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Abstract—Human Activity Recognition (HAR) is one of the
most interesting application for machine learning models running
on low cost and low-power devices, such as microcontrollers
(MCUs). As a matter of fact, MCUs are often dedicated to
performing inference on their own acquired data, and any
form of model training and update is delegated to external
resources. We consider this mainstream paradigm a severe
limitation, especially when privacy concerns prevent data sharing,
thus model personalization, which is universally recognized as
beneficial in HAR. In this work, we present our HAR solution
where MCUs can directly fine-tune a deep learning model
using locally acquired data. In particular, we enable training
functionalities for 1-D Convolutional Neural Networks (CNN) on
STM32 microcontrollers and provide a software tool to estimate
the memory and computational resources required to accomplish
model personalization.

Index Terms—Human Activity Recognition, On-Device Learn-
ing, Model Personalization, Microcontrollers, STM32.

I. INTRODUCTION

Recently, we have witnessed a broad diffusion of Internet of
Things (IoT) devices equipped with tiny microcontroller units
(MCUs) and an increasing interest in Tiny Machine Learning
(TinyML [1]) research to leverage machine learning models
on low-power devices. Human Activity Recognition (HAR) is
among the most frequently addressed problems in the TinyML
domain [2]. The mainstream paradigm in HAR consists in
classifying (e.g., by a 1D-CNN) segments of Inertial Mea-
surement Units (IMUs) recordings, which are easy to gather
in wearable devices mounting accelerometers and gyroscopes.
Model training is exclusively performed on a server using
many annotated data and large computational resources. Once
trained, the model is possibly optimized e.g., by distillation,
quantization, or pruning [2], and then deployed to the MCU,
which is only in charge of inference. Not surprisingly, the
vast majority of TinyML solutions support only inference on
MCUs. Examples include Tensorflow Lite Micro [3] from
Google and X-CUBE AI [4] from STMicroelectronics.

On-device learning (ODL) solutions for MCUs are scarce in
the literature, and a few frameworks expose only training func-
tionalities for dense layers [5]. This is somehow in contrast
with modern CNNs that favor convolutional ones. Moreover,
TinyTL [6] and Train++ [7], are purely algorithmic studies and
do not provide any implementation to be used in HAR. The
only framework that specifically addresses CNNs training on
MCUs is [8], which introduces an algorithm-system co-design
that combines quantizations and sparse updating techniques to
enable the training of an image classifier on STM32 MCUs
with minimal memory requirements (256KB). However, none
of these frameworks, including [8], were used to investigate

Fig. 1: Proposed framework for HAR personalization.

model personalization in HAR by fine-tuning all the layers
of a CNN directly on the MCU. We believe this is a relevant
problem for HAR, where model personalization is often key
to compensate for subjects’ heterogeneity resulting in very
different signals for the same activity. Moreover, performing
model personalization directly on the device is key to prevent
sharing of confidential data.

In this paper we perform for the first time model person-
alization for HAR directly on a STM32 microcontroller. To
this purpose, we implemented both a software framework that
enables to fine-tune on the MCU all the layers of a 1-D CNN,
and also a tool to estimate the memory footprint and the
computational resources required for the personalization. Our
framework can also be used for addressing other problems in
HAR, namely: i) enabling continuous learning to counteract
concept drift, and ii) enabling Federated Learning (FL) mech-
anisms [9] in a fully distributed manner.

Our experiments, performed on real-world HAR datasets,
confirm that model personalization in HAR is very beneficial
and that it is possible to retrain 1-D CNNs satisfying the strict
computational and memory constraints of the STM32L496ZG
MCU. In addition, we demonstrate a trade-off between model
accuracy and computational requirements, since performing a
full retraining of the model is beneficial in terms of F1-score,
but at the same time it has a greater impact on the memory
and the energy consumption. This analysis provides insights
on when to schedule model personalization on the device.

II. PROBLEM DEFINITION

We address HAR as a multi-class classification problem,
where the input s ∈ Rn×z is a segment of z samples from n
time series acquired by inertial sensors, and the output y is a
label corresponding to a human activity. We assume a general
training set TR of data from different users is provided to train
a classifier C, which associates each s to a label ŷ = C(s).
State-of-the-art classifiers for HAR [2] are 1D-CNNs.

The general classifier C can poorly recognize activities from
users not present in TR. Therefore, model personalization for
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a user i consists in fine-tuning the parameters θ0 of the general
classifier C using a local training set TRi containing data from
user i. In particular, our goal is to train a local classifier Ci with
parameters θi directly on a MCU, using θ0 as initialization and
TRi as training set.

III. A FRAMEWORK FOR HAR PERSONALIZATION

Figure 1 illustrates our framework to personalize HAR
models on STM32 MCUs. The framework is developed in
C programming language and composed of 3 modules:

a) Network: instantiates the local classifier Ci from the
architecture specifications and the initial parameters θ0, which
can be imported from a pretrained HAR classifier C, or
randomly set. The output of this module is the classifier itself,
which can be fed into the Evaluation or Training modules.

b) Training: HAR personalization is performed by a few
iterations of backpropagation. The goal of the backpropagation
algorithm is to find parameters θ∗ that minimize a loss
function L on the local training set TRi (more details on
that will be given in Section III-A). This module implements
backpropagation via gradient descent through 3 submodules:
the Orchestrator governing the iterative training procedure by
invoking alternatively the Forward and the Backward sub-
modules. The Orchestrator allows specifying training hyper-
parameters, such as the number of epochs, the learning rate,
and the batch size. The Forward module performs the forward
pass of the backpropagation by implementing the forward
expressions reported in Table I for the most popular layers
of 1D-CNN. During the forward pass, the values of the acti-
vations in the neurons of Ci need to be stored. The Backward
module performs the backward pass of the backpropagation,
implementing the backward expressions reported in Table I.

c) Evaluation: this module performs inference and dur-
ing training computes L(θ), namely the value of the loss func-
tion corresponding to parameters θ. We also use this module
to assess the effectiveness of personalization, by comparing
the accuracy of C and Ci.

A. Gradients Computation

We illustrate the implementation of backpropagation in the
Training module. As in Tensorflow API, we decompose the
backpropagation step (a forward pass followed by a backward
pass) into a sequence of operations performed layer by layer
and combined using the chain rule of derivatives. Each layer is
associated with a layer function f and parameters θ = [w,b].
Starting from the layer’s input x and the parameters θ, the
function f computes the value of the output activation a, which
will become the input x of the subsequent layer.

During the backward pass, starting from the last layer, we
compute the gradient of the loss L with respect to the network
parameters w,b, and the so-called downstream error ∂L

∂x as:

∂L

∂w
=

M∑
i=1

∂L

∂ai

∂fi

∂w
,

∂L

∂b
=

M∑
i=1

∂L

∂ai

∂fi

∂b
,

∂L

∂x
=

M∑
i=1

∂L

∂ai

∂fi

∂x
, (1)

where fi and ai are respectively the ith component of the
layer function f and of the unrolled a tensor, and M is
the number of units of the layer. The downstream error is
then passed back to the previous layer as ∂L

∂a . Table I reports

the explicit expressions for the forward and backward pass
of most popular layers of a CNN, namely Conv1D, Dense,
AvgPool1D, GlobalAvgPool1D, and Flatten. By combining
those expressions, it is possible to derive the overall forward
pass and to compute the loss L and its derivative.

As an example we illustrate the computation of a Conv1D
layer with C channels, N input units, F filters, and kernel size
K. The (j,m)-th element of the output a is defined as:

aj,m =

C∑
c=1

K∑
k=1

xc,m+k−1wj,c,k + bj , (2)

where j ∈ {1, . . . , F}, m ∈ {1, . . . ,M} and M = N −K +
1. Note that in (2) we treat convolution as cross-correlation
as in Tensorflow, a customary practice when filters are being
learned. According to the chain rule, we have:

∂L

∂x
=

F∑
j=1

M∑
m=1

∂L

∂ajm

∂fjm
∂x

. (3)

In particular, since ∂L
∂a is passed from the next layer during

backpropagation, we just have to compute the local gradients
of the layer function with respect to the input, namely:

∂L

∂xin
=

F∑
j=1

K∑
k=1

∂L

∂aj,n−k+1
wjik. (4)

In (4), the activation index n−k+1 ranges from 2−K to N ,
for a total of N+K−1 terms for each channel j, whereas ∂L

∂a
has size F × (N −K + 1). If K > 1, we apply a 0 padding
to ∂L

∂a by adding F · (K − 1) zeros to both sides of ∂L
∂a along

its second dimension. The index k in (4) has opposite signs
in the two terms of the convolution (−k in ∂L

∂a and +k in w),
thus we obtain a flipped kernel. The final result is expressed
as:

∂L

∂x
= conv

(
pad

(
∂L

∂a

)
,flip(w)

)
, (5)

where conv still represents cross-correlation.
Finally, to compute the gradient of a batch of input segments

we resort gradient accumulation. This maintains fixed the
memory footprint during the training regardless the batch size.

B. Estimating Resources

Our framework is equipped with a tool that estimates i) the
memory footprint and ii) the CPU load to personalize a HAR
classifier on an STM32 MCU. This tool is very valuable during
prototyping to properly size embedded ML applications to the
MCU capabilities.

Our tool computes the memory footprint as the amount of
memory required by model personalization. Model training
requires storing training samples, network parameters, acti-
vations, gradients, and errors computed at each layer during
backpropagation. In particular, all the activations and the
downstream errors ∂L

∂a of the layers that we want to train
must be stored in memory to be used during the backward
pass to compute gradients. Our tool can estimate a-priori the
memory usage of training by multiplying the total amount of
saved variables by their bit precision. The tool also estimates
the CPU load by counting the total number of operations
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Layer Forward pass
Backward pass Parameters

Input Weights Bias Weights Bias

Dense a = wT · x+ b ∂L
∂x

= w · ∂L
∂a

∂L
∂w

= x ·
(

∂L
∂a

)T
∂L
∂b

= ∂L
∂a

M ·N N

Conv1D a = conv(x,w) + b ∂L
∂x

= conv
(

∂L
∂a

, flip(w), full
)

∂L
∂w

= conv
(

∂L
∂a

,x
)

∂L
∂b

= ∂L
∂a

F · C ·K F

Activation ai =
exi∑N

i=1 exi

∂L
∂x

= a− t - - - -

AvgPool1D ajm = 1
p

∑p
i=0 xji

∂L
∂xin

= 1
p

∂L
∂aij

- - - -

GlobalAvgPool1D aj = 1
N

∑N
i=0 xji

∂L
∂xij

= 1
N

∂L
∂ain

- - - -

Flatten a = vec(x) ∂L
∂x

= reshape( ∂L
∂a

) - - - -

TABLE I: Forward and Backward expressions for layers implemented in the Training module. N and M are the width of the
previous and the current layer respectively, F is the number of filters of the current layer, K is the kernel size, C is the number
of input channels, and p is the stride of the AvgPool1D layer. The backward passes of weights and biases are computed only
for Dense and Conv1D since the other considered layers do not train these parameters.

performed by the backpropagation algorithm in the forward
and in backward passes, as well as in the parameters’ update
phase. The number and the type of operations performed
depend on the type of layers and are derived from an analysis
of the expressions in Table I.

IV. EXPERIMENTS AND RESULTS

Our experiments are meant to assess the benefits of model
personalization in HAR. In particular, in the considered set-
tings we have that: i) training on user-specific data improves
the accuracy of a pretrained model and ii) personalization
of a pretrained model outperforms a classifier trained only
on the target user. Finally, we show that enabling the full
retraining of the classifier on MCU is beneficial with respect
to transfer learning in terms of accuracy, although it requires
more computational resources.

Our target MCU is the STM32L496ZG, an ultra-low-power
MCU produced by STMicroelectronics with an ARM Cortex-
M4 core and 320 KB of sRAM. We flash the firmware using
the development board NUCLEO-L496ZG that is equipped
with such MCU.

A. Datasets and Architecture
The general dataset TR we consider is the Wireless Data

Mining (WISDM) dataset [10], which is used to pretrain a
general classifier C. The local training set TRi are from
ST dataset, which is collected in STM facilities using a
SensorTile.box [11]. Their characteristics are:

• WISDM dataset: 36 users, 6 activities (walking, jogging,
ascending stairs, descending stairs, sitting, and standing),
sampling frequency 20 Hz;

• ST dataset: 3 users, 3 activities (walking, ascending stairs
and descending stairs), sampling frequency 27 Hz.

We notice that the activities in the ST dataset are a subset
of those in WISDM. Both datasets have been collected us-
ing tri-axial accelerometers, but with different sensors, thus
the ST dataset has been resampled to 20Hz. We underline
that, after the resampling, the two datasets have approxi-
mately the same number of samples for each user (around
30k). The classifier takes as input from 1 to 5 seconds of
recording, which correspond to the following input sizes:
(20, 3), (40, 3), (60, 3), (80, 3), (100, 3), where 3 is the number
of axis of the accelerometers.

We adopt a 1D-CNN made of 4 blocks: 1) Conv1D with
F = 32 filters and kernel size K = 3 with ReLU, AvgPool1D,
2) Conv1D of F = 64 filters and kernel size K = 3 with
ReLU, AvgPool1D, GlobalAvgPool1D, 3) Dense of M = 50
units with ReLU and 4) Dense of M = 6 units with Softmax.
The total number of parameters θ to train is around 10000.
We select the SGD optimizer with a learning rate of 0.01 and
a batch size of 32. Facing a multi-class classification task, we
adopt the Categorical Cross-Entropy as loss function.

B. Model Personalization

At first, we show that in the considered settings, model per-
sonalization improves the performance of a pretrained model.
The first experiment is entirely conducted on the WISDM
dataset by a Leave-One-Subject-Out (LOSO) approach. For
each user i = 1, . . . , 36 we define a training (TRi) and test
(TSi) sets and pretrain a general classifier C from the other 35
users. We personalize each local classifier Ci by retraining all
the layers (Full personalization) of C using TRi. As a com-
parison, we consider the Transfer Learning (TL) which can be
pursued by standard TinyML frameworks [5] and that retrains
only the last 2 dense layers of C. For each user i we assess Ci
on TSi, and we show in Table II the F1-score averaged over
all the users. We also consider No Pers. as the performance
of the classifier C. Both personalization approaches improve
the performance of C, and Full personalization always reaches
the highest F1-score, for all the input sizes. This confirms
that enabling the retraining of all the network layers is highly
beneficial in the HAR scenario.

We also assess the benefits of model personalization over
each user of the ST dataset for both TL and Full personal-
ization. As a customary procedure for improving convergence
in fine tuning, we first retrain for 2 epochs the last dense
layer freezing all the others. We then retrain all the network’s
layers (Full) or training the last 2 dense layers only (TL).
Moreover, we train user specific classifiers from data of
each user (denoted as No Pretrain) starting from a random
initialization. Table II reports the F1-scores averaged on the 3
users of the ST dataset. We note that the while TL achieves
lower or comparable performance w.r.t. classifier No Pretrain,
Full personalization always achieves the highest F1-score,
independently from the chosen input size. This confirms that
enabling the retraining of all the network’s layers is highly
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Input
size

WISDM Dataset ST Dataset
No Pers. TL Full No Pretrain. TL Full

(100,3) 0.813 0.955 0.969 0.936 0.938 0.960
(80,3) 0.815 0.963 0.973 0.944 0.939 0.962
(60,3) 0.819 0.962 0.978 0.938 0.931 0.966
(40,3) 0.808 0.958 0.974 0.951 0.929 0.965
(20,3) 0.804 0.948 0.967 0.945 0.911 0.959

TABLE II: F1 score on WISDM and ST datasets.

beneficial even when personalization is performed on data
from a different dataset, which is common in HAR scenarios.

C. Computational Resources’ Evaluation
Here we assess the computational resources required to

perform model personalization on the MCU. At first, we use
our tool to estimate the memory footprint of both TL and Full
personalization. As reported in Table III, the input size has a
great impact on the memory footprint: the smallest input size
(20, 3) requires about half of the memory with respect to the
largest size (100, 3). However, all the tested cases are within
the memory limitations of our selected device, since they use
less than 320 kB.

Table III reports the time required to process a batch of 32
segments for each input size for both Full and TL. Also in
this case we observe that increasing the input size results in
larger execution time. In particular, (100, 3) requires more than
5 times the time required by input size of (20, 3). However,
as shown in Table II, an input size of (20, 3) is enough for
reaching a very high accuracy.

Finally, we use the X-NUCLEO-LPM01A power shield to
measure the average power required to process a batch of
32 samples. The power shield is attached to the development
board to measure the current absorbed during the execution
of the training. Since the voltage provided is equal to 3.3 V,
we can easily derive the power consumed. We note that the
power is the same for both TL and FUll personalization
procedures for any input size. However, the energy (power
× time) required to process a single batch is higher for the
Full personalization, since it scales linearly with the time.

This analysis is very valuable as it gives an estimate
of the computational resources required during the training,
allowing to schedule model personalization depending on the
power availability. For example, Full personalization could be
performed only when the battery device is recharging, while
TL could be run when the device relies on its own battery.
Finally, our framework can be used to adjust the input size
and select the number of training epochs for the chosen MCU,
to reach the best trade-off between the accuracy of the model
and the usage of resources.

V. CONCLUSIONS

We present a HAR solution to fine-tune and personalize a
deep learning model directly on a STM32 MCU using locally
acquired data. In particular, we develop a framework to retrain
1-D CNNs satisfying the strict computational and memory
constraints of the STM32L496ZG MCU. Our experiments
shows that the Full personalization of the CNN achieves a
better accuracy than Transfer Learning, which is what existing
frameworks allow, although it requires more energy.

Future work concerns extending our framework to support
more layers and different optimization strategies. We will also

Input
size

Memory Footprint Time per batch Power per batch
TL Full TL Full TL Full

(100,3) 115KB 189 KB 14.25 s 48.10 s 2.67 mW 2.68 mW
(80,3) 102KB 165 KB 11.27 s 38.05 s 2.68 mW 2.69 mW
(60,3) 91KB 131 KB 8.29 s 28.00 s 2.66 mW 2.68 mW
(40,3) 79KB 122 KB 5.31 s 17.95 s 2.64 mW 2.67 mW
(20,3) 63KB 98 KB 2.33 s 7.90 s 2.65 mW 2.65 mW

TABLE III: Computational resources required by Full and TL
personalization for different input sizes.

adapt the framework to be used on MicroProcessors like those
of the MP1 series from STMicroelectronics, which can be
equipped with a small GPU.
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