finally, in the bottleneck layer, the feature map is of size
N /4 x Ny/4. Similarly, the expansive path is also composed
of two blocks, where each blcok uses two 3 x 3 convolutional
layer, one group normalization layer, one Relu layer. After the
deconvolution operation performed at the first expansion path
block, the feature map is doubled in size and the number of
channels is reduced by half. The feature map is merged with
its counterpart in the contracting path. After two deconvolution
operations, the size of the feature map is the same as the original
input. The feature map is followed by the Softmax layer for
pixel-by-pixel classification.

The convolutional layer contains filter parameters that can
be learned. Deeper levels of abstraction can be achieved by
stacking more convolutional layers. However, blindly deepening
the network will bring issues, such as the Internal Covariate
Shift problem [56], [57]. We adopt group normalization layer
after the convolutional layer to make the features learned after
each update of the network to have a similar distribution, thereby
facilitating network convergence and improving generalization
capability [57]. The introduction of Relu layer can improve
the network’s capability of expressing nonlinear features. Max
pooling layer is able to not only reduce the number of network
parameters to prevent overfitting, but also ensure feature invari-
ance under shifting and rotation. The Softmax Layer performs
a pixelwise classification over the feature map having identical
size with the original image. The pixelwise Softmax function is
as follows:

elan (@)
O elaw(@)

where ay, (z;) represents the activation feature at the pixel point
xi k € {l1,la,...,lc}, C is the number of categories.

2) Pairwise Potentials: The pairwise potentials are given as
follows:

Pk (yz|$1) = Q)

M
ep (Yir y5) = (Y3, y;) Z w™ g™ (£, £;) (6)

m=1

g(fi.£5)

where each g(m) is a Gaussian kernel, fy is the feature vector at
pixels k, w(™) are linear connection weights, and /() is a label
compatibility function. Following [4], we use contrast-sensitive
two-kernel potentials for the composite kernel g(f;, f;), defined
as follows:

2
+ wPexp (_pz il > @)
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where the first term is the appearance kernel and the second the
smoothness kernel. The smoothness kernel solely depends on
the pixel pair locations and removes small isolated regions. The
dependencies of the appearance kernel are not only the pixel
pair locations p;, but also some form of features s; at pixel 4,
for instance, the color vector in [4]. In our approach, we use
for s; the output of an embedded AE stacked between the Unet
and CRF. This treatment marks an essential departure from [4],
where the color vector pair I; and I; are used instead. One should
keep in mind that in [4] the ability to use the color vector pair
depends on two implicit assumptions: 1) the image is adequately
clear of noise; and 2) the subfeature vector (the color vector) is
well localized. These assumptions are automatically met in [4]
considering the following facts: 1) the images under concern are
RGB images; and 2) the only operation applied is the CRF-based
filtering. However, in our case, the situation is quite different.
The PolSAR images suffer from speckle noises, and the process-
ing using deep learning networks usually compromises local-
ization accuracy to accommodate contextual information. The
latter can be alleviated by working with Unet, whereas the issue
of speckle noise can be dealt with by either applying denoising
preprocessing or using manifold learning. We choose manifold
learning by attaching an AE to the last feature map layer (LFML)
of the Unet, where the feature dimension is reduced from 64 to
32. This distilled feature s is used in the appearance kernel. This
treatment brings forth the following advantages:

1) it conveys more semantic information without loss of
localization accuracy in comparison with the “vanilla”
color vector;

2) it leads to dimension reduction of the representation
space [65] and, hence, better efficiency than the base case
without the AE, i.e., 64-dimensional feature vector has to
be used instead;

3) the utility of the AE serves as an extra constraint to the
network loss function, hence, assist in the stabilization of
the training.

3) Third-Order Potentials: Itis observed in [5] that pairwise
CRFs tend to be oversmooth and mismatch the actual object
contour quite often, and higher order CRFs are needed for further
improvement. Here, we consider the case of the third-order
potential in a hope to effectively model the interaction among
three labels in certain contrast sensitive form. We would like
to make it fully connected and computationally efficient. So
we shall proceed along the line of [4]. When including the
third-order potential, the optimal marginal @Q;(y;) minimizing
the KL-divergence is

1

@i () = Z; exp ¢ —pu (yi) — Z By, ~q, lvp (i, Y;)]
' i
= Y Eviequvieqi o 0 YY) o (8)
kL

In (8), a method of efficiently updating the pairwise potentials
has been proposed in [4]. Here, we should focus on the third-
order potential. In view of the fact that several assumptions have
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been made in the fully connected pairwise potential case to allow
for the application of facilitating techniques, it is expected that
we shall likewise to make some assumptions in the treatment of
the third-order potential.

Specifically, in this work, we adopt the approximation that the
third-order potential can be factored as
©))

0t (Yir Y5> Yr) = ©p Wir y5) ©p (Ui, Yr) -

It follows that the term associated with the third-order potential
in (8) can be manipulated as follows:

Z By, @, vi~qQ: [Pt (Yi, Y}, Yi)]
JFk#

Z E}/jNijykNQk [‘Pp (yi7 YJ) Pp (yia Yk)]
JFEk#E

Z EY_;‘NQ_]’ [QDP (yia ij)]EYkNQk, [SOP (yia Yk)]
J#Ek#L

= (D Bviea lop W YU | | D Eviecn [ (43 V)

JFi k#i
3" (By,~q, lep (i V7))
JFi

2

=3 By, Lo (1 V1))

J#L

= E E}/jNQj [Sop (yzaY;)]
J#i
(10)

The subtraction in the next to the last line is due to the fact
that when writing the first term in this way to separate the two
indices j and k, the repeating terms must be accounted for and
subtracted.

The first term can be further evaluated as

2

> By, [op (4, Y))]
j#i

= (S ean Y wm g

l'eL m=1 VE)

2

(i, £5) Q; (') (an

In the above, we use label [ for y; and !’ for Y; to simplify the
notation. Although the right side of (11) appears to be quadratic
in ()}, the marginal of any other pixel, the message passing and
compatibility transform operations are evident in the expression,
and the computationally expensive message passing represented
by the term

A

J#i

fl7f Qj( )

can be approximately treated in the same manner as in [4]
to allow for reduction of the computational complexity from
quadratic to linear in the number of variables.
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The analysis of the second term in (10) is somewhat more
involved as follows:

Z (EYJNQJ' [ep (ZUuYJ)])Q

J#i
K 2
=3 (Z Qi (Y1) Y W™ g™ (£, fj))
j#i \l'eL m=1
= Z Z Z Q] Qg l// ( ) (la l//)
j#i leL1"el,

K K
>3 wmwtgtm (£, £,)9) (£, 8,)

m=1m/=1

K K
= > u@u@) >0 > wmetm)
l'eLl'eL m=1m/=1
Zg(m) (£, £)g"™) (£, £;) Q; (1) Q; (I")
i
K K
= ZZ“ (RATARA Z Z w(m) ,(m)
l'eLl"eL m=1m/=1
3 (£, £)Q; (11" (12)
JF#i

Here, the message passing part is

> g (£, £ (£, £)Q; (1) @, (1)

J#i
This form can be analyzed by adding one layer of abstraction to
see its connection with the pairwise potential case by defining

) (8, 85) = g (8, )g) (£, 8;)

we see that g is actually the product of two low-pass filters, and
is again a low-pass filter itself. Similarly, let

Q; (I,1") = Q; (I Q; (I")
represent the composite marginals, so the message passing term
looks very close to the view of low-pass filtering of the composite
marginals, with a bit book keeping similar to the treatment of
the pairwise potential, this filtering can be made efficient and
again allow for reduction of the computational complexity from
quadratic to linear in the number of variables.

Before passing we would like to make some comments. It
might be suggested that factorization of the third-order potential
in the form of @ (yi, yj, Yk) = ©p(Yis ¥5)Pp(Yis ) op (Y Yi)
seem more balanced among the three labels. Yet we argue that the
proposed two-term factorization is conceptually advantageous
than the three-term counterpart. It permits interpretation in terms
of Markov properties where pixel ¢ serves as the separating point
of pixels j and k, hence, make sense to invoke the Hammersley—
Clifford theorem to ensure the equivalence between the image
process being Markov random field and its distribution being
a Gibbs one. In the fully connected context, it means that
joint distribution between any pair or triplet is through cliques
involved in the factorization.
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One might doubt that when using pixel ¢ as the separating
point much speciality has been assigned to it. This is actually
not the case since when we scan any triplet combination in the
image, each pixel will take turn to serve as the separating point.
So in the long run the role of each pixel is well balanced.

4) Forward Classifier Loss: The forward classifier loss now
consists of two parts: the loss due to CRF and that due to AE.
For the fully connected CRF, the exact distribution P(Y) is
evaluated using the mean field approximation [4], where an
alternative distribution Q(Y) is sought after which is the best
among the family of distributions that can be expressed as a
product of independent marginals Q(Y) = [[, @:(Y;), in the
sense that Q(Y) minimizes the KL-divergence D(Q||P). In
view of [4], the MFA can be implemented using convolutional
layers to be added to the network, so its loss can be calculated
using cross entropy. The combined forward classifier loss is,
thus

c N
Lossg, = — Z Z {ti = U} logpy (yilz:)

k=11i=1

+ MSE(Enc(LFML), Dec(Enc(LFML))  (13)

where MSE stands for mean square error.

D. Contextual Information Through Adversarial Learning

The pixel level labeling produces a classification probability
map of size Y € RN1*N2xC Denote the label distribution as
P;(Y;0q), where 6 are the parameter set of the distribu-
tion, and the true label distribution as Py, (Y). The intention
is to make P (Y;0q) and Py (Y) as close as possible by
adversarial learning. In particular, with the enhanced structure
combining the strengths of Unet, CRF, and AE, the capability of
the forward classifier to make good labeling is much improved,
yet can be further improved with the adversarial learning where a
discriminator is designed to challenge the distribution learning.

The architecture of the discriminator is a fully CNN, as shown
in Fig. 1. It is composed of 3 blocks and an output layer. Each
block uses one 4 x 4 convolutional layer, one group normaliza-
tion layer, and one Leaky Relu Layer. As the number of layers
deepens, the number of convolutions per block doubles. The
convolutional layer uses the stride operation instead of the max
pooling operation, so for each block the size of its output feature
map is 1/2 of its input. We adopt the loss function of WGAN as
the adversarial term in order to alleviate the unstable numerical
gradient that may occur during the training of the forward
classifier. It should be mentioned that since the discriminator
uses a fully convolutional structure, the network top feature map
is two-dimensional. Under the two-dimensional feature map,
each element position actually represents a fixed-size perception
area of the original image, with the effect of performing sliding
window processing on the original image, hence refining the
capture of local features. The loss function of the discriminator
is defined as follows:

Lossp = Ey~p, [D (XQY)]

— Egx)y~p, [D (XQG (X))] (14)
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where X Q)Y means that each channel of X is masked by Y,
which can be regarded as a conditional term to constrain the
model parameters. The discriminator should try to maximize
the EM distance between real samples and false samples, that
is, to maximize (14).

E. Training

1) Training the Discriminator Model: From the abovemen-
tioned analysis, it is seen that the discriminator can be trained by
maximizing the EM distance in (14). The input to the discrim-
inator network is either the prediction masked images by the
forward classifier or the ground truth masked images, as shown
in Fig. 1. The Adam algorithm is used to learn the parameters
of the discriminator network.

2) Training the Forward Classifier Model: For the forward
classifier, the adversary loss term is added to (13) to form the
overall loss

Lossg = Lossg, — Egx)~p, [P (X QG (X))]. (15)

This serves to minimize the multiclass cross-entropy loss func-
tion and maximize the chance to deceive the discriminator. The
Adam algorithm is also used to learn the parameters of the
forward classifier network.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In the experiments, we apply the proposed method to pixel-
level classification of three PoOISAR datasets to demonstrate its
effectiveness. The quantitative measures are the overall accuracy
(OA) and kappa coefficient (KAPPA) for the overall perfor-
mance and F} score for individual category performance. The
three PoISAR datasets are shown Fig. 3. The first image is
the San Francisco Bay area with the size of 22608 x 8080,
which was acquired by ALOS-2 in 2015. The second image
is Hangzhou area with the size of 6205 x 4904, which was
acquired by RADASARSAT-2 on August 7, 2020. The third
image is a ESAR L-band data of Oberpfaffenhofen area and
the image size is 1300 x 1200. In land cover classification,
various standards exist, such as the Coordination of Information
on the Environment (CORINE) land cover classification sys-
tem [69], which classifies land cover into 44 classes based on
satellite data, the United States Geological Survey (USGS) land
use/land cover classification system [70], which classifies land
use and land cover into 24 categories, and the ESA (European
Space Agency) Climate Change Initiative (CCI) Land Cover
classification [71], which divides land cover into 22 categories.
However, the San Francisco Bay Area (ALOS-2 dataset) (see
[43], [72]) and Oberpfaffenhofen area (ESAR dataset) (see [73],
[74]) classifications in the relevant literature do not strictly
adhere to these standards. As such, we choose to follow the
common practice of land cover classification in the literature to
allow cross comparison. Consequently, for the San Francisco
Bay Area dataset, terrain types include water body, vegetation,
high-density urban, and low-density urban. A 1536 x 1536
region is selected from it as the study area and use ground truth
data obtained from [54]. For the Oberpfaffenhofen dataset, types
encompass built-up areas, woodland, and open areas. For the
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Foest  building  Waterbody Grassland  Baresol  Unknown Buit.up Areas Wood land Open Areas Unknown

Fig. 3. PolISAR datasets used for the validation of the proposed method. (a)—(c) PauliRGB image of San Francisco bay area (ALOS-2), Hangzhou area
(RADARSAT-2), and Oberpfaffenhofen areas (ESAR). (d)—(f) Intensity RGB (HH/HV/VV) image. (g)—(i) Corresponding ground truth.

Algorithm 1: Gradient Descent Training of Adversarial Unet Model.

for number of training epoch do
for £ iteration do
Sample minibatch of m Training PoISAR sample and corresponding ground truth.

{X(l), X(Q)7 o ’X(m)}7 {T(l)7 T(Q), s T(m)}
Update the forward classifier by descending its stochastic gradient:
1
VGG ELG
end for
if training epoch==condition then

for k iteration do
Sample minibatch of m Prediction sample from the forward classifier and corresponding ground truth.

{G(X(l))7 G(X(2))’ M) G(X(m))}7 {T(1)7T(2)7 ce 7T(m)}

Update the forward classifier by descending its stochastic gradient:
1
VQD E LD

end for
end if
end for
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TABLE I
TRAINING LABEL FOR DIFFERENT CATEGORIES OF DIFFERENT SCENES

Scenes Category Pixel number  Sample number

Water 265 225 2652

San Francisco Vegetation 361 834 3618

High-density urban 640 595 6405

Low-density urban 299 649 2996

Forest 137876 6893

Building 242264 12113

Hangzhou Water 64 925 3246

Grass 185939 9296

Bare soil 14 677 733

Built-up Areas 536471 5364

Oberpfaffenhofen Vegetation 373 561 3735

Open Areas 1093 338 10933
TABLE IT
RMS CONTRAST COMPARISON FOR THE ALOS-2, RADARSAT-2, AND ESAR
DATASETS
Scenes Pauli RGB  Intensity RGB

San Francisco bay 0.2270 0.1953
Hangzhou 0.2070 0.1771
Oberpfaffenhofen 0.3210 0.2412

(@) (b)

Fig. 4. Different polarization visulization for RADARSAT-2 dataset. (a)
HH. RMS contrast: 0.1256. (b) HV. RMS contrast: 0.1483. (¢) VV. RMS
contrast: 0.1074.

Hangzhou dataset, we select a 1024 x 1024 region from it as
the study area, which includes forest, building, water body, grass
land, bare soil. The above are summarized in Table 1.

In Fig. 3, for the three datasets, we show the PauliRGB
images and the intensity RGB (HH/HV/VV) images to provide
some visual comparison. Yet since visualization is a subjec-
tive experience, to provide a more rigorous measure, here we
adopt a quantitative measure, namely, the root mean square
(RMS) contrast [63] for the purpose, which is defined as

TL o (x; — z)?, where z; is a normalized value and Z

is the mean normalized level x = % >, ;. The appeal of this
definition is that the rms contrast is not dependent on spatial
frequency content of the image or the spatial distribution of
contrast in the image. The rms contrast values are listed in
Table II, where the PauliRGB images uniformly possess higher
values than their counterpart HH/HV/VV pseudo-RGB images.
To better appreciate the visual effect of the Pauli RGB images,
we also provide the original grey level PoISAR images of the
RDARSAT-2 dataset, with the corresponding rms contrast value
for each polarization (see Fig. 4). The comparison with Fig. 3
clearly demonstrates the improved contrast of the PauliRGB
images both visually and quantitatively.
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A. Parameter Setting

Each of the three dataset is cropped without overlapping.
All the crop sizes are 512 x 512. Padding is added to ESAR
data to fix the overspill issue. The training label is composed
of randomly chosen 1% of each terrain type for ALOS-2 and
ESAR, 5% for RADARSAT-2. The validation and test labels
are composed of randomly chosen 20% and 70% of each terrain
type. The labels of training, test, and validation set do not have
any overlap. In particular, only the selected labels are used to
evaluate the loss function during training. The sample selection
method mentioned above is similar to [40], [55].

For the network hyperparameters, we set epoch as 500, 300,
and 800, respectively, for ALOS-2, RADARSAT-2, and ESAR
datasets. The batch size is set as 1 and the learning rate is
0.001 for the forward classifier and 0.0001 for the discrimi-
nator. The forward classifier and the discriminator use alternate
training for parameter learning. The forward classifier updates
the discriminator once after 1 epochs. The Adam algorithm is
used for the optimizer with 81 = 0.9 and S = 0.999. For the
CRF, 6, = 160, 03 = 3, 6, = 3 as suggested in [4], and the
iterations are 5 for the three datasets. The He Initialization is
adopted for the network weight initialization [62]. To better
appreciate the roles of the third-order potentials in CRF and
the adversarial learning, we present four sets of results in this
article, the first two with CRF potentials progressing from
pairwise to the third order yet both without adversarial learn-
ing, termed Unet-CRF2 and Unet-CRF3, respectively, whereas
the last two sets incorporates correspondingly the adversar-
ial learning and termed Unet-CRF2-Adv and Unet-CRF3-Ady,
respectively.

Performance comparison is also made against the CNN
model [27], the FCNs model [35], SegNet model [36], the
PSP model [37], DeepLabV3 model [38]. For the CNN model,
a patch size of 16 x 16 is chosen for the dataset. The FCN
model uses the FCN-32 structure, that is, it directly restores
the original image size by 32 times upsampling from bottleneck
layer. The encoder of the SegNet adopts VGG16 model. Both
encoders of PSP and DeepLabV3 model are ResNet model. In
particular, the dilation rate of atrous convolution for DeepLabV3
in ESAR dataset is set to 6. we use two scales for the ALOS-2
and RADARSAT-2 datasets and their dilation rate are 6,12. To
ensure fair comparison, the training set is also composed of
randomly chosen 1% of each type for ALOS-2, ESAR, and 5%
for RADARSAT-2. The impact of training set percentage on
performance is exemplified in Fig. 9 for the three datasets. For
the abovementioned models, the learning rate is 0.001, the He
Initialization scheme is used for network weight initialization,
and the Adam algorithm is used for optimization, where the
parameters (31 and (35 are 0.9 and 0.999, respectively.

We adopt early-stopping to prevent overfitting problem and
save the best model under the validation set in the training
process. In addition, five independent experiments with random
initialization are conducted for each model in order to reduce
performance fluctuations. A coarse calculation of standard de-
viation using these five results will also shed some light on the
degree of fluctuations from experiment to experiment of these
models.
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TABLE III
QUANTITATIVE PERFORMANCE RESULTS (F} SCORE(%), OA(%), KAPPA(%)) FOR CLASSIFICATION OF HANGZHOU DATASET

Forest Building Water body Grass Bare soil OA Kappa Parameter
CNN 85.05+0.43 90.644+0.19 78.21£0.39 79.74+0.34 69.4840.78 84.6240.20 78.62+0.27 0.18M
FCN-32 89.90+1.26 93.46+0.60 82.25+0.78 89.97+1.50 60.84+5.42 89.64+0.82 85.57+1.14 1.15M
SegNet 95.99+1.78 98.11£0.46 90.77£2.13 96.8140.84 78.5149.78 96.114+1.14 94.59+1.58 5.46M
PSPNet 96.1040.30 97.5940.07 89.47+0.43 96.924+0.17 98.2740.28 96.294+0.14 94.85+0.20 2.49M
DeepLabV3 93.97+0.61 97.78+0.47 93.18+0.99 98.08+0.26 92.99+8.15 96.47+0.25 95.11£0.35 12.05M
Unet(baseline) 92.9940.71 95.54+0.63 80.50+3.13 92.1742.18 16.23£11.43 91.44+0.78 88.01£1.11 221M
Unet-CRF2 95.8440.33 97.564+0.18 91.98+1.32 96.61+0.26 70.1946.68 95.76+0.25 94.11£0.35 22IM
Unet-CRF3 97.2240.18 98.31£0.16 94.53+0.45 97.91+0.16 86.08+2.05 97.30+0.12 96.25+0.17 221M
Unet-CRF2-Adv 97.08+0.50 98.33+£0.21 94.19+0.65 97.974+0.15 80.18+1.89 97.11£0.23 95.99+0.32 2.88M
Unet-CRF3-Adv 97.964+0.18 98.914+0.08 95.83£0.19 98.63+0.05 90.8941.02 98.13+0.08 97.40+0.11 2.88M

Forest Building

Fig. 5.
CRF3-Adv.

The experimental platform is a custom assembled workstation
with GeForce TITAN RTX GPU and 24 GB in-chip memory,
Intel Core(TM) i9-9900 K CPU @3.60 GHz, and 64 GB system
memory. The operating system is Linux Ubuntu 16.04, and the
deep learning framework is tensorflow2.0.

B. Classification Results and Discussions

1) Hangzhou Dataset (RADARSAT-2): The pixel-level clas-
sification results for the Hangzhou dataset is shown in Fig. 5
for visual inspection. It is seen that Unet captures the labeling
pattern in large, yet suffers from visible misclassification errors
across all the five landcover categories, in particular the bare

Water body ~ Grassland

Bare soil Unknown

Classification results of Hangzhou dataset (RADARSAT-2). (a) Ground truth. (b) Unet. (c) Unet-CRF2. (d) Unet-CRF3. (e) Unet-CRF2-Adv. (f) Unet-

soil category [see Fig. 5(b)]. The incorporation with pairwise
potential CRF helps boost performance, for instance, the bare
soil patches have been recovered markedly [see Fig. 5(c)]; yet
misclassified pixels are scattered almost across every patch of
the five category. Further improvement can be observed with
the inclusion of CRF3, where the building and forest categories
are almost free of misclassification [see Fig. 5(d)]. Both CRF2
and CRF3 can be made more discriminatively powerful when
adversarial learning is included, as shown in Fig. 5(e) and (f),
respectively.

The classification results are quantitatively provided in
Table III, where F} score is reported for each category, fol-
lowed by OA and Kappa for the overall performance. Since five
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TABLE IV
QUANTITATIVE PERFORMANCE RESULTS (F; SCORE(%), OA(%), KAPPA(%)) FOR CLASSIFICATION OF OBERPFAFFENHOFEN DATASET
Built-up Areas Vegetation Open Areas OA Kappa Parameter
CNN 72.17+5.19 94.661+0.26 83.04£3.18 87.07+£1.68 78.00£2.89 0.18M
FCN-32 91.184+0.52 90.5441.21 95.4240.54 93.3440.62 88.914+1.01 1.I5SM
SegNet 82.92+1.02 85.47+2.08 95.2940.70 90.154+0.86 83.43+1.35 5.46M
PSPNet 93.50+1.10 91.07+1.88 96.3440.50 94.634+0.88 90.93+1.52 2.49M
DeepLabV3 89.96+0.07 87.49+1.25 95.704+0.22 92.64+0.50 87.64+0.83 4.18M
Unet(baseline) 93.86+0.20 95.324+0.41 97.65+0.28 96.20+0.26 93.63+0.42 221M
Unet-CRF2 96.371+0.40 97.2940.50 98.634+0.09 97.78+0.22 96.26+0.38 221M
Unet-CRF3 97.474+0.27 98.214+0.36 98.934+0.11 98.3940.14 97.304+0.24 221M
Unet-CRF2-Adv 96.88+0.28 97.69+0.42 98.76£0.05 98.06+0.16 96.74+0.28 2.88M
Unet-CRF3-Adv 97.85+0.19 98.55+0.19 99.0840.07 98.65+0.09 97.74+0.17 2.88M
TABLE V
QUANTITATIVE PERFORMANCE RESULTS (F; SCORE(%), OA(%), KAPPA(%)) FOR CLASSIFICATION OF SAN FRANCISCO DATASET
Water body Vegetation High-density Low-density OA Kappa Parameter
urban urban
CNN 98.40+0.59 92.0740.27 91.18+0.25 85.08+0.93 91.54+0.39 88.04+0.55 0.18M
FCN-32 94.39+0.70 90.71£0.77 94.64+0.37 89.4940.56 92.7140.40 89.80+0.55 1.15M
SegNet 94.96+1.88 90.2143.47 88.06+3.64 82.184+9.77 88.76+3.29 84.29+4.72 5.46M
PSPNet 72.53+1.71 77.35+0.92 83.80+1.11 76.31+£1.20 78.80+1.14 70.67+1.54 2.49M
DeepLabV3 94.07+1.34 94.51+1.14 93.48+1.30 83.78+3.52 92.05+1.30 88.82+1.85 4.18M
Unet(baseline) 96.93+1.18 92.06+0.81 95.30£0.91 93.29+1.89 94.44+0.89 92.23+1.24 221M
Unet-CRF2 98.91+0.31 95.614+0.47 97.59+0.45 96.02+0.79 97.06+0.36 95.88+0.50 221M
Unet-CRF3 99.68+0.17 97.84+40.22 98.89+0.14 98.44+0.41 98.69+0.17 98.17+£0.24 221M
Unet-CRF2-Adv 99.17+£0.17 96.40+0.57 98.05+£0.39 96.72+0.80 97.69+0.38 96.65+0.52 2.88M
Unet-CRF3-Adv 99.86+0.05 98.67+0.14 99.34+0.11 99.08+0.16 99.22+0.08 98.91+0.11 2.88M
TABLE VI Unet to the four enhanced variants with CRF and/or Adv, the
TIME EFFICIENCY COMPARISON FOR THE ALOS-2, RADARSAT-2, AND ESAR . .
DATASETS performance is the weakest among the five categories. PSPNet
and DeepLabV3, on the other hand, show stronghand in this
ALOS2 RADARSAT2 ESAR category, indicating that the ideas behind these two methods are
o g T T TR e T more suitable to bare soil classification, at least for this dataset.
Eg{: %E% g %gz]%z E E:z:*: ié It should be mentioned that the proposed Unet-CRF3 and
DecplabV 12649 13 129 s 12369 u Unet-CRF3-Adv achieve super performance gains without
Unet i 556 3 pe ; i 3 introducing too much network burden. In fact, their number of
UnerCREC AN 173 b 08 : s 5 parameters is in par to PSPNet, and significantly smaller than
SegNet and DeepLabV3.
2) Oberpfaffenhofen Dataset (ESAR): The pixel-level clas-
experiments have been independently carried out for each sification results for the Oberpfaffenhofen dataset is shown in

method, the reported value is the mean value with one stan-
dard deviation. The progressive performance gains starting from
Unet, then to Unet-CRF2, and to Unet-CRF3 and Unet-CRF2-
Ady, finally culminating at Unet-CRF3-Adyv, are crystal-clear
from the table. Results for comparison methods (CNN, FCN-32,
SegNet, PSPNet, and DeepLabV3) are also provided. For these
methods, except DeepLabV3, each shows at least one weak spot
where one category has F score below 90. Of all the models,
the proposed Unet-CRF3 and Unet-CRF3-Adv hold the best
overall performance (OA and Kappa) and almost every single
category (F) score except the bail soil category. It is of some
interest to watch that for this category, the Unet-line starting from

Fig. 6. The relative performances among Unet, Unet-CRF2,
Unet-CRF3, Unet-CRF2-Adyv, and Unet-CRF3-Ady, are closely
mimic that of the Hangzhou dataset.

The classification results are quantitatively provided in Ta-
ble IV. Again, the progressive performance gains starting from
Unet, then to Unet-CRF2, and to Unet-CRF3 and Unet-CRF2-
Adv, finally culminating at Unet-CRF3-Adv, are manifested
from the table.

Fig. 6 also shows that the five Unet related models have more
misclassification in the build-up category than the other two
terrain types. The built-up area may contain vegetation, bare
soil, and so on, which undergoes scattering mechanisms not
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Built-up Areas Wood land Open Areas Unknown

Fig. 6. Classification results of Oberpfaffenhofen dataset (ESAR). (a) Ground
truth. (b) Unet. (¢) Unet-CRF2. (d) Unet-CRF3. (e) Unet-CRF2-Adyv. (f) Unet-
CRF3-Adv.

readily distinguishable from that of wood land and open area,
hence requiring the deep learning network to have adequate
discriminative power. Unet-CRF3 and Unet-CRF3-Adv
achieved a Fl-score of 97.47% and 97.85%, respectively,
in this category, indicating that more accurate modeling of label
distribution can help improve the feature expression ability of
the network.

Overall, of the 10 models including comparison models
(CNN, FCN-32, SegNet, PSPNet, and DeepLabV3), the
proposed Unet-CRF3 and Unet-CRF3-Adv hold the best
overall performance (OA and Kappa) and every single
category (F1) score, typically with large margin. For instance,
Unet-CRF3-Adv has OA score of 98.65%, better than the
baseline Unet score of 96.20%, and much better than the
highest score of 94.63 among the other five comparison models.

Again, albeit the performance gains of the proposed Unet-
CRF3 and Unet-CRF3-Adv models, their numbers of parameters
are comparable to other models.

3) San Francisco Bay Area Dataset (ALOS-2): The pixel-
level classification results for the San Francisco Bay area dataset
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(b)

(d)

(O]

Water body Unknown

Vegetation High-density urban

Low-density urban

Fig.7. Classification results of San Francisco Bay area dataset (ALOS-2). (a)
Ground truth. (b) Unet. (¢c) Unet-CRF2. (d) Unet-CRF3. (e) Unet-CRF2-Adv.
(f) Unet-CRF3-Adv.

is shown in Fig. 7. The relative performances among Unet,
Unet-CRF2, Unet-CRF3, Unet-CRF2-Adv, and Unet-CRF3-
Adyv, are closely mimic that of the other two datasets. However,
from Fig. 7(c), it is seen that CRF2 is incapable of handling
the severe spillover of the low-density urban category into
neighboring high-density urban and vegetation categories. This
indicates its difficulty of differentiating the seemly common
yet intricate scattering mechanisms for the cases, such as
volume scattering and depolarization effect. CRF3, on the
other hand, shows remarkable discriminative power. The same
comments apply to their adversarial learning counterparts. It
also indicates that although higher order CRFs and adversar-
ial learning exert their respective effects in different direc-
tion and hard to cross compare them, in this dataset higher
order CRFs clearly are more important than the adversarial
learning.

The classification results are quantitatively provided in
Table V. Again, the progressive performance gains starting from
Unet, then to Unet-CRF2, and to Unet-CRF3 and Unet-CRF2-
Adyv, finally culminating at Unet-CRF3-Adv, are manifested
from the table.
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Fig. 8. Performances of CRF2 and CRF3 under different iteration number for
the three datasets (ESAR, RADARSAT-2, and ALOS-2). (a) Oberpfaffenhofen.
(b) Hangzhou. (c¢) San Francisco.

Of the 10 models including comparison models (CNN,
FCN-32, SegNet, PSPNet, and DeepLabV3), the proposed Unet-
CRF3 and Unet-CRF3-Adv hold the best overall performance
(OA and Kappa) and every single category (Fi) score, with
distinguishably large margin. For instance, Unet-CRF3-Adv has
OA score of 99.22%, much better than the baseline Unet score
of 94.44% and the highest score of 92.05% among the other five
comparison models.

Once again, the numbers of parameters of the proposed Unet-
CRF3 and Unet-CRF3-Adv models are comparable to other
models.

et
—— Unet.CRF2
. Unet GRS
o UnetGRF2 A0
T e ad S Unercns A
7 o
%2 08 o4 05 06 o7 08 o8 1 %2 03 o+ 05 o5 07 o8 o5 1
Training set ratio Training st rato
100 100
o
o
%
g
<
I$) g
4
o
%
et et
~—4— Unet-CRF2 80 ~4— Unet-CRF2
Unet SRS Unet RS
e Utz Ad e UnercRr2 A
o Unercrrs g, i
o
%2 08 o4 o5 06 o7 08 o8 1 92 03 o4 05 o6 07 o8 o5 1
Training set ratio Training set ratio
100
o
%
o
©
g w0
g
b4
s

—e— Unet
—4— Unet-CRF2
Unet-CRF3

—=— Unet CRF2-Adv
—+— Unet-CRF3-Adv

—+— Unet-CRF3-Adv,

8 9 10 1 2 8 4

(©)

7 8 9 10

5 6 5 6
Training set ratio Training set ratio

Fig. 9. Model performances under different percentage of training label for
the three datasets. (a) ALOS-2 San Francisco. (b) ESAR Oberpfaffenhofen.
(c) RADARSAT-2 Hangzhou.

Water body Vegetation

High-density urban  Low-density urban Unknown

Fig. 10. ALOS-2 study area and corresponding ground truth for Seg-Grad-
Cam. (a) Original sub image. (b) Ground truth.

4) Time Efficiency: The training time and test time in seconds
for the three datasets and for the 10 models are listed in Table VI
for comparison. Since the test time is several orders smaller than
the training time, we shall focus on the latter. For the Unet related
5 models, it is seen that inclusion of adversarial learning only
leads to marginal increase of training time, whereas inclusion
of higher order potentials in CRFs leads to longer training
time. Specifically, inclusion of CRF3 costs a portion of the
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Fig. 11.  Seg-Grad-Cam on ALOS-2 San Francisco dataset. From the first to
the third column is Unet, Unet-CRF2, Unet-CRF3 model. (a) Activation Map
on high-density urban class. (b) Activation Map on low-density urban class.
(c) Activation Map on vegetation class.

CRF2 training time for ALOS2 and RADARSAT-2 datasets,
yet costs about four times that of CRF2 for ESAR dataset,
indicating that for this dataset the difficulty of convergency for
the iterative optimization process of the third-order potential. A
check of the training curve of Unet-CRF3 model on the ESAR
dataset indicates it is more oscillatory than that on the ALOS-2
dataset. This behavior may be attributable to the PoOISAR image
resolution, as the ESAR dataset has higher resolution, and thus,
presents more detailed land cover features; yet the variety of land
features is highly complex, hence, CRF3 tends to pick up and
activate more pertinent yet scattered spots. Consequently, the
model experiences more oscillations during training and requires
additional time to achieve optimal accuracy. Due to the intricate
interactions among Unet, CRF, and AE, further analysis is
challenging. When compared with other five comparison mod-
els, the training times of the proposed Unet-CRF3 and Unet-
CRF3-Adv are comparable to a majority of the five models for
ALOS2 and RADARSAT-2 datasets, and are about twice the
training time for the ESAR dataset.

C. Further Analysis

1) Effect of Iteration Number of CRF Updating: The fully
connected CRF algorithm is based on a mean field approxima-
tion to the CRF distribution, an approximation that is iteratively
optimized through a series of message passing steps, each of
which updates a single marginal @;(y;). In Fig. 8, the perfor-
mances of CRF2 and CRF3 under different iteration numbers are
examined. To avoid the complication which might be brought
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forth by adversarial learning, we focus on Unet-CRF2 and Unet-
CRF3. In each of the figures, there are three curves, with the
middle one representing the mean value of the five independent
experiments, and the other two denoting one standard deviation.
To better illustrate the effect of iteration number, we preset it
to one of the following values: 1, 5, 10, 15. To facilitate the
comparison with the baseline Unet as well, we represent the
latter to be the case when iteration number = 0, since there is
no CRF present then.

The following observations are readily made from Fig. 8.

1) The benefit of CRFs is evident when comparing baseline
Unet with Unet-CRF2 or Unet-CRF3.

2) CRF3 uniformly outperforms CRF2 across iteration num-
ber and datasets, indicating the need to consider higher
order potentials in CRFs for better label consistency.

3) CRF3 also tends to have smaller standard deviation, in-
dicating less performance fluctuation from experiment to
experiment.

4) The overall performance measure, OA or Kappa, shows
similar trend across iteration number, datasets, and CRF
order.

5) The performance is not monotonically improving with
increasing iteration number, suggesting that too many
iteration may lead to overkill of the inhomogeneity and
lead to performance degradation instead.

2) Effect of Percentage of Training Data: In the parameter
setting, the training label is composed of randomly chosen
1% of each terrain type for ALOS-2 and ESAR, and 5% for
RADARSAT-2. Given the satisfactory performance of the pro-
posed methods Unet-CRF3 and Unet-CRF3-Adv, we would like
to further investigate how their performance will change if the
percentage of training label goes down under 1% for ALOS-2
and ESAR datasets and 5% for RADARSAT-2.

For the ALOS-2 dataset, Fig. 9(a) shows the performances
of the five models (Unet and its enhanced four variants with
CRF and/or adversarial learning) against varying percentage
of training label, which can go as low as 0.2%. The perfor-
mance improves with more training label available. Relative
performance-wise, the progressive OA and Kappa performance
gains start from Unet, then to Unet-CRF2, and to Unet-CRF3
and Unet-CRF2-Adyv, finally culminating at Unet-CRF3-Ady,
in agreement with what have been observed in the previous
section. It is worthy of mentioning that even with training label
as low as 0.2%, the proposed Unet-CRF3-Adv method can still
achieve OA better than 93% and Kappa better than 90%. Similar
behaviors can be observed for the ESAR dataset as shown in
Fig. 9(b) and for the RADARSAT-2 dataset in Fig. 9(c).

3) Effectiveness of Feature Selection: It is of interest to see
how features are selected/extracted for final pixel-level classifi-
cation. This can be visualized by the utility of heatmap to assess
how relevant individual pixels or regions to the classification de-
cision are. We adopt the Seg-gradient-weighted class activation
mapping (Grad-CAM) method [64], which is an extension of the
popular Grad-CAM) method [66], in order to address the issue of
semantic interpretation of image segmentation. Following [64],
we generate heatmap using Seg-Grad-CAM for the bottleneck
layer (end of the encoder before upsampling) of the Unet due to
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Fig. 12.

its better informativeness than the layers close to the end of the
Unet decoder.

For illustration, we use the dataset of San Francisco Bay area,
with the study areas and corresponding ground truth depicted in
Fig. 10.

The results are shown in Fig. 11. For the activation map
of high-density urban class, it is seen that Unet is the most
economical and activates the least, whereas Unet-CRF3 activates
a majority of the high-density urban category, and Unet-CRF2
activates some spots in between the two models. Some curious
aspect here is that Unet-CRF3 not only activates the high-density
urban area marked by the ground truth in Fig. 10, but also
areas interspersed within the vegetation/forest region, areas too
complex and scattered that have been given up by the ground
truth map (the unknown category). It, thus, allows one to appre-
ciate the power of the CRF3 in its capability of picking up and
activating the pertinent yet scattered spots. Due to the complex
interplay among Unet, CRF, and the AE, meaningful further
analysis is elusive, so we turn to check the confusion matrix
instead, which clearly indicates the benefit of adding CRF on
top of baseline Unet, and furthermore the discriminative power
of higher order potentials (see Fig. 12).

V. CONCLUSION

For pixel level PoISAR image classification, this article pro-
posed a deep learning method to address two important issues
of how to enforce consistency and coherency of labeling using
contextual information, and how to make the process computa-
tionally efficient and flexible.

When applied to the classification of ALOS-2, RADARSAT-
2, and ESAR PolSAR images, the proposed method has uni-
formly demonstrated superior performance to other state-of-the-
art models. The results unambiguously indicate the importance
of higher order potentials of CRFs and the benefits of adversarial
learning.

To extend this work, we envision the following research lines:

1) Working with other types of polarimetric decomposition:

regarding the characteristics of POISAR images, in view of
the richer data channel some other researchers have been
utilizing (entropy-alpha by Cloude’s polarimetric decom-
position), our use of the Pauli decomposition may serve
as the base for comparison when other types of polarimet-
ric decomposition are adopted. Moreover, to incorporate
more physics into the decomposition, we are working on

Unet+CRF2 Model Confusion Matrix
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Unet, Unet-CRF2, and Unet-CRF3 model confusion matrix for ALOS-2 dataset. (a) Unet. (b) Unet-CRF2. (c) Unet-CRF3.

physically rigorously polarimetric decomposition [67] and
would like to extend our currently data driven approach in
future work.

2) Incorporating data augment technique: This work does
not use any data augment technique, whose adoption is
expected to further improve the performance.

3) Applying active learning: The learning in this work is
of supervised manner, where around 1% labels of each
subcategory has to be manually prepared. This is a tedious
and error-prone work, an issue which can be mitigated by
applying active learning [68].

4) Addressing PolSAR image variability: PoISAR images
can be affected by a variety of factors, including speckle
noise, complex undulating topography effect, atmospheric
conditions, and sensor calibration errors.

A more comprehensive exploration of variability, similar to

the approach used in [77] could further enhance the model’s
robustness and accuracy.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their helpful reviews and suggestions.

REFERENCES

[1] Z. Du et al., “Mapping annual global forest gain from 1983 to 2021 with
landsat imagery,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 16, pp. 4195-4204, 2023, doi: 10.1109/JSTARS.2023.3267796.

[2] O.Russakovsky etal., “ImageNet large scale visual recognition challenge,”
Int. J. Comput. Vis., vol. 115, pp. 211-252, 2015.

[3] O.Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks

for biomedical image segmentation,” in Proc. Int. Conf. Med. Image

Comput. Comput.- Assist. Intervention, 2015, pp. 234-241.

P. Krahenbuhl and V. Koltun, “Efficient inference in fully connected CRFs

with Gaussian edge potentials,” in Proc. Annu. Conf. Neural Inf. Process.

Syst., 2011, pp. 109-117.

P. Kohli, L. Ladicky, and P. H. Torr, “Robust higher order potentials

for enforcing label consistency,” Int. J. Comput. Vis., vol. 82, no. 3,

pp. 302-324, 2009.

Y. Wang et al., “Self-supervised feature learning with CRF embedding for

hyperspectral image classification,” I[EEE Trans. Geosci. Remote Sens.,

vol. 57, no. 5, pp. 2628-2642, May 2019.

C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical

features for scene labeling,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 35, no. 8, pp. 1915-1929, Aug. 2013.

1. Goodfellow et al., “Generative adversarial nets,” in Proc. Annu. Conf.

Neural Inf. Process. Syst., 2014, pp. 2672-2680.

[9] Y. Wang, C. He, X. Liu, and M. Liao, “A hierarchical fully convolutional
network integrated with sparse and low-rank subspace representations for
PoISAR imagery classification,” Remote Sens., vol. 10, 2018, Art. no. 342.

[4

—_

[5

—_

[6

=

[7

—

[8

=


https://dx.doi.org/10.1109/JSTARS.2023.3267796

ZHANG et al.: ADVERSARIAL NETWORK WITH HIGHER ORDER POTENTIAL CONDITIONAL RANDOM FIELD

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436-444, 2015.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Annu. Conf. Neural
Inf. Process. Syst., 2012, pp. 1097-1105.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Representations,
2015, pp. 1-14.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770-778.

L. Zhang, L. Zhang, and B. Du, “Deep learning for remote sensing data:
A technical tutorial on the state of the art,” IEEE Geosci. Remote Sens.
Mag., vol. 4, no. 2, pp. 22-40, Jun. 2016.

W. Wu, H. Li, X. Li, H. Guo, and L. Zhang, “PolSAR image semantic seg-
mentation based on deep transfer learning realizing smooth classification
with small training sets,” IEEE Geosci. Remote Sens. Lett., vol. 16, no. 6,
pp. 977-981, Jun. 2019.

H.Bi, L. Xu, X. Cao, Y. Xue, and Z. Xu, “Polarimetric SAR image semantic
segmentation with 3D discrete wavelet transform and Markov random
field,” IEEE Trans. Image Process., vol. 29, pp. 6601-6614, Jun. 2020.
N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, “Deep learning
classification of land cover and crop types using remote sensing data,”
IEEE Geosci. Remote Sens. Lett., vol. 14, no. 5, pp. 778-782, May 2017.
X. X. Zhu et al., “Deep learning in remote sensing: A comprehensive
review and list of resources,” IEEE Geosci. Remote Sens. Mag., vol. 5,
no. 4, pp. 8-36, Dec. 2017.

R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features for
image classification,” IEEE Trans. Syst., Man, Cybern., vol. SMC-3, no. 6,
pp. 610-621, Nov. 1973.

N. Dalal and B. Triggs, “Histograms of oriented gradients for human de-
tection,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
2005, vol. 1, pp. 886-893.

T. S. Lee, “Image representation using 2D Gabor wavelets,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 18, no. 10, pp. 959-971, Oct. 1996.

K. Huang and S. Aviyente, “Wavelet feature selection for image clas-
sification,” IEEE Trans. Image Process., vol. 17, no. 9, pp. 1709-1720,
Sep. 2008.

Z. Shao, L. Zhang, and L. Wang, “Stacked sparse autoencoder mod-
eling using the synergy of airborne LiDAR and satellite optical and
SAR data to map forest above-ground biomass,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 10, no. 12, pp.5569-5582,
Dec. 2017.

W. Xie et al., “POLSAR image classification via Wishart-AE model or
Wishart-CAE model,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 10, no. 8, pp. 3604-3615, Aug. 2017.

Y. Chen, X. Zhao, and X. Jia, “Spectral-Spatial classification of hyper-
spectral data based on deep belief network,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2381-2392, Jun. 2015.

W. Zhao, S. Du, and W. J. Emery, “Object-based convolutional neural
network for high-resolution imagery classification,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 10,no. 7, pp. 3386-3396, Jul. 2017.
Y. Zhou, H. Wang, F. Xu, and Y.-Q. Jin, “Polarimetric SAR image classi-
fication using deep convolutional neural networks,” IEEE Geosci. Remote
Sens. Lett., vol. 13, no. 12, pp. 1935-1939, Dec. 2016.

X. Wu, D. Hong, and J. Chanussot, “Convolutional neural net-
works for multimodal remote sensing data classification,” [EEE
Trans. Geosci. Remote Sens., vol. 60, Nov. 2022, Art. no. 5517010,
doi: 10.1109/TGRS.2021.3124913.

G.Li, L. Li, H. Zhu, X. Liu, and L. Jiao, “Adaptive multiscale deep fusion
residual network for remote sensing image classification,” /EEE Trans.
Geosci. Remote Sens., vol. 57, no. 11, pp. 8506-8521, Nov. 2019.

G. Wang, B. Fan, S. Xiang, and C. Pan, “Aggregating rich hierarchical
features for scene classification in remote sensing imagery,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 9, pp. 4104-4115,
Sep. 2017.

D.Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, and J. Chanussot, “Graph con-
volutional networks for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 7, pp. 5966-5978, Jul. 2021.

J. Cheng, F. Zhang, D. Xiang, Q. Yin, and Y. Zhou, “PolSAR image clas-
sification with multiscale superpixel-based graph convolutional network,”
IEEE Trans. Geosci. Remote Sens., vol. 60, May 2022, Art. no. 5209314,
doi: 10.1109/TGRS.2021.3079438.

D. Hong et al., “More diverse means better: Multimodal deep learning
meets remote-sensing imagery classification,” IEEE Trans. Geosci. Re-
mote Sens., vol. 59, no. 5, pp. 4340-4354, May 2021.

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

(501

[51]

[52]

[53]

[54]

[55]

[56]

1811

J. Geng, X. Deng, X. Ma, and W. Jiang, “Transfer learning for SAR image
classification via deep joint distribution adaptation networks,” IEEE Trans.
Geosci. Remote Sens., vol. 58, no. 8, pp. 5377-5392, Aug. 2020.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 3431-3440.

V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep con-
volutional encoder-decoder architecture for image segmentation,” /EEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp.2481-2495,
Dec. 2017.

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp- 2881-2890.

L. C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation, 2017, arXiv:1706.05587.
[Online]. Available: https://doi.org/10.48550/arXiv.1706.05587

Y. Li, Y. Chen, G. Liu, and L. Jiao, “A novel deep fully convolutional
network for POISAR image classification,” Remote Sens., vol. 10, no. 12,
2018, Art. no. 1984.

Y. Cao, Y. Wu, P. Zhang, W. Liang, and M. Li, “Pixel-wise PolSAR
image classification via a novel complex-valued deep fully convolutional
network,” Remote Sens., vol. 11, no. 22, 2019, Art. no. 2653.

R.Zhang,J. Chen, L. Feng, S. Li, W. Yang, and D. Guo, “A refined pyramid
scene parsing network for polarimetric SAR image semantic segmentation
in agricultural areas,” IEEE Geosci. Remote Sens. Lett., vol. 19, Jun. 2022,
Art. no. 4014805, doi: 10.1109/LGRS.2021.3086117.

L. Yu et al., “A lightweight complex-valued DeepLabV3+ for semantic
segmentation of PolSAR image,” IEEE J. Sel. Topics Appl. Earth Ob-
serv. Remote Sens., vol. 15, pp. 930-943, Jan. 2022, doi: 10.1109/JS-
TARS.2021.3140101.

H. Bi, J. Sun, and Z. Xu, “A graph-based semisupervised deep learning
model for PoISAR image classification,” IEEE Trans. Geosci. Remote
Sens., vol. 57, no. 4, pp. 2116-2132, Apr. 2019.

P. Zhang et al., “PolSAR image classification using hybrid conditional
random fields model based on complex-valued 3-D CNN,” IEEE Trans.
Aerosp. Electron. Syst., vol. 57, no. 3, pp. 1713-1730, Jun. 2021.

W. Song, Y. Wu, and X. Xiao, “Nonstationary PolSAR image classi-
fication by deep-features-based high-order triple discriminative random
field,” IEEE Geosci. Remote Sens. Lett., vol. 18, no. 8, pp. 1406-1410,
Aug. 2021.

Z.Zhang, J. Yang, and Y. Du, “Deep convolutional generative adversarial
network with autoencoder for semisupervised SAR image classification,”
IEEE Geosci. Remote Sens. Lett., vol. 19, Sep. 2022, Art. no. 4000405,
doi: 10.1109/LGRS.2020.3018186.

Z. L. Ren, B. Hou, Q. Wu, Z. D. Wen, and L. C. Jiao, “A distribution and
structure match generative adversarial network for SAR image classifica-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 6, pp. 3864-3880,
Jun. 2020.

F Liu, L. Jiao, and X. Tang, “Task-oriented GAN for PolSAR image
classification and clustering,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 9, pp. 2707-2719, Sep. 2019.

J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proc. Int. Conf.
Computer Vis., 2017, pp. 2223-2232.

K. Heidler, L. C. Mou, C. Baumbhoer, A. Dietz, and X. X. Zhu, “HED-UNet:
Combined segmentation and edge detection for monitoring the Antarc-
tic coastline,” IEEE Trans. Geosci. Remote Sens., vol. 60, Mar. 2022,
Art. no. 4300514, doi: 10.1109/TGRS.2021.3064606.

A.S.Nagi, D. Kumar, D. Sola, and K. A. Scott, “RUF: Effective seaice floe
segmentation using end-to-end RES-UNET-CRF with dual loss,” Remote
Sens., vol. 13, 2021, Art. no. 2460.

P. Zhang, M. Li, Y. Wu, and H. J. Li, “Hierarchical conditional random
fields model for semisupervised SAR image segmentation,” IEEE Trans.
Geosci. Remote Sens., vol. 53, no. 9, pp. 4933-4951, Sep. 2015.

Z.S. Sun et al., “SAR image classification using fully connected condi-
tional random fields combined with deep learning and superpixel boundary
constraint,” Remote Sens., vol. 13, no. 2, 2021, Art. no. 271.

X. Liu, L. Jiao, and F. Liu, “PoISF: PolSAR image dataset on San
Francisco,” 2019, arXiv:1912.07259.

F. Zhao, M. Tian, W. Xie, and H. Liu, “A new parallel dual-channel
fully convolutional network via semi-supervised FCM for PoISAR image
classification,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 13, pp. 4493-4505, Aug. 2020, doi: 10.1109/JSTARS.2020.3014966.
S.Joffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 448-456.


https://dx.doi.org/10.1109/TGRS.2021.3124913
https://dx.doi.org/10.1109/TGRS.2021.3079438
https://doi.org/10.48550/arXiv.1706.05587
https://dx.doi.org/10.1109/LGRS.2021.3086117
https://dx.doi.org/10.1109/JSTARS.2021.3140101
https://dx.doi.org/10.1109/JSTARS.2021.3140101
https://dx.doi.org/10.1109/LGRS.2020.3018186
https://dx.doi.org/10.1109/TGRS.2021.3064606
https://dx.doi.org/10.1109/JSTARS.2020.3014966

1812

[57] Y. Wu and K. He, “Group normalization,” in Proc. Eur. Conf. Comput.

Vis., 2018, pp. 3—19.

[58] L.Ladicky, C.Russell, P. Kohli, and P. H. S. Torr, “Associative hierarchical
CRFs for object class image segmentation,” in Proc. IEEE 12th Int. Conf.
Comput. Vis., 2009, pp. 739-746.

[59] L. Ladicky, P. Sturgess, K. Alahari, C. Russell, and P. H. Torr, “What,

where and how many? Combining object detectors and CRFs,” in Proc.

Eur. Conf. Comput. Vis., 2010, pp. 424-437.

V. Vineet, J. Warrell, and P. H. Torr, “Filter-based mean-field inference for

random fields with higher-order terms and product label-spaces,” Int. J.

Comput. Vis., vol. 110, no. 3, pp. 290-307, 2014.

[61] A. Arnab, S. Jayasumana, S. Zheng, and P. H. Torr, “Higher order condi-

tional random fields in deep neural networks,” in Proc. Eur. Conf. Comput.

Vis., 2016, pp. 524-540.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification,” in Proc.

IEEE Int. Conf. Comput. Vis., 2015, pp. 1026-1034.

[63] E. Peli, “Contrast in complex images,” J. Opt. Soc. Amer., vol. 7, no. 10,

pp- 2032-2040, 1990.

K. Vinogradova, A. Dibrov, and G. Myers, “Towards interpretable seman-

tic segmentation via gradient-weighted class activation mapping,” in Proc.

AAAI Conf. Artif. Intell., vol. 4, no. 10, Apr. 2020, pp. 13943-13944.

G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks,” Science, vol. 313, pp. 504-507, 2006.

[66] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D.

Batra, “Grad-CAM: Visual explanations from deep networks via gradient-

based localization,” Int. J. Comput. Vis., vol. 128, no. 2, pp. 336-359,

Feb. 2020.

Y. Du, C. Yang, Z. Y. Li, and Q. H. Liu, “Physically based polarimetric

volumetric scattering from cylindrically dominated vegetation canopies,”

IEEE Trans. Geosci. Remote Sens., vol. 57, no. 3, pp. 1629-1636,

Mar. 2019.

[68] H.X.Bi, F Xu, Z. Q. Wei, Y. Xue, and Z. B. Xu, “An active deep learning
approach for minimally supervised PoISAR image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 57, no. 11, pp. 9378-9395, Nov. 2019.

[69] M. Bossard, J. Feranec, and J. Otahel, “CORINE land cover technical
guide: Addendum”, European Environment Agency, Copenhagen, Den-
mark, Tech. Rep. 40, 2000.

[70] J. R. Anderson, A Land Use and Land Cover Classification System for
Use With Remote Sensor Data, vol. 964. Washington, DC, USA: US
Government Printing Office, 1976.

[71] D. Zanaga et al., “ESA Worldcover 10 M 2021 v200,” Zenodo, Oct. 28,
2022, doi: 10.5281/zenodo.7254221.

[72] Y. Cao, Y. Wu, M. Li, W. Liang, and X. Hu, “DFAF-Net: A dual-frequency
PoISAR image classification network based on frequency-aware attention
and adaptive feature fusion,” IEEE Trans. Geosci. Remote Sens., vol. 60,
Feb. 2022, Art. no. 5224318, doi: 10.1109/TGRS.2022.3152854.

[73] X.Tan,M.Li, P.Zhang, Y. Wu, and W. Song, “Deep triplet complex-valued
network for PolSAR image classification,” IEEE Trans. Geosci. Remote
Sens., vol. 59, no. 12, pp. 10179-10196, Dec. 2021.

[74] Z. Wen, Q. Wu, Z. Liu, and Q. Pan, “Polar-spatial feature fusion learning
with variational generative-discriminative network for POISAR Classifica-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 11, pp. 8914-8927,
Nov. 2019.

[75] Y. Cui et al., “Polarimetric multipath convolutional neural network for
PoISAR image classification,” IEEE Trans. Geosci. Remote Sens., vol. 60,
May 2022, Art. no. 5207118, doi: 10.1109/TGRS.2021.3071559.

[76] A. Jamali, M. Mahdianpari, F. Mohammadimanesh, A. Bhattacharya,
and S. Homayouni, “PolSAR image classification based on deep
convolutional neural networks using wavelet transformation,” /EEE
Geosci. Remote Sens. Lett., vol. 19, Jun. 2022, Art. no. 4510105,
doi: 10.1109/LGRS.2022.3185118.

[77] D.Hong, N. Yokoya, J. Chanussot, and X. X. Zhu, “An augmented linear
mixing model to address spectral variability for hyperspectral unmixing,”
IEEE Trans. Image Process., vol. 28, no. 4, pp. 1923-1938, Apr. 2019.

[60]

[62]

[64]

[65]

[67]

Zheng Zhang received the B.S. degree in electronics
and information engineering and the M.S. degree
in electronics and communication engineering from
Zhengzhou University, Zhengzhou, China, in 2014
and 2017, respectively. He is currently working to-
ward the Ph.D. degree in the field of microwave
remote sensing with the College of Information Sci-
ence and Electronic Engineering, Zhejiang Univer-
sity, Hangzhou, China.

His research interests include synthetic aperture

radar image interpretation, machine learning, and

electromagnetic scattering.

¥~ e
r: @) (@ Vi,

e

-

—

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Hui Guo received the B.S. degree in communica-
tion engineering and the M.S. degree in signal and
information processing from the Harbin Institute of
Technology, Harbin, China, in 1995 and 1997, respec-
tively.

She is currently a Professor with the Beijing In-
stitute of Satellite Information Engineering, China
Academy of Space Technology, Beijing, China. Her
research interests include SAR image processing,
space communication, and networks.

Jingsong Yang received the B.S. degree in physics
and the M.S. degree in theoretical physics from
Zhejiang University, Hangzhou, China, in 1990 and
1996, respectively, and the Ph.D. degree in physical
oceanography from the Ocean University of China,
- Qingdao, China, in 2001.

He is with the Second Institute of Oceanogra-
phy (SIO), Ministry of Natural Resources (MNR),
Hangzhou, China, where he is the Head of the Mi-
crowave Marine Remote Sensing, State Key Labora-
tory of Satellite Ocean Environment Dynamics. He is
also an Adjunct Professor and a Doctoral Supervisor with Zhejiang University,
Shanghai Jiao Tong University, Shanghai, China, and Hohai University, Nanjing,
China. He is also a Senior Member of Southern Marine Science and Engineering
Guangdong Laboratory, Zhuhai, China. He has more than 20 years of experience
in microwave marine remote sensing. He has been a Principal Investigator and
a participant of more than 20 research projects, and authored or coauthored
more than 100 scientific articles in peer-reviewed journals and international
conference proceedings. His research interests include microwave marine re-
mote sensing, data fusion, image processing, and satellite oceanography.

Xianggang Wang, photograph and biography not available at the time of
publication.

Yang Du (Senior Member, IEEE) received the B.E.
degree in precision instrumentation from Tsinghua
University, Beijing, China, in 1991, the M.S. de-
gree in electrical engineering from the University of
Massachusetts Dartmouth, Dartmouth, MA, USA, in
1997, and the joint M.S. degree in mathematics and
the Ph.D. degree in electrical engineering from the
University of Michigan, Ann Arbor, MI, USA, in
2001 and 2003, respectively.

In 1993, he joined Ericsson China Limited, Bei-
jing. In 2007, he joined the Research Laboratory of
Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA, as
a Visiting Scientist. In 2012, he joined the Department of Atmospheric Science,
Texas A&M University, College Station, TX, USA, as a Research Scholar. He is
currently a Professor with Zhejiang University, Hangzhou, China, and also the
Associate Director of the Innovative Institute of Electromagnetic Information
and Electronic Integration. His research interests include microwave remote
sensing, image processing and analysis, statistical signal processing, and deep
learning.

Dr. Du was a Member of IEEE James H. Mulligan, Jr., Education Medal
Committee. He is an Associate Editor for IEEE GEOSCIENCE AND REMOTE
SENSING LETTERS and was the Deputy Editor of IEEE GRSS REMOTE SENSING
CODE LIBRARY.


https://dx.doi.org/10.5281/zenodo.7254221
https://dx.doi.org/10.1109/TGRS.2022.3152854
https://dx.doi.org/10.1109/TGRS.2021.3071559
https://dx.doi.org/10.1109/LGRS.2022.3185118


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


