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Beyond Supervised Learning in Remote Sensing: A
Systematic Review of Deep Learning Approaches
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Abstract—An increasing availability of remote sensing data in
the era of geo big-data makes producing well-represented, reliable
training data to be more challenging and requires an excessive
amount of human labor. In addition, the rapid increase in graphics
processing unit processing power has enabled the development of
advanced deep learning algorithms, which achieve impressive re-
sults in the field of satellite image processing. However, they require
a huge and comprehensive training dataset to avoid overfitting
problems and to represent a generalizable model. Thus, moving
toward the development of nonsupervised deep learning (NSDL)
models in different remote sensing applications is an inevitable
need. To provide an initial response to that need, this article
performs a comprehensive review and systematic meta-analysis of
recently published research articles focusing on the applications
of NSDL for remote sensing data processing. In order to identify
future research directions and formulate recommendations, we
extract trends and highlight interesting approaches from this large
body of literature. Consequently, current challenges, prospects,
and recommendations are also discussed to uncover the trend. Ac-
cording to the results, there is a sharp increasing trend in the
applicability of NSDL methods during these few years particularly,
with the advent of new deep architectures, such as adversarial,
graph, and transformer models. As a result, this review article
discusses different remote sensing data processing applications and
challenges that can be addressed using NSDL approaches.

Index Terms—Self-supervised, semisupervised, training data,
transfer learning (TL), unsupervised, weakly supervised.

1. INTRODUCTION

ECENT technological advances in platforms, sensors, and
data management infrastructures have made the various,
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frequent, and high-quality remote sensing datasets more ac-
cessible, leading the research focus into the “geo Big Data.”
Therefore, developing processing tools to effectively use re-
mote sensing dataset have been always one of the hot topics
in the research community. On the one hand, the main pro-
cessing tasks can be divided into classification, object detec-
tion, change detection (CD), and image fusion. On the other
hand, many remote sensing applications require preprocess-
ing steps, such as noise reduction, data fusion, image reg-
istration, and super-resolution (SR). Hence, diverse methods
from statistical parametric approaches to machine learning
(ML) and recent deep learning (DL) methods have been de-
veloped or evaluated to address remote sensing data processing
challenges [1].

Despite the significant improvements of DL algorithms on
various remote sensing processing tasks, they require extensive
labeled training data. In other words, the excellence of DL
models is highly dependent on the quality and amount of training
samples. However, acquiring high-quality annotations on a large
scale and in some applications could be laborious and costly.
In particular, for Earth observation (EO) applications, several
field works are required to collect proper training samples. In
addition, the large volume and variety of remote sensing datasets
and the number of input data layers directly increase the re-
quirement of training samples due to the Hughes phenomenon in
higher dimensions [2]. Furthermore, some imaging scenes, such
as complex and heterogeneous landscapes, could add various
challenges and, thus, affecting the generalization capability of
the DL model due to their mixed distribution. To sum up, DL
models’ performance and generalization capability extremely
relies on the large-scale training samples.

Despite annotated training data, unlabeled data are more ac-
cessible and easier to collect. Accordingly, exploiting unlabeled
data in order to avoid expensive training data collection and
achieving the highest performance of DL models can be consid-
ered an attractive solution. Hence, nonsupervised learning meth-
ods can be adapted to maximize the applicability of unlabeled
data for training the DL model. However, due to the inherent
complexity of remote sensing data and existing challenges in
nonsupervised learning, precise learning schemes and specific
model designs are required. This article provides a meta-analysis
and a systematic review of the latest deep nonsupervised learning
methods offered by researchers in the field of remote sensing.
There are various approaches for categorizing nonsupervised
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learning methods. However, this study divides them into five
main categories: transfer learning (TL) or finetuning, weakly
supervised learning (WSL), semisupervised learning (Semi-SL),
self-supervised learning (Self-SL), and unsupervised learning
(USL).

While considering that supervised learning is performed in
an ideal condition with abundant and accurate labeled samples,
the main capability of nonsupervised learning is leveraging
unlabeled or weakly labeled data to improve the trained model’s
generalization. TL addresses the problem of limited training data
and accelerates the learning process by using a pretrained model
from another domain and finetuning it with labeled samples
from the main dataset. Unlike TL, other learning methods train
a base model without pretrained weights. The key idea behind
WSL is training a model with low quality of training data, while
the quantity can be sufficient, such as, semantic segmentation
with image-level labeled data. Semi-SL algorithms, generally,
take advantage of unlabeled data to increase the size of training
dataset by iteratively generating pseudosamples. Self-SL uses
unlabeled data for unsupervised representation learning and then
fine-tunes the model by small number labeled data. Despite
these learning methods, USL fully utilizes unlabeled data for
modeling.

Several review papers have been published concerning DL
applications in remote sensing data processing. However, these
studies mainly focus on a few topics, such as general applications
of the DL models to remote sensing data [3], [4], reviewing a
specific DL architecture [5], [6], [7], or a specific application or
dataset [8], [9]. Hence, there is no attention on either learning
methods or training strategies in most of these studies. One of the
very first comprehensive reviews of DL in remote sensing was
published by Zhu et al. [4]. They reviewed well-known models,
applications, and benchmark remote sensing datasets for devel-
oping DL algorithms. Ma et al. [3] gathered a systematic review
and meta-analysis of DL in various remote sensing applications
and reviewed related papers in the topic, created a meta-analysis
by categorizing the major interconnections between DL and
remote sensing data, such as DL architecture, study target, and
data resolution. Hoeser et al. [10], [11] published a comprehen-
sive overview of DL models focusing on object detection and
segmentation using remotely sensed images.

Apart from a general review of DL in remote sensing, a few
reviews have been published focusing on narrow subjects, such
as specific remotely sensed data or specific DL architecture.
Paoletti et al. [8] provided a review focused on evaluating
and comparing the performance of state-of-the-art DL. models
applied for hyperspectral (HS) image classification. Zhu et al. [9]
reviewed the applications and existing challenges of processing
synthetic aperture radar (SAR) data with DL algorithms. A
comprehensive review of various DL models developed for CD
in remote sensing can be found in [12]. A systematic review
and meta-analysis of recent trends on the applicability of convo-
lutional neural networks on remote sensing tasks are provided
in [5]. Effects and improvements obtained by adding attention
mechanism to DL models have been reviewed and discussed in

[7].
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As shown, many review studies have been published so far,
yet none of them focused on long-lasting challenges that exist
in applying DL to remote sensing data: well-represented, suf-
ficient annotated training data. Although few studies reviewed
applications of nonsupervised deep learning (NSDL) algorithms
in remote sensing, they are mostly focused on a small and
specific case. For instance, areview by Dong et al. [13] compared
different autoencoder models for unsupervised target detection
(TD) from SAR imagery. Applicability and performance of
graph neural networks (GNN) for HS image classification in
a semisupervised manner has been studies in [14].

There are a number of review papers in other fields that are
closely related to the main topics of this article, where they
discuss the challenges of supervised DL and review the cutting-
edge algorithms and applications of NSDL. For example, a
review on WSL and its various aspects in general field of data
science was provided in [15]. A technical review on the appli-
cability of GNNs in semisupervised problems in image classi-
fication was provided in [16]. Ohri and Kumar [17] gathered a
review on deep Self-SL for image recognition. Chum et al. [18]
reviewed and compared the supervised and unsupervised DL
algorithms in the context of autonomous navigation. Peng and
Wang [19] provided a comprehensive review on the utilization
of DL algorithms in imperfect training data for medical image
segmentation.

Despite growing advances of NSDL methods in remote sens-
ing, there is no review paper that specifically focus on NSDL
methods in this field to the best of our knowledge. Therefore,
the main objective of this article is to provide a comprehensive
review of NSDL methods in the context of remote sensing data
processing. Accordingly, this study contributes to building a
systematic review and meta-analysis on the recently published
papers in the field of NSDL for remote sensing processing and
discusses the trends and potential future directions in this field.
The current research also provides a comprehensive and detailed
overview of state-of-the-art NSDL methods using a standard
categorization paradigm and, thus, making it easier to identify a
suitable solution for remote sensing problems.

II. METHOD

A comprehensive review process in this article was performed
by preparing a systematic literature search query using the
SCOPUS, IEEEXplore, and Science Direct databases, which
cover almost all the well-known scholarly literature in the field
of remote sensing. Preferred reporting items for systematic
reviews and meta-analyses (PRISMA) [20] methodology was
followed for the selection of articles. Accordingly, after a few
trials, three groups of keywords, including the “field of study,”
“learning method,” and “modeling method” were selected to
extract relevant research articles from the databases. Thus, the
query design for searching the databases is as follows:

(“transfer learning” OR “fine tuning” OR “semi-supervised” OR
“weakly supervised” OR “active learning” OR “self-supervised” OR
“unsupervised”) AND (Deep” OR “Deep learning”) AND (“Remote
sensing” OR “Earth observation”).
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Fig. 1. PRISMA flowchart for meta-analysis.

The database searching and data extraction process were
performed until 31 December, 2022. From the existing list of
papers, only the research papers from the peer-reviewed journals
written in English were selected. At first, 912 research papers
were extracted from the combination of the three databases.
After removing the duplicated or unrelated papers, 505 papers
were eligible for the meta-analysis. Fig. 1 summarizes the
database searching and literature meta-analysis process using
the PRISMA methodology.

III. RESULTS AND BRIEF OVERVIEW

The generated database of the reviewed papers and their cor-
responding data is used for meta-analysis of the NSDL methods
in the remote sensing data processing.

The essential information about a remote sensing dataset
could be electromagnetic band, spatial resolution, and type of
study area, while the main parts of the modeling process are
learning method, training data, and model architecture. Finally,
the trained model is evaluated with proper metrics, such as accu-
racy. Therefore, this section provides the results of meta-analysis
of NSDL methods in remote sensing in the following subsec-
tions: first, a general characteristic of evaluated studies, such
as a simple statistical analysis of published papers in different
years and journals, is provided. The Next, deep architectures
used within the nonsupervised learning scheme in the remote
sensing studies are reviewed in the second subsection. This is
followed by an analysis of results attained from different training
sizes and datasets in the third and fourth sections, respectively.
In the last part, the statistical results of NSDL methods applied to
various study targets of remote sensing are shown and discussed.

A. General Characteristics of Studies

Fig. 2 shows the number of published journal papers in the
investigated field from 2015 to 2022. Comparing the number
of published papers in 2015 (3) and 2022 (232) demonstrates
an increasing interest in applying nonsupervised learning for
remote sensing problems within less than a decade. We also
showed the number of open-access codes regarding the pub-
lished papers in each year. The results show that as interest
in developing NSDL methods increases, researchers are more
willing to share their developed code publicly. Furthermore, a
list of most frequently publishing journals, which issued more
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Fig. 2. Annual frequency of the published NSDL papers in remote sensing
applications.

than two papers evaluated herein, is provided in Fig. 3. As
demonstrated in this figure, Remote Sensing MDPI and IEEE
TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING are two
top journals that have the largest number of publications in this
field. However, the IEEE family journal contained the largest
portion of papers and, thus, can be considered as the main
publisher in this field.

As shown in Fig. 4, the majority of published papers were
related to USL (33%) and TL (26.9%), respectively. This is
followed by the Semi-SL methods with 21.6% of published
papers, and only 10.1% and 7.3% were focused on the Self-SL
and WSL methods in their DL model learning process. Notably,
Self-SL and USL seem to have gained the highest attentions
in the past two years, according to their sharp increase rate.
Importantly, the use of WSL methods has not yet been well
received by researchers. This could be due to the complexity of
WSL methods for remote sensing applications compared to the
other mentioned learning methods.

B. Deep Architectures

Developed deep models primarily employ a combination of
multiple deep modules and base architectures to achieve state-
of-the-art results. Fig. 5 presents the statistics on the usage of
deep modules and base architectures for deep nonsupervised
modeling of remote sensing data. We define a deep module
as a set of operations or layers that transform input data into
desired output representations, such as Residual and Attention
mechanisms, while the base architectures consist of multiple
modules, such as Transformer.

Asdepicted in Fig. 5(a), the Residual module is the most com-
monly used module in the construction of deep nonsupervised
models, with a total of 111 records. On the other hand, although
Attentions are relatively newer compared to other modules,
they exhibit higher usage (62) than the Recurrent (17) and
Inception (11) modules. This can be attributed to the Attention
mechanism’s ability to enhance focus on the most informative
and relevant features within the data, thereby facilitating the
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Fig.4. Annual frequency of published NSDL papers in remote sensing appli-
cations, divided by learning methods.

learning process while reducing the reliance on large quantities
or high-quality training data.

Regarding the deep architectures [see Fig. 5(b)], AE, followed
by GAN, have been the most frequently employed architectures
for deep nonsupervised modeling of remote sensing data, with
194 and 70 studies, respectively. In contrast, Graph (21) and
Transformer (18) exhibit the lowest usage. The significant us-
age of AE in USL models and GAN in TL models is worth
noting. This can be attributed to the automated feature learning
capabilities of AE and the strong ability of GAN to generate
synthetic data and address domain shift in TL problems through
adversarial learning. Furthermore, although Transformer has
shown the least usage among the studies, it is important to
highlight that this architecture was introduced in 2021, and we
anticipate an increase in the number of studies involving this
architecture in the future years.

Distribution of the published papers divided by journals and publishers.
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IEEE Transactions on Geoscience and Remote Sensing 131
IEEE Geoscience and Remote Sensing Letters 76
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 54
IEEE Transactions on Neural Networks and Learning Systems 10
IEEE Access 5
IEEE Transactions on Image Processing 3
IEEE Transactions on Cybernetics 2
IEEE Transactions on Vehicular Technology 2
Remote Sensing 120
Sensors 6
ISPRS Journal of Photogrammetry and Remote Sensing 19
International Journal of Applied Earth Observation and Geoinformation 12
Remote Sensing of Environment 8
Computers and Electronics in Agriculture 3
Neurocomputing 2
Information Fusion 2
Pattern Recognition 2
International Journal of Remote Sensing 18
Remote Sensing Letters 9
International Journal of Digital Earth 3
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Fig. 5. Frequency of the published papers for each nonsupervised learning

method using different (a) DL modules and (b) architectures.

C. Training Data

Amount or fraction of available labeled training data is an
important factor in order to choose a suitable learning method
in DL modeling process. According to the definition of USL in
this review, we assume that USL does not use any annotated
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Fig. 6. Training fraction distribution versus nonsupervised learning method.

samples and, thus, the training fraction is zero. Fig. 6 shows the
fraction of training samples used for training the model based on
the other learning methods. Accordingly, Semi-SL and Self-SL
algorithms have used the lowest training percentage from the
available ground truth with 35.9% and 36.4%, while TL and
WSL algorithms, respectively, have used 57.2% and 68.9% of
the available ground-truth dataset for training their model. Thus,
TL methods consumed more training data compared to Semi-SL
and Self-SL, while the papers based on these methods cover a
wider range of training data. Compared to other methods, it
is noticeable that WSL seemingly requires higher fraction of
training data. In particular, WSL methods increase the modeling
accuracy by improving the low-quality training dataset. As such,
data that have been used in the WSL studies may be high in
quantity but not good enough in quality.

D. Data Type

Selecting a suitable data among the existing extensive datasets
is a crucial step in solving a remote sensing problem. According
to the database collected in this review study, until now, the main
goal has been centered on the algorithm development without
considering data type. However, this section categorizes the
applied datasets in the reviewed articles based on the type of
sensors and spatial resolution. Results in Fig. 7 show that three
band RGB images were the most used dataset in all four learning
methods with 162 studies, followed by HS and multispectral
(MS) datasets with 103 and 105 studies, respectively. In contrast,
only few studies dedicated to active sensors, where SAR have
been used in 40 studies, and only seven papers used LiDAR
as their data source. Notably, 41 papers used multiple sources
of data in their research work. Fig. 8 depicts the frequency
of used sensors based on their spatial resolutions, for each
learning method. Accordingly, high portion of studies (232
papers) have used very high-resolution (VHR) images, while
fewer studies have been dedicated to high-, medium-, or low-
resolution datasets. This is aligned with the results obtained for
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Fig. 9. Usage rate of study areas for each learning method.

investigating the sensor type (see Fig. 7), where lower spectral
discriminability can bring higher spatial resolution. Table I
summarizes the most commonly used benchmark datasets in the
field of NSDL in remote sensing, along with their characteristics
and main applications.

E. Study Target

As shown in Fig. 9, urban, agriculture, and forests are the most
common study areas investigated in this topic given their wide
coverage and importance. Few studies used TL, Semi-SL, WSL
methods for wetland mapping and classification. There were
also few works on using TL in order to improve the modeling
results on snow or land slide areas. Furthermore, few studies



took advantage of USL in order to cope with the training data
challenges in studying of atmosphere.

Fig. 10 shows the frequency of the published papers for
different applications in each learning method. According to
the results, majority of papers focused on classification (includ-
ing segmentation and land-use land-cover classification) (224),
followed by CD (75) and TD (69). There is a high number of
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TABLE I
SUMMARY OF PUBLIC BENCHMARK DATASETS SUITABLE FOR NSDL ALGORITHMS IN REMOTE SENSING
Dataset Type Categories ~ Images Resolution Image size Applications
UC-Merced [139] RGB 21 2100 0.3 256 x256 Scene classification
EX)I])U_RESISC“ RGB 45 31500 0.2-30 256 x 256 Scene classification
Bigearthnet-S2 [69] MS 19-43 590 326 10 120x 120 Scene classification
EuroSAT [141] MS 10 27 000 10 64 x 64 Scene classification
SpaceNet-4 [142] MS 1 28 728 0.5 900x900 ' cakly supervised building
footprint detection
OSCD [143] MS 2 24 10 600 x 600 Urban change detection
Hermiston city HS 5 | 30 390 x 200 Multlple crop change
[144] detection
100 x 100, .
ABU [145] HS 2 13 17 150 x 150 Anomaly detection
MSTAR [146] SAR 10 5950 0.3 128 x 128 Military object classification
NIST-SAR [38] SAR 10 2746 0.3 128x 128  FeW-shotmilitary object
classification
Bigearthnet-S1 [70] SAR 19-43 590 326 10 120x 120 Scene classification
Bigearthnet-MM Multisensor . .
[70] (SAR & MS) 19-43 590 326 10 120 %120 Scene classification
Multisensor . .
SEN12MS [147] (SAR & MS) 17 180 662 10 256 x 256 Scene classification
SEN12MS-CR-TS Multisensor .
[148] (SAR & MS) 1 18 300 10 256 x256 Cloud detection and removal
80
60 H
40 =2 @ = @ = = == = == =7 = TL
= e = = = = = = = 2 Semi-SL
20 @ @ = = @ @ @ @ USL .
@ @ @ =4 @ =7 @ = = = =4 = = Self-SL
— = — y—4 = [Z=7 = = WSL
Classification CD TD SR R i Denoisi Regi Unmixing Fusion AD DR Other
WSL 16 2 15 2 0 0 0 0 0 2 0 1
Self-SL 17 7 2 5 2 7 4 1 2 2 0
USL 41 43 8 24 3 B 8 9 10 8 11 6
Semi-SL 76 9 13 2 1 3 ! 1 1 1 3 2
TL 74 13 31 5 7 1 1 0 4 0 2 3
Fig. 10.  Frequency of the published papers for each nonsupervised learning method and remote sensing study targets.

papers that utilized TL or Semi-SL in scene classification and
TD by remote sensing images using DL. On the other hand, USL
demonstrates its usage in applications that having annotated data
is not a common approach, such as anomaly detection (AD)
and CD, where automated frameworks are favorable. Similarly,
USL is also applied in data preprocessing or enhancement
related applications such as denoising, dimension reduction, SR,
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spectral unmixing, data fusion, and registration. Although the
WSL method has been less frequently used compared to other
learning methods, it has mainly been employed in classification
and TD.

IV. NONSUPERVISED LEARNING METHODS

Deep supervised learning methods have obtained state-of-
the-art results in many fields, including several remote sens-
ing applications [3], [4]. However, these methods necessitate a
considerably huge and comprehensive training dataset in order
to present their best performance. Furthermore, they are prone
to overfit on training data, and their performance extremely de-
grades on the new domain of test datasets [ 18]. In order to address
the mentioned drawbacks, nonsupervised learning methods are
proposed. There is no unique categorization of nonsupervised
learning methods in the literature, and it is not feasible to find
hard boundaries to separate these methods. However, in this
article, we formulate them based on the most commonly used
methods in remote sensing. To this end, we divide nonsuper-
vised learning strategy into five broad subcategories: TL, WSL,
Semi-SL, Self-SL, and USL.

A. Transfer Learning

In TL, a model is first trained on a dataset from one domain
and then reused for a dataset from another domain. TL is also
referred to finetuning or pretraining strategy in the literature
[21], [22]. Generally, training a deep model with thousands of
learnable parameters from scratch requires a large-scale training
dataset. Hence, the main goal of TL is alleviating the problem
of limited training data and accelerating the learning process by
using the pretrained model from another domain and finetuning
the model with the existing labeled samples of the main dataset.
The most prevalent approach in TL is to utilize base models that
have been pretrained on large-scale natural benchmark datasets,
such as ImageNet [23] or COCO [24]. These models are then
finetuned on the desired dataset. While this approach is effective
in reducing the need for a large number of training samples
in computer vision applications, it is not as effective in most
scenarios for remote sensing due to the different geometry and
nature of the acquired data, and still large number of training
data is required for these applications. Therefore, it is important
to note that we did not consider this approach as a nonsupervised
TL method for remote sensing applications.

Data augmentation by generating synthetic or simulated data
can be considered as another approach in TL [25], [26], [27],
[28]. Data augmentation by generating synthetic or simulated
data is another TL approach [25], [26], [27], [28]. One primary
advantage of using synthetic data is that the precise annotation is
become available for free. On the other hand, collecting and an-
notating data for a large number of problems is not only a tedious
process but also prone to human errors [18]. Recent studies have
shown that GAN models are effective in increasing the number
and diversity of training data, and balancing the imbalanced
labeled data by synthesizing new samples (see Fig. 11).

The main drawback of TL would be the domain shift between
the synthesized training data and the test dataset [29], [30].
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More specifically, in remote sensing problems, the existence of
different sensors for multisensor or multitemporal problems or
different illumination, reflectance, and topographic conditions
on large scales can be known as the main sources of domain
inconsistencies [31]. Consequently, this degrades the generaliza-
tion capability of the trained model on test samples [6]. Domain
adaptation can address the mentioned limitations in remote sens-
ing data processing by minimizing the distribution gap between
source and target domains [18], [31]. Diverse domain adaptation
scenarios can be defined in the context of remote sensing data
processing, but one categorization can be between number of
source domains (single or multiple) as training data and number
of target domains as test data [31]. For further details on domain
adaptation in remote sensing, we refer to [32].

Another subdivision of TL is few-shot learning (FSL) meth-
ods. In this scenario, only a limited number of ground-truth
samples are available, which may originate from different do-
mains or even have distinct labels compared to the trained
model [17], [18]. FSL mainly comes with meta-learning in
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literature. Despite conventional ML, which is sample training,
meta-learning is a training task that updates its learning rules
in multiple iterations and based on the knowledge of previous
tasks. Meta-learning comprises multiple tasks, where each task
contains a pair of support and query sets. The learning processing
accomplishes in two different inner and outer levels. At the
inner level, the base learner concerns with plenty of single tasks
to learn from the new observations. In contrast, at the outer
level, the meta learner adapts the knowledge gathered from
previous tasks to generalize a new task [33], [34], [35], [36],
[37], [38]. Accordingly, the model’s learning improves by the
time and with more experience. Thus, meta-learning learns the
learning rule or update function, which helps to converge the
model with very few training samples and improves the model’s
generalization by updating the learning function. However, as
mentioned in [38] and [39], one limitation is that this method
requires a meta-training dataset rich in class diversity to attain
a generalizable meta-model. We refer to [39] for further details
on few-shot and meta-learning.

B. Weakly Supervised Learning

Collecting high-quality and large-scale remote sensing an-
notation data is time-consuming and expensive, whereas small
number of high-quality annotations may result in an overfitted
model [40]. Hence, the WSL method aims to bridge between
the low-quality training data and well-trained model. In other
words, compared to the rest of nonsupervised algorithms, in-
stead of quantity, the WSL’s goal is to improve the model’s
performance by improving the training data quality. Generally,
WSL algorithms deal with inaccurate, or inexact training data
to attain a highly generalizable model [17], [18]. Thus, to make
it more specific, we can say that WSL algorithms consist of two
major subfields of inaccurate (noisy) and inexact supervision
[15], [18], [19]. In inaccurate supervision, the training data are
contaminated with noise, decreasing the ground-truth reliability.
For example, in a classification problem, noisy labels can affect
the model’s performance and are the source of inconsistency
[15], [19]. Inexact supervision refers to the situation where only
a coarse level of it is available instead of the exact required
supervision information [41], [42], [43], [44], [45], [46]. For
instance, pixel-level image segmentation only has image (patch)
or point level training data [15], [18].

C. Semisupervised Learning

The main idea behind the Semi-SL method is to improve the
model’s performance by making use of unlabeled data in the
model’s learning process [15], [47]. More specifically, Semi-SL
mainly aims to leverage the power of thousands or millions
of unannotated samples in a dataset to reinforce the training
process and improve the generalization of the final model. So
compared to the other nonsupervised approaches, Semi-SL’s
primary strategy is to generate pseudolabels for test samples
[15], [47]. Mainly, few criteria or conditions are needed to select
high-quality pseudolabels and ignore the uncertain labels to be
evaluated in the subsequent iterations. Accordingly, apart from
human interpretation and annotation of candidate samples [19],
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some of the suggested approaches in the literature could be
evaluating the predictions of ensemble models [48] or Bayesian
modeling evaluation, which is estimating the class assignment
confidence based on the posterior probabilities [49].

Active learning (AL) can also be regarded as a subdivision of
Semi-SL. In essence, AL commences with training a learner us-
ing a limited-sized training dataset. Following the initial model
training, unlabeled data are employed for uncertainty sampling.
Samples exhibiting high levels of uncertainty as predicted by
the model are chosen for human annotation. Subsequently, these
newly labeled samples are incorporated into the training dataset
in order to retrain the model [15], [18], [47], [48], [49], [50], [51],
[52]. Fig. 12 Demonstrates the general pipeline for Semi-SL
and AL.

D. Self-Supervised Learning

Self-SL is a relatively new approach that has gained much
attention in recent studies, due to its capability in reduction
of required labeled data with representative feature extraction
from unlabeled data [17], [40]. General pipeline of Self-SL
consists of two main steps: first unsupervised representation
learning, and then supervised finetuning of the pretrained model
for the corresponding main application [18] [see Fig. 13(a)].
In unsupervised representation learning, underlying high- or
low-level features of the dataset are extracted by leveraging
the huge number of unlabeled samples. This step is mainly
performed based on a pretext learning task, which aims to learn
generalizable representations of the under the test dataset. At
this point, model output is mainly defined from the input data
properties, such as signal reconstruction, predicting a pretext
task label, or contrasting the similarity between the input signals
[17], [40]. In the second stage, trained model is fine-tuned
by the available training data in a supervised manner, for a
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corresponding application. The main difference between Self-
SL and USL can be in term of their methodology. In USL, no
external labels exist to aid the learning process [17]. Thus, USL
mainly find patterns by utilizing the statistical properties of the
data samples [40], whereas Self-SL tries to extract representative
features by self-training. Thus, it uses far more feedback signals
than USL during the training processing [17], [40]. Main steps of
Self-SL might resemblance TL, where it finetunes a pretrained
model. However, in contrast to TL, pretraining stage needs no
training data in Self-SL, and the whole training process needs
much smaller training samples than TL. Moreover, domain gap
is much less than TL, due to using a same dataset for pretraining
and finetuning [18], [40].

E. Unsupervised Learning

Contrary to supervised learning and other nonsupervised
methods mentioned earlier that depend on labeled data for train-
ing, USL focuses on uncovering significant and distinguishing
patterns without using any ground truth or prior knowledge [53],
[54], [55], [56]. The main idea behind USL is to propose a
suitable model that can discover latent representations from the
data by reducing the reconstruction loss of the input signals or
estimating pairwise similarity/dissimilarity. This allows provid-
ing more distinguishable latent representations from the data,
enabling tasks such as clustering, dimensionality reduction, or
AD [see Fig. 13(b)].

Basically, in DL, unsupervised algorithms are mainly pro-
posed by stacked encoder—decoder (SAE) architecture to au-
tomatically extract distinctive features [57], [58], [59], [60]. In
recent studies, adversarial models, such as GANs and contrastive
learning models, were utilized to extract inherent data patterns
or generate pseudotraining datasets by leveraging the min—max
game of two contrastive loss functions in the training stage [17],
[18], [19] [61], [62], [63], [64], [65].

With the provided overview of the most prominent NSDL
methods in remote sensing, Table II highlights their main
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advantages and disadvantages. This aims to make easier to
choose a suitable learning method for solving remote sensing
problems.

V. NSDL IN REMOTE SENSING

Applications and recent advances of the DL algorithms in
remote sensing have been discussed in previous review papers
[3], [4], [10]. Thus, following the taxonomy provided in the
previous literature, this section aims to discuss and give some
insights into the applications of NSDL algorithms in remote
sensing data processing.

According to the results shown in Fig. 10 of this review,
the primary focus of studies is on the development of NSDL
algorithms for remote sensing image classification (including
segmentation and land-use land-cover mapping) followed by
TD and CD studies. Although small portion of recent studies are
focused on other applications, such as AD, and data enhance-
ment and preprocessing applications, such as fusion, denoising,
registration, they are still worth mentioning in this section in
order to draw more attentions for future studies.

A. Classification and Semantic Segmentation

Image classification and semantic segmentation have the most
application in using DL models, due to their importance and also
availability of various benchmark datasets. Remote sensing clas-
sification tasks can be object classification from small patches,
such as classifying airplanes, buildings, or cloudy images or
pixelwise scene classification or semantic segmentation, such
as land use land cover, crop types, or wetlands. However, as
mentioned earlier, collecting a rich ground truth in order to
produce a generalizable model is an expensive task. According
to the results, NSDL algorithms offer various solutions to these
issues. As shown in Fig. 10, the most common approaches are
TL and Semi-SL.

The basic idea of utilizing TL for remote sensing in the early
stages of DL involved finetuning pretrained base DL models,
such as the ResNet family [66], VGGs, and AlexNet [67], [68].
However, this approach relies on models that were originally
pretrained on large-scale RGB computer vision datasets, such
as ImageNet [23] or COCO [24], which are not well-suited for
remote sensing datasets. Remote sensing datasets typically have
different imaging geometry and may contain more than three
channels, such as MS and HS images. As a result, a significant
number of training samples are still required to obtain a reliable
model using this approach, which does not differ significantly
from supervised training.

Recent developments addressed the issues related to TL from
computer vision pretrained datasets by releasing large remote
sensing datasets such as BigEarthNet S2 [69], S1, and MM
[70], which are labeled image patches from Sentinel-1 and 2
for image classification. Furthermore, Yang et al. [71] inves-
tigated the TL between two HS datasets, as source and target
domains. Generating simulated or synthetic samples can also
provide more customizable and diverse training data with alower
domain distance from the target dataset. The feasibility of this
process has been increased significantly with the emergence of
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TABLE II

SUMMARY OF THE NSDL METHODS IN TERMS OF THEIR STRENGTHS AND CHALLENGES

Learning method

Strengths

Limitations and challenges

Transfer-learning

Semi-supervised
learning

Weakly-supervised
learning

Self-supervised
learning

Unsupervised
learning

Leveraging knowledge from a model trained
on large datasets, even when the target
dataset is small.

Reducing the need for extensive
computational resources and training.
Improving the model’s performance by
initializing the network with pre-trained
weights.

Leverage a large amount of unlabeled data,
which is often easier to obtain than labeled
data.

Improving model performance by utilizing
both labeled and unlabeled data.

Reducing the reliance on manual annotation,

which can be expensive and time-
consuming.
Reducing the need for fine-grained

annotations by using weaker forms of
supervision, such as image-level, point-level
or bounding boxes labels.

It enables training on larger datasets, as weak
annotations are often easier and cheaper to
obtain.

Leveraging large amounts of unlabeled data
to learn useful representations.

It can pre-train models on auxiliary tasks and
then fine-tune them on downstream tasks,
leading to more robust and improved
performance.

It can discover hidden patterns and structures
in unlabeled data.

Mapping data into latent subspace, making
them more distinguishable.

It does not require manual annotation,
making it more scalable and cost-effective.

The pre-trained model may not be suitable for
the target task, leading to suboptimal
performance.

There might be a domain shift between the
source and target domains, affecting the
transferability of learned features.

Different preprocessing steps between the
source and target datasets might affect the fine-
tuning performance.

Model’s performance may vary depending on
the quality and quantity of the available
unlabeled data.

Designing effective approaches for scoring
uncertainties and pseudo-labels can be complex
and challenging.

Some approaches might require additional
assumptions about the underlying data
distribution and the relationship between
labeled and unlabeled data.

The model’s robustness and performance can
be highly affected by the quality of the training
data.

Designing effective high resolution and
accurate model can be challenging with low-
level annotations.

Model’s generalization capability can be
hindered by the quality of labels and
uncertainties.

Designing effective pretext task can be
challenging.

Performance and effectiveness of the model is
influenced by the pretext task and complexity
of the unlabeled data.

Can be more challenging than the other
learning methods due to the lack of labels.

The quality of learned representations heavily
depends on the underlying assumptions and
algorithms used.

Evaluating the performance of unsupervised
learning models can be difficult without a clear
objective or ground truth.

generative models. Numerous recent studies have observed the
effectiveness of GAN models for remote sensing data classifica-
tion by addressing the imbalanced or scarce training datasets by
generating synthetic data. This approach has been successfully
implemented in classification tasks across diverse fields [25],
[28], [72]. Recent studies in the past few years tried to develop
novel methods in TL with very few annotated data. To this end,

GNN model was presented in [73] for few-shot VHR RGB image
classification, while Cao et al. [74] investigated 3-D convolution
Siamese model with a contrastive loss for HS classification.
Furthermore, the number of studies investigating the few-shot
meta-learning to facilitate and improve the learning process
in the presence of limited training samples is increasing. For
instance, they are being implemented in target classification with
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SAR imagery [38] and scene classification using Sentinel-1 and
2 [75].

Similar to TL, Semi-SL has demonstrated the highest fre-
quency in the reviewed papers of this study, within the field of
remote sensing image classification. In fact, many unannotated
samples are available in a vast remote sensing image scene that
can be effectively exploited in a semisupervised process for
improving the model generalization and final classified results.
This has resulted in numerous advancements over the past few
years in the development of DL frameworks that are based
on various methods of Semi-SL for classification of remote
sensing imagery. Along these lines, deep AL was developed
and investigated for different remote sensing data classification,
such as RGB [76], HS [50], [51], and polarimetric SAR [48],
or different applications, such as crop type mapping [52]. For
instance, Liu et al. [51] proposed an AL deep belief network
for HS classification, where their algorithm updated training
samples and weighted their importance in every iteration of
learning process based on uncertainty and similarity criteria.

Regarding the deep WSL, the number of studies for remote
sensing data classification is considerably lower than other learn-
ing methods, but in overall, it is increasing. In fact, preparing
reliable and accurate labels for large-scale multilabel image clas-
sification is a difficult and expensive process that also involves
human errors. To reduce the effect of labeling uncertainties,
WSL methods have been investigated in various fields of classi-
fication tasks, such as image-level annotated WSL for building
segmentation using VHR RGB imagery [77], and tree species
classification using VHR MS and LiDAR [45], and point-level
annotated WSL for road network [44] and water body [78]
segmentations. Furthermore, as shown by Wang et al. [79], even
weak training samples in point-level or image-level annotations
combined with a deep model, such as U-Net, can outperform
supervised baseline methods, such as support vector machine
(SVM).

The published papers investigating the Self-SL for remote
sensing image classification are relatively newer than the rest.
Similar to Semi-SL algorithms, Self-SL also requires few an-
notated data, but as mentioned earlier, the crucial part of Self-
SL is unsupervised pretext learning, where the model aims to
find nonlinear and distinctive patterns from the unannotated
data. Thus, deep Self-SL models were developed in various
remote sensing classification fields, including VHR imagery
scene classification [80], crop type mapping using time-series
of Sentinel-2 imagery [81], [82], HS classification [83], [84],
PoISAR [85], and multimodal [86] land cover mapping. Among
these, a BERT transformer deep Self-SL model was presented
in [81] for multilabel crop classification from time-series of
Sentinel-2 imagery. They manually added noise to some of input
time-series and the model was trained to predict the noisy inputs
as pretext task for unsupervised feature learning from a pool of
unlabeled data. A Self-SL classification framework using GAN
model was presented in [80], where a similarity loss between
two different views of a same image was proposed as pretext
task of this framework.

First USL studies on remote sensing classification used
mainly shallow models such as RBM or AE architectures for
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automated feature representation learning using reconstruction
or distance-base loss functions. In fact, early studies of NSDL
algorithms used mainly different variations of AE architectures,
such as convolutional, denoising, and sparse models, for unsu-
pervised representation learning with a relatively simpler clas-
sifier or clustering algorithm on top of model. For instance, Tao
etal. [87] used stacked sparse AE for unsupervised feature learn-
ing combined with SVM classifier for HS scene classification.
A joint multiple parallel SAE and CAE was presented in [88] for
unsupervised land cover classification using multimodal VHR
HS, LiDAR, and digital surface model (DSM) dataset. Radman
et al. [89] proposed an unsupervised burnt area mapping using
Sentinel-1 SAR data, where a convolutional neural network
(CNN) model was trained based on combination of a fuzzy
c-means clustering and a saliency-guided segmentation.

B. Target, Anomaly, and CD

Anomalies, targets, and changes all follow a similar charac-
teristic in remote sensing datasets, which is their scarce presence
compared to the background samples. This makes modeling pro-
cess so challenging due to the imbalanced distribution of object
of interest and the surrounding background. NSDL algorithms
can tackle this issue and prevent model failure.

Majority of NSDL studies for TD are focused on TL and
Semi-SL, which quantitively is similar to what we observed
in studies regarding classification. Various studies investigated
TL from pretrained models on large datasets for TD, such as
airplane detection from VHR RGB images using SSD [90] or
R-CNN [91] deep object detectors, which their backbone deep
model is a pretrained VGG16. To address the issues of high
complexity and computation cost associated with pretrained
models in TD in VHR imagery, due to their numerous learnable
parameters, Chen et al. [92] presented a compressed deep model.
This model aims to estimate the parameters of the complex
model by minimizing the /5 loss between the output of the
compressed and complex models. Li et al. [93] proposed a CNN
with attention transformer model in order to reduce the domain
gap between pretrained model on ImageNet dataset and remote
sensing dataset for TD. A TL framework between satellite
MS imagery for cloud detection was presented in [94]. They
proposed a convolutional AE model with domain adaptation
between Landsat-8 and Proba-V imagery. As mentioned earlier,
GANSs can improve the model’s generalization and robustness
with adversarial learning and assist with data augmentation with
synthesizing training samples. This capability was investigated
in target generation and detection with VHR RGB [95], [96]
and SAR [97]. More specifically, a conditional GAN framework
for aircraft detection was presented in [98], while a vehicle
detection framework based on GAN was presented in [99].
Simulated TL was also investigated in plant detection using UAV
RGB imagery, where Hosseiny et al. [27] presented an image
simulation scenario to generate a pool of simulated training data
for their R-CNN plant detection framework.

The number of studies of deep Semi-SL models for TD is
fewer than TL, but they cover a wide range of applications such
as the detection of tree-crowns, bridges, landslides, buildings,
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vehicles, and roads using VHR RGB imagery. Xu et al. [100]
proposed a multiscale hierarchical AL algorithm using CNN
model for detecting vehicles from large-scale remote sensing
dataset. Xia et al. [101] investigated the incorporation of Semi-
SL and CNN for building edge detection. Liao et al. [102]
proposed a joint Semi-SL and TL framework for TD from
SAR imagery. They trained model with small number of SAR
and abundant amount of optical imagery, and then updated the
training samples during semi-SL process. The main focus of
WSL studies in the field of remote sensing TD is pixel-level
detection of target of interest using low-level annotated data.
Li et al. [46] presented a WSL convolutional framework for
cloud detection from high-resolution satellite imagery using
image-level annotated data. A CNN model based on multiscale
class activation maps was proposed for WSL building detection
from VHR imagery in [103]. As first studies on USL TD, an
unsupervised DBN model for VHR imagery was presented in
[104]. Shao et al. [105] proposed a cloud detection framework
utilizing Landsat imagery and unsupervised feature learning
based on a fuzzy autoencoder model. An unsupervised training
sample generation joint with CNN was investigated in [106]
for urban tree detection using MS images and DSM. A few
numbers of Self-SL studies were focused on TD. Nevertheless,
a Self-SL with rotation pretext task was proposed for SAR target
recognition [107]. In another study, an adversarial contrastive
Self-SL model was developed for SAR TD [108]. For HS TD,
Yao et al. [109] proposed a Self-SL framework with spectral
similarity pretext task.

Although AD basically is an unsupervised process, very few
studies could be detected through the reviewed database. Among
these almost all the studies were focused on HS imagery. An
investigation of convolutional AE for unsupervised HS AD can
be found in [58]. Jiang et al. [110] proposed a GAN-assisted
unsupervised HS AD framework. In this work, first a salient map
of input data is generated, where the approximate anomalous
areas are weakly extracted. Then, based on the approximate
anomaly and background pixels, a weakly supervised spec-
tral discriminative GAN model was trained for final AD. Rao
et al. [111] designed an HS AD framework based on TL and
contrastive Siamese network. First, model was trained on a
dataset with known labels, where the input signals are similar
and dissimilar pairs. Then, the model was finetuned using the
dataset containing anomalous pixels in order to iteratively detect
anomalies.

According to our database majority of the CD works were fo-
cused on USL, which demonstrate the high demand of automated
CD systems during the time. Similar to the other applications,
first DL unsupervised change detection studies were based on
automated feature learning using different AE architectures.
Zhang et al. [60] proposed a Siamese-like multilayer percep-
tron network, where the initial change map was obtained by
overclustering, but the final change map was generated after
iterative optimization of the labels. Ren et al. [64] proposes a
GAN-based unsupervised framework for VHR image CD. The
main focus of this work is leveraging generative capability of
GAN to alleviate the misregistration error between objects in
image pairs. Luppino et al. [112] presented a convolutional AE
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model aiming unsupervised multimodal CD, where they aligned
the encoded image from one modality to be decoded based
on another modality. TL was exploited in various CD studies,
such as urban [113], deforestation [114], land cover [115], and
buildings [116]. Fang et al. [117] proposed a TL framework,
where at first, feature maps of each bitemporal data are generated
using pretrained model and then change map is generated by
image differencing change vector analysis in an unsupervised
fashion. Soto et al. [118] proposed domain adaptation TL model,
which was aimed for balancing the target domain samples as a
prevalent issue in CD tasks. In the context of Semi-SL, the main
idea was to propagate the number of annotated changed pixels
during the training process, in order to decrease the imbalanced
distribution between change and no-change annotations. Hao
et al. [119] proposed a multimodal framework for SAR and
MS CD, where they proposed a clustering label propagation
method for generating pseudo-labeled pixel candidates, and
after a denoising step, most confident pixels were added to the
model learning process. A Semi-SL Siamese-Graph Attention
guided framework was proposed in [120], where after training
the model on a small training set, unlabeled data were predicted
and the most confident samples were used for finetuning the
model. Dong et al. [121] proposed a GAN deep model for
reducing the domain difference between bitemporal dataset in
a self-supervised fashion. They exploited GAN discriminator
as pretext learner in order to predict the input patch’s time,
which is pre- or postchange in this example. A Self-SL ResUnet
framework was presented in [122]. They used contrastive loss
incorporated with dual branch AE in order to suppress effect of
seasonal changes between bitemporal input images.

C. Data Preprocessing (Denoising, Fusion, and SR)

The previously discussed applications in the preceding sec-
tions mainly utilize learning methods and DL to process the
available data, in order to generate classified maps or detect
specific targets or anomalies. However, DL can also be used in
the preprocessing step, such as signal (or image) SR, registration,
denoising, spectral unmixing, and data fusion, which their main
goal is to enhance data. In such scenarios, NSDL methods could
potentially play more crucial roles than supervised methods, due
to the reason that classic preprocessing algorithms are typically
automated with the least reliance on annotations.

The aim of SR is to improve the signal resolution spectrally, or
spatially in order to provide more details of the sensed signal. In
this regard, various unsupervised DL methods were developed
mainly based on AE, CNN, or GAN deep architectures. An
unsupervised SR based on fully CNN AE was presented in [123],
where the authors aim to generate HR image by downsampling
and upsampling layers and optimizing the distance between
the low-resolution input image and downsampled reconstructed
high-resolution image. Nguyen et al. [124] proposed a multitask
CNN model for unsupervised sharpening of Sentinel-2’s 20 and
60m bands into full resolution. Ma et al. [125] proposed GAN
architecture for MS SR, where they used weakly supervised
saliency for increasing the focus and quality of the reconstructed
HR image in the informative areas. Hong et al. [126] proposed
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an adversarial Self-SL model for HS SR using MS imagery.
In their method, first they roughly combine low-resolution HS
and high-resolution MS images using convolutional AE and
adversarial loss to generate recombined HS and MS images with
least domain gap, then the reconstructed images are fed to a
self-SL model to compare and couple the estimated abundance
maps and endmembers in order to create a HS image with high
spatial resolution.

Image registration is the process of geometric alignment of
different images captured from multiple sensors with different
resolution, viewing angle, or capturing time. A review on recent
advances in SAR and optical registration can be found in [127].
Accurate image registration is a crucial preprocessing step for
various remote sensing applications, such as CD, image mo-
saicking, fusion, and 3-D reconstruction. Accordingly, recent
studies investigated NSDL methods on different types of re-
mote sensing data, such as Lidar point cloud, MS, RGB, and
multimodal (e.g., SAR-optical) registration. Papadomanolaki
et al. [128] proposed an unsupervised framework that utilizes a
fully CNN model to iteratively reduce the distance between two
sources of VHR images until they align. A GAN-based model for
SAR-optical registration was presented in [129]. First, a set of
synthetic SAR images were generated from their corresponding
optical image. Then, the synthesized SAR images and real SAR
images were used as training data for SAR-optical matching.

The presence of noise is inevitable in the remotely sensed
data. While the power and amount of noise varies in different
sensors, HS and SAR images generally show higher level of
noise. Various studies utilized NSDL methods to address this
issue with least dependency on annotated training data. An SAR
despeckling framework, namely, SAR2SAR, was presented in
[130]. The proposed method was based on the assumption that
the denoised image should be close to the average of the images
from the same area captured at different times. Accordingly,
the method consisted of simulated training and then finetuning
from the Sentinel-1 archive images. In another study, a self-SL
speckle noise reduction from SAR images can be found in
[131]. In this study, the authors aimed to model SAR noise
by extending noise2noise method, where a pair of subsampled
noisy images were generated from the input noisy image and the
output denoised image was generated by optimizing a custom
loss function, which calculates the pixelwise distance between
the reconstructed denoised pairs. A Self-SL denoising network
for HSI was presented in study [132]. In this study, Imamura et al.
[132] proposed a fully CNN and trained it by manually adding
noise to the HSI. The objective of the model was to generate
the original image from the noisy one. In another study for HSI
denoising, Faghih et al. [133] proposed an unsupervised method
using a deep image prior (DIP) UNet architecture. They showed
that DIP trained with Huber loss function can generate denoised
HSI without needing training data.

VI. CONCLUSION AND PROSPECTS

This article provided a comprehensive systematic review
and a meta-analysis of the applications and developments
of NSDL methods in the remote sensing field. The results
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demonstrated the increasing trends in using NSDL methods,
which is inevitable with increasing the number of satellites and
data providers in the era of big EO data. In this study, we
reviewed and analyzed 505 papers that have been published in
well-known peer-reviewed journals since 2015. Subsequently,
different features, including DL architectures, training data re-
quirements, applications, and accuracies, were extracted from
these reviewed articles. Eventually, deeper overview and litera-
ture review of NSDL methods and their applications in remote
sensing was provided. The summary of the key conclusion
including the remaining challenges and future directions is as
follows.

1) This study confirmed that the utilization of NSDL methods
is increasing in various fields of remote sensing applica-
tions. The results indicate that these methods offer various
solutions for the different levels and scenarios of training
data. The main reason can be the availability of a vast
amount of remote sensing data from various sensors and
satellites, making it nearly impossible to prepare suitable
annotated data by humans. Notably, insufficient training
data can increase the chance of overfitting in supervised
DL models.

2) According to the meta-analysis, majority of studies were
based on using VHR and RGB imagery. In addition to
the rich spatial features of such data, this can be due
to the high availability of VHR and HR images with
the increasing development and accessibility of drones,
surveillance, or even smart phones’ cameras along with
the availability of high-resolution satellites. This also has
led to the availability of many of these type of datasets
as benchmarks. However, field of remote sensing cov-
ers various sensors with wide range spatial and spectral
resolutions. Recent technological advances in the high
availability of remote sensing satellite imagery with very
short revisit times and the advent of cloud-based pro-
cessing platforms, such as Google Earth Engine, have
increased the demand for remote sensing and geospatial
data applications. Consequently, as the need for ground
truth data is at its highest point, the number of NSDL
studies on free datasets, such as Sentinel and Landsat
constellations, need to be increased. In addition, there were
considerably fewer studies addressing LIDAR or SAR pro-
cessing using NSDL. LiDAR and SAR, as active sensors,
follow different imaging principles than passive sensors.
The data obtained by these sensors are often noisy and full
of clutters, which makes their interpretation a cumbersome
task. Consequently, preparing manual annotation data
from active sensors would be a time-consuming task with a
low confidence level. This emphasizes the importance and
applicability of NSDL for such data for preprocessing such
as denoising, despeckling, and registration and remote
sensing applications such as anomaly or CD.

3) Presenting novel and diverse customized deep models
have become more feasible with the growing variability
of new DL architectures, such as the family of Atten-
tion mechanisms and Transformers, GANs, a variety of
AE models, as well as various loss functions, such as
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contrastive and adversarial losses. For instance, AEs due
to their capability in automated feature extraction can
increase the discriminability of complex remote sensing
classes in latent subspace. Attentions showed their ca-
pability by highlighting the salient areas, especially, in
solving WSL problems. Furthermore, GANs were useful
for data augmentation and balancing the training data in
highly imbalanced problems, such as CD. However, as
also discussed in [6], improving the quality and reliability
of the generative models in order to presenting diverse
and accurate simulated data would be some of the remain-
ing challenges that need to be carefully considered and
addressed in future works. Furthermore, while designing
a complex model for nonsupervised problems in remote
sensing may be effective, it is imperative to pay attention
to the efficiency and robustness of the developed model.
For instance, as discussed in [39], model collapse in deep
Semi-SL models on remote sensing data is a common
challenge. Thus, it is essential for future studies to fo-
cus on this issue by probably providing a comprehensive
analytical and theoretical perspective, as well as designing
more efficient frameworks based on feature engineering,
efficient architecture, or novel loss functions.
As shown in the meta-analysis, NSDL methods were
well-received in remote sensing studies, such as clas-
sification and CD. Although these objectives are the
main applications of remote sensing data, NSDL meth-
ods have high potentials to be explored in other applica-
tions. In general, there is still much more to explore in
multimodal image registration, or fusion, image or point
cloud denoising, HS unmixing, and time-series AD.

The majority of NSDL methods rely on a small number

of annotated training data, and as such, the accuracy

and reliability of this data is of utmost importance. Each
sample can significantly affect the training process, which

emphasizes the need for a careful annotation process. A

recent study [134] looked into the effects of label noise on

multilabel remote sensing classification. However, further
research is required to provide frameworks that can remain
robust in the face of data uncertainties.

As explainable Al is becoming more prevalent in remote

sensing applications [135], [136], it can be linked to NSDL

methods by opening two doors in improving the model
training.

a) Making the model simpler by removing irrelevant fea-
tures and, thus, reducing the need for extra training data
for high dimensional modeling. The most prominent
approaches for this purpose are SHAP [137] and LIME
[138].

b) Highlighting the most influenced areas in the fea-
ture activation maps, which can improve the saliency-
oriented training methods.

Currently, various sources of data are available, which

can be leveraged for NSDL model training. Thanks to the

increasing availability of free satellite datasets, a massive
amount of unlabeled EO data are currently available.

Another source of data can be open data with geo-tags

from the internet and social media. While supervised

methods do not effectively exploit this abundant pool of
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