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Fourier Ptychography Reconstruction Based on
Reweighted Amplitude Flow With Regularization

by Denoising and Deep Decoder
Baopeng Li , Caiwen Ma, Okan K. Ersoy, Fellow, IEEE, Zhibin Pan, Wansha Wen, Zhonghan Sun, and Wei Gao

Abstract—Fourier ptychography (FP) is a computational imag-
ing technique with the advantage that it can obtain large field-
of-view (FOV) and high-resolution (HR) imaging. We propose an
algorithm for Fourier ptychography based on reweighted ampli-
tude flow (RAF) with regularization by denoising (RED) and deep
decoder (DD), which is an untrained deep generative model. The
proposed method includes two loops, using reweighted amplitude
flow with regularization by denoising as an inner loop for phase
retrieval and deep decoder for further denoising as an outer loop in
the Fourier ptychography recovery system. The proposed method
does not need any training dataset, just adds a little computer time
during the image recovery process. The proposed method has no
bias due to training images, which is different from other deep
learning methods. The experimental results show that the proposed
method can improve the reconstruction quality in both PSNR and
SSIM.

Index Terms—Coherent imaging, imaging systems, technologies
for computing.

I. INTRODUCTION

FOURIER ptychography is a new imaging technique that
bypasses the resolution limit of the employed optics. In

particular, it transforms the general challenge of high through-
put, high-resolution imaging from one that is coupled to the
physical limitations of the optics to one that is solvable through
computation [1], [2], [3], [4]. FP integrates phase retrieval and
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aperture synthesis together to recover both amplitude and phase
information.

Most FP research are focusing on microscopy applications [2],
[5], [6], [7], [8]. A light-emitting diode (LED) array is used
to provide different angle illumination, and intensity images of
the sample are recorded and used to recover a high-resolution
sample image. Recently, researchers consider using the FP
method to obtain long-distance, subdiffraction-limited imaging
instead of building a larger lens, which is usually expensive
and heavy, with bulky optics and mechanics [9]. Holloway
et al. [10] proposed using camera arrays coupled with coher-
ent illumination to improve spatial resolution in long-distance
images. Synthetic apertures for visible imaging (SAVI) [9] using
FP extended the synthetic aperture techniques in the visible
light domain to achieve subdiffraction-limited resolution. They
also achieved imaging of optically rough objects experimentally
using macroscopic FP in a reflection imaging geometry.

The captured low-resolution images always include compli-
cated noise for long-distance FP imaging systems. For exam-
ple, coherent illumination of rough surfaces produces speckle
noise [11]. Some works research the noise modeling and de-
noising of the FP reconstruction. Zuo et al. [12] proposed an
adaptive step-size strategy which improved the stability and
robustness of the reconstruction under noisy conditions. Bian
et al. [13] proposed a Wirtinger flow optimization for Fourier
Ptychographic (WFP), which incorporated phase retrieval and
noise relaxation together. WFP tests with the different additive
Gaussian noises. Reweighted amplitude flow (RAF) is more
robust than the intensity-based algorithms in some applications,
for example, in the presence of Poisson noise [14]. Li et al. [11]
proposed a new FP algorithm, which combined reweighted
amplitude flow and regularization by denoising (RED). This
method achieved better image reconstruction, and reduced the
effects of laser speckle noise in long-distance experiments. The
above studies have been carried out on different noises and have
achieved good results to a certain extent. However, there are still
some drawbacks of using the above methods. First, the image
prior knowledge adopted by these methods are mostly based on
human knowledge, so it is difficult to capture the full features
of the image [15]. Therefore, the performance may be limited.
Next, most of these methods only use the internal information
of the input image without use of any external information [15].
So there is room for further improvement.
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In recent years, deep neural networks (DNN) have been
successfully used in image processing and computer vision,
such as image denoising, image restoration and optical metrol-
ogy tasks [16], [17]. With the rapid development of DNN,
researchers have developed a lot of very powerful denoising
architectures [16], such as DnCNN [18], FFDNet [19], VD-
Net [20] and DANet [21]. Deep learning based denoising meth-
ods are state-of-the-art image denoising methods. However, it
is well-known that deep learning methods need a large training
dataset to a certain degree. The more training data are used the
better the results are. However, training data are not easy to be
obtained in some areas, such as astronomy and remote sensing.
It is difficult to acquire adequate an number of clean-noisy image
pairs of FP denoising tasks. Moreover, if the testing data misfit
the training data, the performance of deep learning’s prediction
will be affected.

Recently, researchers proposed some new image denoising
neural networks which do not involve in any training dataset,
which are different from traditional DNNs. The biggest ad-
vantage of an untrained network is that researchers can avoid
building a large database. Ulyanov et al. [22] first proposed an
untrained neural network method, namely Deep Image Prior
(DIP), which showed that the structure of a generator network
is sufficient to capture image information. Heckel et al. [23]
proposed a new untrained neural network method called as
Deep Decoder (DD), which is a deep neural network that can
generate natural images with very few weight parameters. DD
maps a lower-dimensional space to a higher-dimensional space,
which is similar to sparse image representation. DD has a better
performance compared with state-of-the-art untrained denoising
methods, such as DIP and BM3D [24]. Since the untrained
neural network is valuable for real data, we consider using a
state-of-the-art untrained denoising network deep decoder in the
FP reconstruction.

In this paper, we propose an algorithm called RAF-RED-
DD, which combines reweighted amplitude flow (RAF), reg-
ularization by denoising (RED) and deep decoder (DD). The
recovery algorithm effectively combines two kinds of denoising
algorithms, in the inner loop based on RED denoising, and in
the outer loop based on DD denoising for the amplitude image
within the Fourier ptychography recovery process. RAF-RED-
DD is a flexible framework for using denoising algorithms as
priors for FP reconstruction algorithm. Deep decoder, which
is flexibly embedded into the FP reconstruction algorithm, can
be considered as a plug-and-play prior [25]. RAF-RED-DD
allows denoising methods that are not explicitly formulated
as optimization problems to be used. Experiments show that
RAF-RED-DD can get a better result than RAF-RED without
considering DD. The proposed method is robust in different
noise.

The remainder of the paper is organized as follows. In
Section II, we first demonstrate the FP imaging model and
then show the proposed method. In Section III, we discuss
the hyper parameters of the proposed method and show the
performance of the proposed method with numerical simulation
and real data. Finally, Section IV gives the conclusion and future
work.

II. PROPOSED METHOD

In this section, we first introduce the forward Fourier pty-
chography imaging model, and then introduce the reweighted
amplitude flow with regularization by denoising for the FP
reconstruction process. Next, we combine the reweighted am-
plitude flow with regularization by denoising and deep decoder
together. Finally, we summarize our proposed reconstruction
algorithm.

A. Forward FP Imaging Model

In the forward imaging model of FP, multiple intensity images
of the sample are captured under different incident positions.
The field emanating from the object is a complex wave ψ(x, y),
which passes through a long distance to the imaging system
which satisfies the far-field Fraunhofer approximation. The field
at the aperture plane of the camera is related to the field at the
object by

Ψ(u, v) ∝ F {ψ(x, y)} (1)

where F is the 2D Fourier transform. In order to reduce clutter,
spatial coordinates (x, y) are represented as x, and frequency
coordinates (u, v) are represented as u.

Considering the finite diameter of the optical lens, we can
only obtain part of information on the camera sensor. Let P(u)
represent pupil. For a circular lens, P(u) can be defined as

P (u) =

{
1 if ||u|| < d/2
0 otherwise

(2)

where d is the diameter of the optical lens.
Since CCD or CMOS can only measure the intensity images

of the optical waves, we can capture low-resolution images at
different locations in the Fourier domain, and the captured image
is given by

I(x, c) =
∣∣F−1 {Ψ(u− c)P (u)}∣∣2 (3)

wherec is the center of the pupil,F−1 is the inverse Fourier trans-
form. Shifting the camera aperture to capture different regions
of the Fourier domain can be achieved by shifting the Fourier
pattern relative to the camera. Because of the finite extent of
the lens aperture, the captured images will not contain all of the
frequency content of the propagated field Ψ(u). By recovering
the complex field Ψ(u), we can reconstruct a high-resolution
image of the object. A forward Fourier ptychography imaging
system is shown in Fig. 1.

B. Optimization Framework

The FP measurement process can be defined as y = |Ax|2,
whereA ∈ Cm×n is the relation between high-resolution recon-
struction and low-resolution measurements.A includes two lin-
ear operations: (1) down-sampling caused by the lens aperture,
(2) inverse Fourier transform of the low-resolution spectrum
caused by the imaging system. The target of FP reconstruction
is to recover the high-resolution spatial spectrum (a plural image
z) from a series of low-resolution images (measurements yi)
which are captured in the spatial space.
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Fig. 1. A forward Fourier ptychography imaging system. Using amplitude and phase images make up the complex object image. After the forward processing,
we get a series of low-resolution images. There are M × M captured low-resolution images, where M is the number of shifted apertures. Using the FP algorithm,
we obtain a high-resolution image. In the simulations, the amplitude and phase images are 512 × 512 pixels, M is 15, and the low-resolution images are
102 × 102 pixels.

Fig. 2. Block diagram of the proposed algorithm, which includes inner loop
(phase retrieval) and outer loop (deep decoder denoising).

Our method combines reweighted amplitude flow with regu-
larization by denoising and deep decoder together. The proposed
method includes two parts, an inner loop for phase retrieval
using reweighted amplitude flow (RAF) with regularization by
denoising (RED) and an outer loop for further denoising based
on the deep decoder (DD). The deep decoder is applied every
S iterations in the algorithm. The structure of the proposed
algorithm is shown in Fig. 2.

1) Inner Loop (Phase Retrieval): Since the reweighted am-
plitude flow with regularization by denoising for Fourier Pty-
chography is a flexible and powerful algorithm, we choose it
as the inner loop. The optimization framework of FP using
reweighted amplitude flow can be expressed as follows:

argmin L(z) =
1

2m

m∑
i=1

(|Aiz| − √
yi)

2 (4)

where yi is a low-resolution intensity measurement, Ai is a
linear transform matrix which incorporates the inverse Fourier
transform and low-pass filtering of the pupil function, z is even-
tually the high-resolution spectrum of the object. The root-mean-
squared measurements are employed as an initial estimator for
FP. We can use the gradient descent method to optimize the
above equation. Then, the update formula is:

zt+1 = zt − utwt
i � L(z)

= zt − ut

m

m∑
i=1

wt
i

(
Aiz −√

yi
Aiz

|Aiz|
)
AH

i (5)

where t is the iteration number, AH
i is the transposed conjugate

matrix of Ai, and wi is given by

wi =
|Aiz|2/yi

|Aiz|2/yi + βi
(6)

Regularization by denoising (RED) [26] is an efficient ap-
proach to solve imaging inverse problems, which can flexibility
incorporate a denoiser to regularize imaging. RED is tested and
demonstrated with state-of-the-art results in image deblurring
and super-resolution applications. The RED framework defines
a regularization term R(z) as follows:

Rz =
1

2
zH [z − f(z)] (7)

where f(z) is a denoising engine which can be flexibly chosen
as an image denoising filter. Reweighted amplitude flow with
RED for FP can be modeled as an energy function as follows:

Ez = Lz +Rz (8)

where Lz is a data-fidelity term given by (4) and Rz is a
regularization term given by (7).

The gradient of (8) is as follows:

�Ez = �Lz +�Rz (9)
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Fig. 3. The network structure of the Deep Decoder (DD). DD includes upsam-
pling, ReLU and channel normalization (CN) in each layers. The output of the
network uses Sigmoid activation function. DD does not require training data.
DD itself acts as a natural data model [23].

The update formula is

zt+1 = zt − ut � E(z)

= zt − ut

[
1

m

m∑
i=1

wt
i

(
Aiz −√

yi
Aiz

|Aiz|
)
AH

i

+ λt (z − f(z))

]
(10)

More details about RAF and RED can be found in the pa-
pers [11], [26], [27], [28]. Using the inner loop, we can get a
good Fourier ptychography reconstruction result. However, due
to complex FP processing and different noise effects, the FP
algorithm can still be further improved.

2) Outer Loop (Deep Decoder Denoising): Deep decoder
denoising transforms a randomly chosen and fixed tensor B0 ∈
Rn0 consisting of n0-dimensional channels to a nd-dimensional
image x. This is done by using upsampling, rectified linear units
(ReLUs) and normalizing. The (i+ 1)th layer is given by

Bi+1 = cn(relu(UiBiCi)), i = 0, . . ., d− 1 (11)

whereCi ∈ Rki×ki+1 contains the weights of the network,Ui ∈
Rni+1×ni is a bi-linear upsampling tensor, and cn(·) is a channel
normalization operation. The final output of the network is given
by

x = sigmoid(BdCd), (12)

where Cd ∈ Rkd×kout . In our simulation, n0 = 16× 16 and
nd = 512× 512. The structure of DD is shown in Fig. 3.

We can estimate an unknown image from the noisy measure-
ment x by minimizing the loss function:

L(C) = ||f(DD(C)− x||22 (13)

where C is the network model parameters. By minimizing (13),
we can obtain the parameters Ĉ. We denoise the noisy image
using:

x̂ = DD
(
Ĉ
)

(14)

where x̂ is the final reconstruction image.

Algorithm 1: Reweighted Amplitude Flow with Regulariza-
tion by Denoising and Deep Decoder for Fourier Ptychog-
raphy (RAF-RED-DD).

Input: Captured low-resolution images {yi}mi=1; sampling matrix {Ai}mi=1.
Output: Retrieved signal z (recovered high-resolution spatial spectrum).
1: Parameters: maximum number of iterations T; step size μ;
weighting parameters β = 0.3; regularization parameter λ = 0.05;
DD epochs TD = 2000; iteration number using DD S = 50.
2: Initialization: z0 = FFT

(
1
m

∑m

i=1

√
yi
)

.
3: Loop:

for t = 1 to T
if t = S

xt = |IFFT
(
zt
)
|, pt = ∠

(
IFFT

(
zt
))

,

xt+1 = DD
(
Ĉ
)

, where Ĉ = argmin||f(DD(C))− xt||22
zt+1 = FFT

(
xt+1exp

(
1jpt

))
else

zt+1 = zt − ut

[
1
m

m∑
i=1

wt
i

(
Aiz −√

yi
Aiz
|Aiz|

)
AH

i

+ λt(z − f(z))

]
where wi =

|Aiz|2/yi
|Aiz|2/yi+βi

, for 1 ≤ i ≤ m

4: end

The updated parameter of the (10) is spectrum z, which is
complicated and different from natural image. We notice that
DD itself acts as a natural data model [23]. So we translate
the spectrum information to the image domain based on inverse
Fourier transform. Next, we use DD to improve the reconstructed
amplitude image. Then, we get the updated spectrum z based on
Fourier transform.

The deep decoder is applied every ‘S’ iterations in the pro-
posed algorithm, allowing adequate time for information trans-
fer between the spatial and Fourier domains in the process of
phase retrieval. Another reason is to balance the computational
time and computer resources.

3) RAF-RED-DD: Our approach for FP utilizes RAF-RED
(inner loop) together with DD (outer loop), namely, using RAF-
RED to get a reconstruction and using DD to further improve
the reconstruction of FP. The overall framework of the proposed
method is illustrated in Fig. 2. Based on the above derivations,
the imaging reconstruction framework of Fourier ptychography
is summarized in Algorithm 1.

III. EXPERIMENTAL RESULTS

In this section, we discuss the hyper parameters of the algo-
rithm. We also discuss the performance of our algorithm with
numerical simulation data and real data. The results show that
the proposed method is robust in different noises.

A. Numerical Simulation

The forward FP imaging process are simulated. First, we
choose a high-resolution complex image as an object. We choose
‘cameraman’ as the input amplitude and ‘jetplane’ as the input
phase. The input amplitude and phase images are both512 × 512
pixels. Then, based on the FP forward imaging model, a series
of low-resolution images are generated using (3). The number
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Fig. 4. Gaussian noise (λ = 0.008) images, speckle noise (σ = 0.4) images
and clean images. Center means that the cameraman image is captured in the
center. Adjacent and edge are relative to the center image. All images are
normalized to (0-1) for clear display.

of horizontal and vertical measurements are 15× 15. The total
number of captured low-resolution images are 225. The low-
resolution images are 102× 102 pixels. The overlap ratio is
about 65%. Lastly, we add Gaussian noise and speckle noise in
the numerical simulation. It should be noted that speckle noise is
caused by random phase in the forward imaging processing [29].
Hence, random phase are added to simulate ‘speckle noise’. The
image formation model is shown in the left part of Fig. 1. The
center clean images, Gaussian noise images and speckle noise
images are shown in Fig. 4. For clearer observation of images, all
images are normalized to (0–1). We could clearly see the speckle
noise from the Fig. 4. We also could see that the Gaussian noise
is really strong, especially on the edge of the captured area.

In order to assess the quality of the image reconstructions, the
reconstructions of the proposed approach are compared with the
true images by using the peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) [30]. For PSNR, larger values
are better, and SSIM values closer to 1 (always ranging between
0 and 1) indicate better visual quality.

B. Hyper-Parameters of the Proposed Method

1) The Number of Deep Decoder Layers and Training
Epochs: The number of deep decoder layers K and the number
of training epochs are two key hyper-parameters of the deep
decoder. K enables trading off amount of noise that is removed
versus the representation error by the model. Smaller K may
remove more noise, but also increase the error of approximating
an image with the deep decoder.

We use mean square error (MSE) to measure the average
of the squares of the error of the output of the deep decoder
denoising image and the true image. The high-resolution image
has Gaussian noise λ = 0.004 and speckle noise is σ = 0.3. The

Fig. 5. MSE of the image deep decoder denoising. The horizontal and vertical
axis are log coordinates in the sub-figure (a). We notice that the MSE is not
obvious decrease after 2000 epochs. we choose 2000 epochs and K = 128.

MSEs of the DD reconstructed result are shown in Fig. 5. We see
that about 2000 epochs of DD result in MSE less than 5× 10−2,
which is small enough. We find that using K= 128 gives a better
reconstruction result than using K = 32 or K = 64 after 1500
iterations. We also test other noise level images, and the curves
are similar to Fig. 5. Considering the computational time and
denoising performance, we choose the number of epochs of DD
as 2000 and K = 128 in the following experiments.

2) The Iterations Number of Using Deep Decoder: In the
proposed method, We use DD denoising (every ‘S’ iteration)
to improve the RAF-RED reconstruction result. The iteration
number of using DD is one key hyper-parameters of the pro-
posed method. We test different iteration numbers, the results
are shown in Fig. 6. From Fig. 6, we see that including deep
decoder denoising improves accuracy. We notice that decrease
the number of ‘S’ will obtain a better result. For example, every
10 iterations using deep decoder is better than other iterations
using deep decoder in Fig. 6. However, considering saving com-
putational time, we choose S = 50 in the following experiments.

C. Numerical Simulation Results

In the simulations, the standard deviation of Gaussian noise
ranges from 0.002 to 0.008 with a 0.002 interval, which is the
same as the simulation experiments of WFP method [13]. We
add 0.1 to 0.4 times random noise in the phase part to simulate
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TABLE I
QUANTITATIVE COMPARISONS OF THE RECONSTRUCTION OF DIFFERENT METHODS WITH THE PROPOSED ALGORITHM AT DIFFERENT GAUSSIAN NOISE LEVELS

Fig. 6. Quantitative comparison for the reconstruction results of RAF-RED-
DD and RAF-RED. RAF-RED-DD gives better results in both PSNR and SSIM.
Using small ‘S’ could obtain a better reconstruction result. Considering saving
the computation time, we choose S = 50 in the following experiments.

speckle noise, which follows the simulation experiments of
RAF-RED [11]. The value range of the amplitude is from 0
to 1 and the phase is from −π to π.

First, we would like to prove that using deep decoder as an
outer loop is useful in the proposed algorithm. We compare
our proposed algorithm RAF-RED-DD and RAF-RED (without
deep decoder) with the image which Gaussian noise (λ = 0.002)
and speckle noise (σ = 0.1) are added. From Fig. 6, the results
show that RAF-RED-DD yields a better reconstruction than
RAF-RED both in PSNR and SSIM. Hence, DD is useful in
the proposed algorithm.

We test the RAF-RED-DD algorithm with different Gaussian
and speckle noises. We also compare the results with the method
of alternating projections method TowardCCA [10], Wirtinger
flow optimization for Fourier Ptychography (WFP) [13] and

RAF-RED [11]. In the following experiments, we use median
filter and BM3D [24], [31] filter in RED processing. The median
filter is simple but always effective, BM3D is a state-of-art image
denoiser filter. We notice that BM3D needs a lot of time (about
6 s) to denoise a single image. The proposed algorithm usually
needs hundreds of iterations. Using BM3D in every iteration
processing, a huge time is then needed for computation.

The experimental results with Gaussian noise are shown in
Table I. It can be seen that RAF-RED-DD is better than other
methods, and RAF-RED-DD is robust even with high level
noise.

The quantitative comparison of the reconstruction results
using speckle noise are shown in Table II. It can be seen that
RAF-RED-DD obtain the best PSNR results and the best or the
second best SSIM results.

We also test with complicated noise situations, which include
different levels of Gaussian noise and speckle noise. The re-
construction results are shown in Table III. In summary, we
see that RAF-BM3D-DD gives the best reconstruction result
with Gaussian noise. Most often RAF-BM3D-DD gives a better
reconstruction result than other methods with speckle noise
and complicated noise. RAF-BM3D or RAF-Median-DD some-
times gives a better result and RAF-BM3D obtains the second
best result with speckle noise and complicated noise.

As shown in Tables I, II, and III, using DD prior as an
outer loop in the proposed method, both PSNR and SSIM give
a high value. PSNR and SSIM increase by 1.73 dB/0.90 dB
(Median/BM3D) and 0.096/0.022 (Median/BM3D) on average
with DD and without DD under different noise situations. Hence,
the experimental results show that RAF-RED-DD can give a
better result than RAF-RED.

A visual representation of the recovered images with com-
plicated noise (Gaussian noise λ = 0.002 and speckle noise
σ = 0.1) is shown in Fig. 7. The RAF-RED-DD reconstruction
is more smooth and better than the other methods.

D. Real Captured Data Experiment Results

To further validate the effectiveness of RAF-RED-DD, we use
TowardCCA [10] data for FP reconstruction. The TowardCCA
data contains the captured low-resolution images as inputs for FP
reconstruction. We compare our proposed method with Toward-
CCA [10] method using the fingerprint data. The fingerprint data
contains 441 (recorded with a grid of 21 × 21) low-resolution
images, with 600 × 600 pixels. The fingerprint is pressed on a
glass slide. The distance of the fingerprint from the camera is
about 1.5 m. The reconstructed high-resolution image is 820 ×
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TABLE II
QUANTITATIVE COMPARISONS OF RECONSTRUCTION OF DIFFERENT METHODS WITH THE PROPOSED ALGORITHM AT DIFFERENT SPECKLE NOISE LEVELS

TABLE III
QUANTITATIVE COMPARISONS OF RECONSTRUCTION OF DIFFERENT METHODS WITH THE PROPOSED ALGORITHM IN COMPLICATED NOISE SITUATIONS

Fig. 7. The recovered amplitude and phase images. From the amplitude reconstruction results, we see that the RAF-BM3D-DD reconstruction is the best. We
also notice that RAF-RED-DD is better and smooth than RAF-RED.

820 pixels. In Fig. 8(a), we see that the captured center image
is blurred. The reconstructed images are clear and have detail
information.

Because the images are real captured data, we could not evalu-
ate them using PSNR or SSIM. We just show their reconstruction
results and use visual evaluation. The fingerprint reconstruction
results of towardCCA, RAF-BM3D and RAF-BM3D-DD are
shown in Fig. 8. We see that the proposed algorithm can obtain
a better visual result than the TowardCCA. Compared with
Fig. 8(i) and (j), we see that the amplitude result and the phase
result of RAF-BM3D-DD contain more detail information than
RAF-BM3D, especially in the phase result. We can see the

texture of the fingerprint in the phase result, which is useful
for reconstructing details.

E. Discussion and Analysis

Deep learning denoisers (such as DnCNN [18] and FFD-
Net [19]) are very popular and give good performance. For exam-
ple, DnCNN achieves state-of-the-art performance on Gaussian
denoising tasks. Deep learning based denoisers trained with
synthetic clean-noisy image pairs work well with white Gaussian
noise. However, real world noises are much more complex than
white Gaussian noise, and little work has been done with real
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Fig. 8. Fingerprint reconstruction results of TowardCCA, RAF-BM3D and RAF-BM3D-DD. The RAF-BM3D and RAF-BM3D-DD results look more smooth
than TowardCCA. The RAF-BM3D-DD result has more details, especially in the phase result.

image denoising, because it is very difficult to capture adequate
number of clean-noisy training image pairs. For keeping the pro-
posed algorithm flexible and unbiased with the training images,
we do not use any deep learning based denoiser in the RED step.

We test the effect of the number of iterations on the experimen-
tal performance. The PSNR and SSIM results of the complicated
noise (Gaussian noise λ = 0.002 and speckle noise σ = 0.1) are
shown in Fig. 9. In the other noise situations, the results are sim-
ilar. Using more iterations after 300, the improvement is little in
our experiments. It should be noted that the number of iterations
is a key hyperparameter. To obtain the best results, different
iteration numbers should be tested for different experiments.

We also test the proposed method using different sampling
measurement numbers with Gaussian noise (λ = 0.002) and
speckle noise (σ = 0.1). The horizontal and vertical measure-
ment numbers of 13 × 13 and 17 × 17 are tested. The results
show that with DD could yield a better reconstruction than
without DD under different sampling measurement numbers
from Table IV.

The TowardCCA and WFP are are written in Matlab codes.
The other programs are written in python. The TowardCCA and
WFP algorithms are tested using Matlab R2020b on a laptop
Lenovo W540 with an Intel i7-1075H CPU, 64GM RAM. The
RAF-RED and RAF-RED-DD algorithms are tested by Dell
T5820, with an Intel i9-10980XE CPU, 32 GB RAM, NVIDIA

TABLE IV
QUANTITATIVE COMPARISONS OF THE RECONSTRUCTION OF DIFFERENT

METHODS WITH THE PROPOSED ALGORITHM AT DIFFERENT SAMPLING

MEASUREMENTS

RTX 2080. In RED, we choose median and BM3D filters for
RAF-RED and RAF-RED-DD. To reduce computation time, we
use median filter at the first 120 iterations of the RAF-BM3D
and RAF-BM3D-DD algorithms. The computation time of the
above algorithms are shown in Table V.

IV. CONCLUSION

We propose an algorithm for Fourier ptychography based
on reweighted amplitude flow with regularization by denois-
ing and deep decoder. The proposed algorithm can iteratively
improve the reconstruction results. Considering deep decoder
does not need any training images, the proposed algorithm
has no bias due to training images. Experiments show that
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TABLE V
COMPARISON OF COMPUTATION TIME (S) OF DIFFERENT ALGORITHMS WITH SIMULATION DATA (ITERATION NUMBER: 300)

Fig. 9. Quantitative comparison for the reconstruction results of RAF-Median,
RAF-Median-DD, RAF-BM3D and RAF-BM3D-DD using different iterations.
We choose 300 iterations in our experiments.

the proposed algorithm is a powerful method for improving
Fourier ptychography even when the system contains complex
noise. The proposed algorithm is flexible since it can easily
combine a new image denoiser during regularization by de-
noising step. Using deep decoder as an outer loop denoiser
can also be used in phase retrieval and other image inverse
problems.
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