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Abstract—Domain-specific acceleration is now a must for all
the computing spectrum, going from high performance comput-
ing to embedded systems. Unfortunately, system specialization
is by nature a nightmare from the design productivity perspec-
tive. Nevertheless, in contexts where kernels to be accelerated
are intrinsically streaming oriented, the combination of dataflow
(DF) models of computation with coarse-grained reconfigura-
tion (CGR) architectures can be particularly handful. In this
letter we introduce a novel methodology to assemble and char-
acterize virtually reconfigurable accelerators based on DF and
functional programming principles, capable of addressing design
productivity issues for CGR accelerators. The main advantage
of the proposed methodology is accurate IP-level latency pre-
dictability improving design space exploration when compared
with state-of-the-art high-level synthesis.

Index Terms—Caph just Aint Plain Hdl (CAPH), coarse-
grained reconfiguration (CGR), dataflow (DF) models of com-
putation (MoC), design predictability, design productivity, field
programmable gate array (FPGA), functional programming,
high-level synthesis (HLS), multidataflow composer (MDC).

I. CONTEXT, BACKGROUND, AND MOTIVATION

FLEXIBILITY and performance are two highly valued
properties of processing systems in many application

domains. Modern systems include ubiquitous and upgrad-
able devices for IoT or cyber-physical applications that also
communicate with cloud infrastructures. These systems must
adapt to mutable conditions, while avoiding unpredictable
performance degradation.

To boost performance, high performance computing (HPC)
and embedded systems designers are pushed to opt for
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domain-specific accelerators (DSAs), built from ad-hoc
hardware-coded kernels exploiting parallelism for optimizing
performance. Two representative examples of this trend are
Amazon Web services (AWS) and Movidius. On the HPC
side, AWS offers field programmable gate arrays (FPGAs)
in a cloud environment [2]. On the embedded side, the Intel
Movidius vision processing unit is a low-power DSA used
in smartphones and drones for computer vision and artificial
intelligence applications.

In terms of system flexibility, hardware DSAs based
on coarse-grained reconfigurable (CGR) architectures offer
flexibility by adapting to variable application parameters.
CGR architectures are traditionally composed of a mesh
of processing elements (PEs) whose interconnections are
reconfigured over time [16] to offer flexibility. CGR archi-
tectures inherit from their hardware nature the capacity of
executing compute-intensive kernels in an energy-efficient
way. However, efficiency and flexibility offered do not come
for free. Hardware design is a complex and error-prone task,
leading to productivity losses, especially for heterogeneous
and irregular targets. High-level synthesis (HLS) approaches
have been proposed to cope with these losses, obtaining
design productivity gains by separating functional system
verification, performed from a time-agnostic high-level
language, from timed system verification, performed after
automatically inferring hardware-specific code [7].

Many HLS tools are now available, such as Xilinx Vivado
HLS [17] and Intel FPGA SDK for OpenCL [4]. These tools
are based upon imperative, C-like, languages. The algorithm
to be implemented is formulated as a sequence of instructions
operating on mutable data. This choice is motivated by the
very large number of developers trained to manipulate imper-
ative languages that have been dominating computer sciences
for decades. But, from a hardware perspective, this choice
presents two major drawbacks.

1) Imperative formulations generally do not distinguish
iterations over time from iterations over space, which
do not translate uniformly in hardware (the latter do not
imply causality and can therefore be parallelized using
replication).

2) They implicitly rely on the concept of global memory
at the implementation level, which immediately leads to
a “bottleneck” on memory accesses [1].

These drawbacks can be circumvented by relying upon so-
called applicative or functional languages in which algorithms
are described as a (mathematical) composition of side-effect
free functions. This approach naturally fits dataflow (DF) mod-
els of computation (MoCs). An application is decomposed
into independent processing actors, communicating with first-
in first-out data queues (FIFOs), with no global storage or
synchronization. This is particularly true for stream process-
ing applications, processing data “on the fly” and which benefit
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significantly from CGR architectures-based acceleration, as
found in signal/image processing, media coding/compression,
cryptography, video analytics, etc.

This letter, in Section II, introduces a novel methodology
for the optimal characterization of virtually reconfigurable
DSAs exploiting a DF functional (DFF) HLS approach as
an alternative to traditional HLS tools based on imperative
languages. The proposed methodology is targeted for het-
erogeneous and irregular CGR architectures, leveraging on
application specific PEs and tailoring the interconnect to
minimize FIFOs. For prototyping purposes, and to compare
with commercial flows, experiments target FPGA technolo-
gies and demonstrate that, thanks to its modularity and
abstraction capabilities, the proposed approach guarantees
latency predictability (see Section III). Beside we also show
(Section IV) that our DFF approach leads to improved
performance for DSAs with CGR architectures.

II. PROPOSED DATAFLOW-FUNCTIONAL HLS
The proposed framework is built from two existing

tools developed by the authors. The Caph just Aint Plain
Hdl (CAPH) compiler and the multidataflow composer (MDC)
toolset. CAPH [12] is an open-source, domain-specific frame-
work for the specification, simulation, and implementation
of stream-processing applications based on a dynamic DF
MoC. Applications are specified as DF networks (DFNs)
using a higher-order, polymorphic functional language. The
behavior of each DF actor is defined as a set of transition
rules using pattern matching on structured data, resulting
in improved abstraction capabilities. The CAPH toolchain
provides graphical visualization of DFNs; code simulation
with trace facilities; and HLS producing SystemC code for
simulation and resource-monitoring purposes, as well as
platform-agnostic ready-for-synthesis VHDL code. CAPH
provides 1:1 DFN PEs synthesis, but no support for recon-
figuration. MDC is a suite for the design and development of
heterogeneous and irregular DSAs based on a set of DFNs
to specify the desired behavior of the system [6]. It builds
reconfigurable datapaths, leveraging on a two-step approach.

1) A model-to-model compiler, the multidataflow genera-
tor (MDG), derives a multifunctional DFN [10] starting
from a set of disjointed DFN specifications.

2) A DF-to-hardware mapper, the Platform Composer
(PC), deploys an HDL description of the CGR datapath.

Up to this letter, MDC was specific to RVC-CAL language
and the actor communication protocol was hardwired on
the resulting CGR architecture. Now users define custom
communication protocols, and MDC accordingly implements
the handshake among PEs. MDC provides N:1 DFNs mapping
on a CGR DSA, but it does not support PE synthesis.

Based on the described complementaries, this letter
proposes a fully automated toolchain, integrating MDC
and CAPH, for specifying and deploying CGR DSAs. The
toolchain architecture is depicted in Fig. 1. The proposed
DFF HLS flow consists of three main phases.

1) Composition: Model-to-model compilation performed
by MDC MDG, taking as inputs generic DFNs. Output:
high-level multidataflow DFN of the DSA.

2) Optimization: Optimal sizing of the actor-connecting
FIFOs. Optimization starts from an estimation produced
by the CAPH Compiler SystemC backend, which is
adapted to the multifunctional DFN case by worst case
analysis.

3) Generation: Deployment of the CGR DSA. The MDC
PC component outputs a top-level HDL module,

(a)

(b)

Fig. 1. Proposed flow: (a) components; and (b) execution sequence.

TABLE I
PROPOSED FLOW VERSUS STATE-OF-THE-ART

corresponding to the optimized multifunctional DFN,
using the CAPH generated hardware component library
(HCL) actors.

Fig. 1(b) summarizes the flow steps. (1) Users are required
to provide the input set of specifications (N different DFNs) to
be accelerated using the CAPH language. Starting from these
inputs, three parallel steps take place to make CAPH DFNs
compliant with MDC through the CAPH-to-XDF parser (2),
optimize sizing of the buffer connecting DF actors (3), and
generate the target-independent HCL (4). Three more steps
come in succession. The N XDF networks produced by (2)
are merged in a multidataflow network (5), which is optimized
(6) using the worst case analysis results of (3). Finally, the
CGR platform-independent DSA is deployed in (7). During
the merging process (5), common actors are identified and
connections minimization is guaranteed. In the CGR DSA,
combinatorial switching elements are used to access shared
modules, this may affect frequency but not latency.

III. PROPOSED APPROACH: FEATURES AND NOVELTY

CGR architectures provide the flexibility needed by modern
signal processing applications, while achieving high efficiency
through specialization. Their features and granularity are highly
varied [3], and several works in literature address their design
issues. Raffin et al. [8] proposed the ROMA framework for
the scheduling, binding and routing of reconfigurable accel-
erators for multimedia applications. The ROMA architecture
is composed of custom reconfigurable PEs and the framework
is specific to them, following an approach similar to general
purpose devices, thus loosing specialization and, in turn, effi-
ciency. Voros et al. [15] leveraged on a fixed CGR structure
that comes along with its synthesis flow, and where three dif-
ferent types of PEs can be used for accelerating purposes.
Our effort focuses on a more specific problem: we discuss in
this letter a flow to characterize and synthesize circuits to be
embedded in a DSA infrastructure. MDC has been combined
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in previous work with the Xronos HLS to offer DFF HLS to
build a Xilinx-specific DF-to-hardware design environment [9].
Table I reports a qualitative comparison among this letter and
other frameworks available in literature for CGR DSAs.

CGR DSAs can also be obtained with sole HLS, while
modeling reconfiguration by hand. State-of-the-art HLS frame-
works are typically imperative-based, and most of them are
also target-dependent [5]. As we are going to demonstrate in
Section IV, imperative-based HLS is not the best choice for
developing CGR DSAs, differently from DFF HLS. Synflow
Studio [14] provides a proprietary HLS framework for mul-
tivendor FPGAs using the Cx DF language, which does
not support ASICs. Platform-agnostic HDL specification is
challenging, as the resulting hardware has difficulties to com-
pete with platform-specific code performance. To the best of
our knowledge, only two academic flows support platform-
agnostic DF-oriented HLS: the Orcc HDL backend [13] lever-
aging on the RVC-CAL language, and CAPH [12]. CAPH,
adopted in this letter, has the advantage of using functional
programming semantics that, contrary to the RVC-CAL lan-
guage, removes imperative semantics from actors. The Orcc
HDL backend is no longer available, thus it is not possible to
compare performance with [13].

Performance predictability is important in a design flow.
Indeed, knowing the properties, and in particular the latency,
of the implemented system at early design stages improves
productivity and reduces design effort. This is a key feature
of our approach. HLS tools based on imperative languages
can only provide IP latency estimates after synthesis when a
reconfigurable system is designed. In Vivado HLS [17] this
estimate takes the form of a range (min to max latency):
the actual value of each single configuration in a reconfig-
urable case is obtained by running the corresponding mode
over the deployed CGR accelerator. The Intel FPGA SDK
for OpenCL [4] pursues automatic system-level integration
(and parallelization) of hardware accelerators complying the
OpenCL computing model. As a result, low-level, cycle-
accurate pipeline/scheduling information, typical in other IP-
based HLS tools, is sacrificed in favor of an annotated
dependence graph describing the generated kernel as a combi-
nation of blocks. The estimation provided in the graph refers
to the types/sizes of load/store units, stalls and latencies, but
a nontrivial calculation of the IP latency is left to design-
ers. Finally, optimization is performed by profiling kernel
execution, requiring resynthesizing an equivalent kernel, auto-
matically instrumented with performance counters, to analyze
memory access behavior (stall, occupancy, and bandwidth).

The key selling feature of the proposed DFF flow is the abil-
ity to compute early and accurate latency1 estimations before
synthesis. Such values depend on the critical path length in
the DFN and on the maximum number of cycles required
for each actor firing. For synchronous DF (SDF) graphs, both
can be computed statically. For non-SDF graphs, CAPH esti-
mates latency running the cycle-accurate code generated by
its SystemC backend. The latency of the CGR-based DSA
generated by the DFF flow depends on the selected mode
only, corresponding to the selected stand-alone networks, since
merging does not affect latency. As a result, the DSA can be
optimized in terms of latency before synthesis. To the best of
our knowledge, neither [8] nor [15] present this predictability
feature, while [9] handles SDF inputs only.

In general, presynthesis prediction offers an additional
advantage: developers can focus on the application to be

1Number of clock cycles required to compute all outputs as in [17].

Fig. 2. Proposed flow versus Vivado HLS: starting and generated codes.

accelerated with an algorithmic-oriented approach rather than
a synthesizer-based one. Imperative-based HLS tools require
design space exploration (DSE) to improve latency. Developers
have to deal with the mentioned lack of information and
to understand how to exploit both the available #pragmas
and their combinations toward best performance. Moreover,
code refactoring may also be necessary to achieve optimal
latency values. For these reasons, developers must have a
thorough knowledge of the synthesizer and a considerable
effort is required to obtain an optimized architecture. To con-
clude, when compared to imperative HLS, the DFF nature of
the proposed HLS provides earlier explorations, while offer-
ing system predictability and guaranteeing performance, as
demonstrated in the next section.

In summary, with respect to the context of CGR DSAs, the
main benefits/features of the proposed integrated flow are as
follows.

1) Custom PE Generation: Hardware generation considers
heterogeneous, HLS-generated PEs for each DF actor,
favoring flexibility with respect to [8].

2) Reconfigurability Management: DF-based mechanism
maximizes and controls resource reuse, leveraging on
datapath merging techniques. Moreover, reconfiguration
management is guaranteed by MDC.

3) Predictability: Modular specifications facilitate the pre-
dictability of system properties. Before synthesis latency
estimations can be carried out on the basis of the
preprocessed CAPH DFNs.

4) Target Independence and Availability: Both MDC and
CAPH are platform-agnostic and open source.

5) Code Readability: MDC and CAPH preserve the cor-
respondence among DF actors and hardware PEs. This
is important for example in case of post-HLS enhance-
ments. Vivado HLS acts differently since it assigns IPs
to functional units (see Fig. 2).

IV. EXPERIMENTAL RESULTS

This section compares results obtained with three design
flows: 1) the proposed DFF one, using Vivado v2015.2 and
Quartus v17.1 to synthesize the CGR DSAs; 2) Vivado HLS
v2015.2; and 3) Intel FPGA SDK for OpenCL v17.0. Target
devices are Xilinx Virtex 7 and Intel Cyclone V FPGAs.
The test case chosen is a 1-D/2-D HEVC 3/5/8-tap hard-
ware accelerator for approximate image interpolation filters,
in fixed and reconfigurable configurations (with runtime filter
switching) [11]. In the case of Xilinx/Intel HLS tools, a mod-
erate effort has been put into code refactoring for optimization
using shift register inference, line buffers, resource reuse when
possible, and pragmas (loop unrolling and pipeline). For this
reason they involve two reconfigurable designs: baseline (R)
and optimized (R*). A comparison among the different flows
is proposed in terms of resource utilization and early latency
estimation.
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(a) (b) (c)

Fig. 3. Proposed flow versus (a) and (b) Xilinx (XC7VX485T) and (c) Intel (5CSEMA5) target FPGAs. Intel/Xilinx resources: REG=register/FF,
LOGIC=ALUT/LUT, RAM=M10K/BRAM, and DSP=DSP/DSP. Data are shown on a logarithmic scale with base of 10. Latency values in clock cycles
are reported in (a).

DFF HLS Versus Vivado IP-Level HLS: Fig. 3(a) shows
that for standard implementations (indicated by 3/5/8/R) the
DFF flow achieves better latency results. The very large laten-
cies obtained with Vivado HLS are explained by the default
area-driven synthesis (which required adding #pragma and
code refactoring). Moreover, as stated in Section III, our flow
preserves the latency values of the reconfigurable IPs, meaning
that merging does not alter latency as opposed to other synthe-
sizers and, on top of that, before synthesis estimations are equal
to actual post-synthesis results. With respect to the optimized
reconfigurable versions (R*), only for the 1-D filter a lower
use of resources [see Fig. 3(b)] and latency has been obtained
using Vivado HLS (−72.0% register count, REG; −76.1%
logic elements, LOGIC; −10.5% for minimum and 14.8% for
maximum latency). In the 2-D filters case our performances
are superior. Latency results are more than three times larger
in the best Vivado HLS case, and again their value is: 1) not
preserved and 2) highly variable in the reconfigurable case.

DFF HLS Versus OpenCL System-Level HLS: As in the
Vivado HLS case, a significant effort on code refactoring is
needed for optimization, which is driven by an optimization
report offered at early design phases (it contains highly inac-
curate resource and system-level pipeline latency/stalls esti-
mations, rather than individual kernel latency values). Hence,
there is no sane way to accurately calculate kernel latency
and have insights into the generated datapath; therefore, no
latency results are reported in Fig. 3(a). For resource usage
results refer to the kernel instantiation [See Fig. 3(c)]. The
support for the OpenCL model even at kernel level (automatic
pipeline to support various threads on the fly, memory accesses
optimization, replications, etc.) introduces significant resource
overhead.

V. CONCLUSION

The results presented in this letter suggest that DFF HLS is a
promising alternative to classical imperative HLS to build flex-
ible and predictable CGR DSAs. Competitive resource usage
are achieved with respect to commercial HLS methods, while
allowing presynthesis and exact datapath latency predictions.
By trying to ease hardware design to software developers,
mainstream HLS tools have probably missed a key point in
hardware design that is critical to embedded systems: hav-
ing precise information on the generated datapaths to better
optimize hardware accelerators through improved DSE. We
demonstrated this issue on latency, proposing an alternative
design flow that overcomes traditional HLS tools under this
aspect. DFF HLS is able to tackle both issues: raising the

abstraction level while keeping low-level performance esti-
mates available for further hardware tuning. In this letter, for
the sake of brevity, we have provided the complete assess-
ment of one single accelerator. Future works will extend the
proposed analysis to other system features and more test cases.
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