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Abstract—ARINC-653, a standard of avionics software plat-
form, defines the sampling communication port that provides only
the latest message while discarding old messages. This sampling
port is particularly efficient at transmitting sensing data that
reflects the actual state of target system without message queueing
delay. In this paper, we implement the ARINC-653 sampling
port by exploiting Remote Direct Memory Access (RDMA) over
Ethernet that can directly move data to/from remote memory
without CPU intervention on the remote node. We propose
two different designs to utilize two-sided RDMA and one-
sided RDMA operations, respectively. Performance measurement
results show that the sampling port over one-sided RDMA
provides lower communication latency, stronger temporal par-
titioning, and better message timeliness than two-sided RDMA
and Berkeley sockets based implementations.

Index Terms—ARINC-653, Ethernet, RDMA, sampling port

I. INTRODUCTION

TRANSMITTING sensing data in real-time is critical for
precise control of networked embedded systems, such

as aerial/ground vehicles and robots, where few to many
sensing and control units are connected through embedded net-
works. Embedded software platforms thus define a messaging
mechanism efficient at transmitting sensing data. For instance,
ARINC-653 [1], a standard of avionics software platform,
defines the sampling communication port that provides only
the latest message while discarding old messages. This is
useful when a sensor unit sends sensing data to a controller
because most controllers are interested in the current situation
rather than the past. In addition, ROS2 [2], a robotics software
platform, also defines the history QoS policy that can be
configured to store only n latest messages.

Emerging networked embedded systems are actively adopt-
ing Ethernet technologies to benefit from high bandwidth
and enhance real-time performance. For example, Avionics
Full-Duplex Switched Ethernet (AFDX) [3] and Audio Video
Bridging (AVB) [4] are Ethernet-based networks for aircraft
and automobiles, respectively. Although several enhanced fea-
tures provided by Ethernet have been considered for providing
real-time data transmission, there are still useful Ethernet-
based features that have not yet been considered in modern
embedded systems. Remote Direct Memory Access (RDMA)
over Ethernet [5], [6], for example, can directly move data
to/from remote memory without CPU intervention on the
remote node. There have been significant studies to utilize
RDMA for server systems in terms of messaging [7] or
data sharing [8], [9], but these cannot be simply applied to
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embedded systems due to special messaging semantics defined
in embedded software platforms.

In this paper, we implement the ARINC-653 sampling port
over RDMA standards, such as iWARP [5] and RoCE [6].
Since RDMA over Ethernet defines two-sided (send/recv) and
one-sided (write/read) operations, we propose two different
designs to utilize both of these. The ARINC-653 sampling
port is different from traditional communication endpoints in
that its message is shared between processes in the same
partition, only the last message is valid, and the message
is not consumed by a receiving call. It is challenging to
efficiently implement this distinctive communication semantics
over RDMA. To tackle this issue, we implement an event-
driven network manager for two-sided operations and a syn-
chronization mechanism on messages of arbitrary length for
one-sided operations. Existing studies on communications of
the ARINC-653 standard did not consider RDMA [10]–[12].
Performance measurement results show that the sampling port
over RDMA reduces communication latency and provides
stronger temporal partitioning.

II. BACKGROUND

A. ARINC-653 Inter-Partition Communication
The ARINC-653 standard defines APIs called APplication

EXecutive (APEX) that interface between the OS of an avion-
ics computer and the application software [1]. The standard
specifies temporal and spatial partitioning that enables the
avionics applications to execute independently from each other
in terms of CPU and memory resources. This partitioning
concept is a key for the Integrated Modular Avionics (IMA)
architecture as it provides the resource isolation between
applications (i.e., partitions) by controlling utilization timing
of CPU resources and by limiting the usage of memory
resources. A partition comprises one or more processes that
share the resources of the partition but are not visible outside
of the partition. The CPU scheduling of partitions is repetitive
with a fixed periodicity. The process scheduling can be either
periodic or aperiodic.

ARINC-653 also specifies inter-partition communication
interfaces. The inter-partition communication channel is a log-
ical link between two or more partitions that may run on differ-
ent devices. A channel consists of one or more ports. Processes
running in the same partition share the communication port. A
port can operate in either queueing or sampling mode. In the
queueing port, the messages are queued in the internal message
queue and passed to processes in the FIFO manner without
intentional message loss. On the other hand, in the sampling
port, only the last message is saved, overwriting the old
messages. The APEX interfaces to send and receive a message
through a sampling port are Write_Sampling_Message
and Read_Sampling_Message, respectively.
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B. RDMA

RDMA directly moves messages from source to destination
without (or with minimum) involving CPUs on the remote
node thanks to protocol offloading. RDMA can provide high
bandwidth and low latency and save CPU resources as it sup-
ports kernel bypassing and zero-copy data movements. RDMA
supports two-sided (send/recv) and one-sided (write/read) op-
erations. In two-sided operations, both sender and receiver
should call RDMA-send and RDMA-recv interfaces, respec-
tively, to make message passing. In one-sided operations, only
the local task calls either RDMA-write that writes the data to
the remote buffer or RDMA-read that moves the data in the
remote buffer into the local buffer, while no corresponding
call is invoked on the remote node. iWARP [5] and RoCE [6]
are standards for RDMA over Ethernet defined by IETF and
IBTA, respectively. iWARP implements RDMA operations
over TCP/IP, while RoCEv2 works over UDP/IP.

III. RDMA-BASED SAMPLING PORT

This section describes our design of RDMA-based sampling
port. We implement the proposed design in an existing user-
level ARINC-653 implementation over Linux [13] by extend-
ing its configuration file format and inter-partition communica-
tion. Inside the ARINC-653 implementation, we invoke APIs
provided by libibverbs [14] to exploit RDMA. This library
provides common programming interfaces for iWARP and
RoCE. Thus, our sampling ports can run on both standards.

A. Initialization

Communication channels and ports in ARINC-653 are
defined statically by the configuration file, which specifies
connections, name, maximum message size, direction, etc. We
expand the configuration file format to add an option for the
type of RDMA operation. If a port is set to use RDMA, we
initialize RDMA over Ethernet and create an RDMA queue
pair that consists of a send queue, a receive queue, and a
completion queue and keep the mapping information between
the port name and the RDMA queue pair.

An RDMA-based sampling port has either a TX or RX
circular queue according to its direction. Buffers for RDMA
operations have to be registered so that the memory region is
not swapped out from physical memory and directly accessible
from the network controller. Thus, we fill the TX and RX
queues with pre-registered buffers during initialization. Since
the sampling port delivers the last message to processes, there
can be intentional loss for old messages. Details of TX/RX
queue management will be described in following subsections.

B. Two-Sided based Sampling Port

The upper data path in Fig. 1 represents two-sided (i.e.,
RDMA-send and RDMA-recv) based sampling ports. When
the sender process calls Write_Sampling_Message, the
data is copied (T.1) to the rear of the TX queue (represented as
R in Fig. 1). Although the user data can be directly sent with
RDMA without intermediate data copy, the buffer registration
for RDMA induces a significant overhead, which is larger

Fig. 1: Data path of RDMA-based ARINC-653 sampling port.

than the data copy overhead for small sensing data. Thus, as
described in Sec. III-A, each sampling port manages a circular
queue that has pre-registered buffers. The data copied into the
TX queue is sent with RDMA-send in FIFO order starting
from the front of the TX queue (F in Fig. 1) (T.2).

RDMA-recv has to be posted on the receiver side preceding
RDMA-send. To guarantee this, the network manager performs
flow control by exchanging cumulative acknowledgment (T.3).
If there are no pre-posted buffers available on the receiver side,
the sender does not post additional RDMA-send operations,
but the data in subsequent requests that have not yet been
posted for RDMA-send is overwritten by the latest request.

The data in the rear of the RX queue is copied
to the destination buffer when a process calls
Read_Sampling_Message (T.4). Since the sampling
port provides the only latest message, we keep the data in
the rear even after it is copied to the destination buffer and
reuse it until a new message arrives. The buffers that store
old data are reclaimed by the network manager. The network
manager sends a cumulative acknowledgment that specifies
the number of reclaimed buffers.

We create the network manager as an aperiodic process to
handle messages without limitation in the quota allotted for
each period. If it is periodic, the network latency can increase
significantly depending on the period. At the same time, to
prevent excessive usage of CPU resources, the network man-
ager uses event-driven interfaces rather than polling interfaces.

C. One-Sided based Sampling Port

The lower data path in Fig. 1 represents one-sided (i.e.,
RDMA-write) based sampling ports. Like the two-sided based
sampling ports, the data is copied to the TX queue by
Write_Sampling_Message (O.1). The data copied into
the TX queue is sent with RDMA-write (O.2). The port
on the receiver side manages only a single pre-registered
buffer, to which RDMA-write operations issued on the sender
side move data. The data stored in this receive buffer is
newest; thus, Read_Sampling_Message copies it to the
destination buffer (O.4).

Since RDMA-write operations (O.2) and the copy opera-
tions in APEX (O.4) can perform concurrently on the same
buffer, a race condition can occur. To avoid this, RDMA-
write operations attach the begin and end flags (represented
as red blocks in Fig. 1) that have the same value of 8
bytes. The value of these flags are generated by combin-
ing the message sequence number and the message size.
The message sequence number is managed globally within
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the partition and can be accessed synchronously between
processes. Read_Sampling_Message returns only if the
begin and end flags have the same value (O.3); otherwise, it
retries the copy operation. As RDMA writes data in increasing
address order [7], [9], if the begin and end flags are the same
after the data copy, it is guaranteed that there has been no
race condition. Although, this design may incur unbounded
overhead with a very high transmission rate on the sender
side, we do not need an additional daemon, such as network
manager, and the flow control. We will analyze the impact of
transmission rate on this synchronization scheme in Sec. IV-C.

As an alternative, we can consider using RDMA-read in-
stead of RDMA-write. In this case, the source port man-
ages a single pre-registered buffer, and the receiver reads it
with RDMA-read. This design, however, incurs even higher
retrial overhead if the begin and end flags are mismatched
because remote memory access is required for every retrial.
We can also consider using remote atomic operations, such as
FetchAdd and CmpSwap. However, these operations require
busy waiting on remote memory. Moreover, most of (if not all)
iWARP implementations do not support atomic operations yet.

IV. PERFORMANCE EVALUATION

We measured the performance on two industrial embedded
boards equipped with an Intel Core i9-10900 2.80 GHz CPU
and an Intel E810-CQDA2 Ethernet network adapter. We
installed Ubuntu 20.04. We compare our implementations
(i.e., two-sided and one-sided RDMA based sampling ports
described in Sec. III) with a traditional Berkeley sockets based
implementation. The data path of the sockets based sampling
port is similar to that of two-sided based one, but the sockets
based implementation uses the Berkeley sockets interface and
TCP/IP layers implemented in the Linux kernel.

A. Communication Latency
We analyzed the Round-Trip Time (RTT) between two

industrial boards by measuring the time elapsed from sending
the message to receiving the reply in a ping-pong fashion. Each
industrial board ran a partition that reserved a whole CPU core
and had an aperiodic communicating process. Since the sensor
data is relatively small, we varied message size up to 4 KB.

As shown in Fig. 2(a). the one-sided RDMA based imple-
mentation shows lower round-trip times, up to 46% and 55%,
compared with two-sided RDMA and Berkeley sockets based
implementations, respectively. This is mainly because the one-
sided RDMA based implementation does not generate network
events, such as interrupts, on the remote side and can make
a progress of communication regardless of peer’s progress.
Accordingly, it does not require the network manager. The
Berkeley sockets based implementation shows worse latency
than the others because it performs an additional data copy
at the sockets layer and has a complicate bottom half called
net rx softirq to handle network events.

Fig. 2(b) plots the empirical Cumulative Distribution Func-
tion (CDF) of RTT of 16-byte message. Overall, all three
different implementations show relatively stable numbers. The
one-sided RDMA based implementation reported the least
worst-case RTT compared with the others.

B. Temporal Partitioning

As we have described in Sec. II-A, providing temporal
partitioning that guarantees CPU resources for each partition
while preventing resource interference between partitions is
a major function of ARINC-653. In order to see if the
communication on a partition affects another partition running
on the same CPU core, we measured the execution time of a
computing partition that runs together with a communicating
partition. The computing partition includes a periodic process
that calculates a simple equation. The communicating partition
receives messages via a sampling port from a remote partition
that sends 4-byte messages with 1 ms or 10 ms interval. The
network interrupt handler and bottom half also ran on the core
running the communicating partition.

Fig. 3 shows CDFs for the execution time of the com-
puting partition. None in these graphs represents the case
where the computing partition runs without communicating
partition; thus, the closer the measured value is to None, the
more it means that there was no resource interference. We
can observe that the one-sided RDMA based implementation
almost does not induce resource interference because it does
not require local CPU resources to place data received into
the RX buffer. Therefore, it can provide stronger temporal
partitioning than the others. Two-sided RDMA and Berkeley
sockets based implementations, however, generate network
events on the receiving side when messages arrive. The
interrupt service routine is invoked in both implementations,
and the corresponding bottom half is additionally performed.
Since these event handling routines are performed with a high
priority at the operating system level, the computing partition
gets delayed even if the partition is not corresponding to
the communication. The resource interference reduces as the
sending interval increases (from 1 ms to 10 ms).

C. Message Timeliness

We also analyzed the end-to-end timeliness of periodic mes-
sages. In these experiments, the sender periodically transmitted
messages that contained the timestamp through a sampling
port, and the aperiodic receiver polled a new message arrival
and reported differences between previous and new timestamps
received. Thus, if the receiver obtained every message in time
without overwriting/discarding messages in the sampling port,
the interval of received timestamps at the receiving end should
be equal to the transmission interval.

Fig. 4 shows actual transmission intervals on the sender
and observed intervals on the receiver in the x and y axes,
respectively (y-axis is a log scale). The Berkeley sockets based
implementation shows significantly larger observed intervals
than actual transmission intervals for small transmission in-
tervals (less than 25 µs). That is, the Berkeley sockets based
implementation fails to provide messages transmitted at small
intervals to the application in a timely manner. In Linux, if
IP packets arrive in a very high rate, packets are handled by
the lower-priority daemon process called ksoftirqd instead of
the higher-priority bottom half to avoid resource starvation of
user processes. Thus, packet processing gets delayed, resulting
in message overwriting in the sampling port. As shown in
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Fig. 4: Transmission intervals vs. ob-
served intervals on the receiver

Fig. 4(b), a larger message size aggravates such message
overwriting and increases observed intervals even more.

The one-sided RDMA based implementation showed almost
the same observed intervals with actual transmission intervals
for all experiments. This means that retried copy operations
described in Sec. III-C hardly occur even for very high data
transmission rate, and their overhead is not significant. The
two-sided RDMA based implementation, however, reported
about 6 times higher observed intervals than transmission
intervals for very small transmission intervals (less than 3 µs).
This is mainly due to network event handling performed by the
interrupt service routine in the device driver and the bottom
half (tasklet softirq and the subsequent tasklet) in the kernel.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed two-sided and one-sided RDMA
based designs for the ARINC-653 sampling port. To the best
of our knowledge, our study is the first to utilize RDMA for
inter-partition communication of ARINC-653. Performance
measurement results showed that the one-sided RDMA based
implementation reduced the round-trip time, up to 46% and
55%, compared with two-sided RDMA and Berkeley sockets
based implementations, respectively. In addition, we showed
that the one-sided RDMA based implementation could provide
stronger temporal partitioning and better message timeliness.
As future work, we plan to implement an RDMA based
queueing port of ARINC-653.
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