
IEEE PHOTONICS JOURNAL, VOL. 15, NO. 1, FEBRUARY 2023 6600109

Ultra-Low Crosstalk and Fabrication-Tolerant
Silicon-Nitride O-Band (de)Multiplexer Using Bragg

Grating-Assisted Contra-Directional Coupler
Kuo-Fang Chung , Tien-Tsorng Shih, Member, IEEE, Jiun-Haw Lee, Senior Member, IEEE,

and Ding-Wei Huang , Member, IEEE

Abstract—A wavelength division (de)multiplexing (WDM) filter
with ultra-low channel crosstalk (XT) and high tolerance was
proposed for a 1 × 4 O-band coarse-WDM (CWDM) system
on a silicon-on-insulator (SOI). The filter consists of four wave-
guide Bragg grating (WBG) structures, each one having a multi-
mode waveguide and corrugations at both waveguide side walls.
To relax the critical dimension, low-material-index silicon nitride
(SiNx) was utilized instead of silicon. For efficient design of each
SiNx multi-mode WBG (MMWBG), the core and corrugation
widths were engineered over the perturbed-permittivity coupled-
mode theory, leading to an ultra-high side-lobe suppression ratio
>25.3 dB. The overall CWDM filter offers flat-top responses with
ultra-low excess losses (ELs) <0.6 dB, a high channel uniformity
> −0.45 dB, broad 1-dB bandwidths (BWs) ∼13.45 nm, ultra-low
XTs <−28 dB, and ultra-broad available bandwidths of 14.35 nm
for XTs <−28 dB (ABW28−dB ∼14.35 nm). Analysis of the tol-
erance showed that XTs of the overall filter remained <−25 dB
even for extreme cases with ±18-nm over-etching errors without
compromising the ELs or BWs. Given its ultra-low XT, ultra-broad
ABW, and high tolerance, the proposed MMWBG shows the great
potential and high attractiveness for the O-band CWDM telecom-
munication systems.

Index Terms—Bragg grating structure, integrated optics, silicon
photonics, wavelength division multiplexing system.

I. INTRODUCTION

TO MEET the demand for higher processing speed and data
capacity brought on by the rapid development of cloud

computing, the Internet of Things, and big data, there has been
the development of smaller technology nodes, smaller device
footprints, and higher integration density chips in accordance
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with Moore’s law [1]. Longer delays, greater loss, and higher
crosstalk, however, have been introduced due to the smaller dis-
tances of the electrical interconnection of such devices [2]. Some
of the resulting issues of the increased densities of intercon-
nection layers, such as electromagnetic interference, bandwidth
limitations, increased power consumption, and heat dissipation,
have been highlighted in the literature [3], [4], [5], [6], and
photonic integrated circuits (PICs) that simultaneously utilize
both photonic and electrical devices have been implemented on
different platforms to address them [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19]. Among these platforms,
the silicon-on-insulator (SOI) has gained considerable attention
owing to its high level of fabrication maturity.

In the development of SOI utilizing photonic devices, Silicon
Photonics (SiPh) has become one of the most important plat-
forms for PICs owing to its superior compatibility with well-
developed complementary metal oxide semiconductor technol-
ogy, enabling mass production at lower cost as well as higher
quality [20], [21]. By leveraging these advantages, devices with
smaller footprints and lower power requirements can be imple-
mented over SiPh chips. To date, many optical devices [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38], [39], [40] have been proposed on
the platform to improve telecommunication systems. To further
improve performances of some SiPh devices implemented on
the SOI platform, a silicon-nitride layer allowing for i) larger
band gap, ii) abscence of two-photon or free-carrier absorption
in the telecommunication band, iii) ultra-low prapagation loss
owing to wide-band transparency window of 0.4–4.5 μm, iv)
low nonlinearity in the given transparency window, v) high
tolerance to temperature changes [41], [42], and vi) low-index
contrast brought by its small material refractive index, has been
included and placed above the original silicon layer in the
literature [17], [39]. Given that, SiPh foundry services offering
silicon-nitride layer over the SOI plaform [39] have emerged and
become as another options for PICs using stardard fabrication
processes. Among the devices required in the telecommunica-
tion systems, the wavelength division (de)multiplexing (WDM)
device [18], [19], [31], [32], [33], [34], [35], [43], [44], [45],
[46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57],
[58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69],
[70], [71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [81],
[82], [83] is one of the most important functions to be used in the
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transceiver module of a system, i.e., the transmitter and receiver
modules.

To relax misalignments among desired channel, optical lasing,
and filtering channel wavelengths due to increased environmen-
tal temperature and fabrication errors, some coarse wavelength
division (de)multiplexing (CWDM) systems that utilize large
channel spacings have been proposed and their capability has
already been demonstrated [51], [52], [53], [54], [55], [56],
[57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67],
[68], [69], [70], [71], [72], [73], [74], [75], [76], [77], [78],
[79]. To broaden the available channel bandwidth (ABW) under
the desired low crosstalk (XT) to further improve the commu-
nication system, flattened filtering responses are required. In
conventional WDM systems that use arrayed waveguide grating
(AWG) [80], [81], [82], [83], flattened responses are achieved via
the double-image technique; however, this can lead to increased
excess losses (ELs) of 2–5 dB [78], [84]. To flatten the filtering
responses without compromising ELs, alternative devices based
on different mechanisms have been employed [53], [57], [61],
[63], [65], [66], [67], [68], [70], [73], [74], [75], [76], [77],
[79]. Although low-EL, flat-top, and high-uniformity responses
can be obtained using lattice filters based on Mach–Zehnder
interferometers (MZIs), the XTs are usually larger than −15 dB
because of the narrow splitting/coupling ratio bandwidths at the
MZI coupling regions. Bent directional couplers (BDCs) have
been used to achieve splitting ratios with broader bandwidths,
and XTs below −20 dB have been achieved by leveraging them
[74], [75]. However, this was at the expense of the complexity
of the coupling patterns.

Another elegant approach to flattening responses is based on
the Bragg grating structure (BGS) to achieve low-EL, highly
uniform, and flat-top responses [53], [65], [66], [70], [77], [79].
A rectangular response was obtained in [65] with a sinusoidal-
profile contra-directional coupling coefficient κac by using both
amplitude and phase apodizations along the propagation direc-
tion. In the literature, the amplitude apodization was achieved
using simple tapered waveguides as transitions at the begin-
ning and at the end of a multi-mode waveguide Bragg grating
(MMWBG), whereas the phase apodization was obtained by
relatively shifting one of the two side-wall BGSs, i.e., width
corrugations, along the propagation direction. These led to a
sub-decibel EL and low XT below −20 dB owing to the high
side-lobe suppression ratios (SLSRs) and near-perfect box-like
filtering responses. The silicon-based WBGs, however, were
critically dimensioned at 125 nm for the channel wavelength
of 1.271 μm by using electron beam lithography. Furthermore,
the presented grating periods for four channel wavelengths had
drifted from the calculated Bragg periods by ∼20 nm due to the
non-zero dc-shift term “δ” derived in the perturbed-permittivity
CMT [84]; thereby significantly increasing the difficulty of
designing such devices and resulting in unbalanced side-lobe
suppression at both sides of resonant wavelengths “λr”, i.e., low
side-lobe imbalance (SLI) as defined in Section II. By contrast,
XTs can also be further reduced by engineering both amplitude
and phase apodizations using Gaussian-like profiles simultane-
ously. Although this would be at the cost of a slightly higher
20-dB or 25-dB spectral bandwidth (BW20−dB or BW25−dB),

Fig. 1. Schematic (a) 3-D and (b) top views of the proposed MMWBG.

such a tradeoff is still acceptable for a CWDM system with a
20-nm channel spacing.

In this study, a SiNx-based WDM filter with ultra-low XTs
and rectangular responses for an O-band CWDM system on an
SOI platform is achieved with MMWBGs using an appropriate
core width and properly designed apodizations. In Section II, the
working principles of perturbed-permittivity CMT are presented
and the MMWBG is proposed with the ultimate aim of relaxing
the critical dimension requirements and improving device per-
formance by making acceptable tradeoffs. A suitable waveguide
width and its corrugation for amplitude apodization are utilized
to simplify the evaluation of resonant wavelengths, allowing
for efficient design and balancing of the lobe suppression at
both sides of the resonant wavelength. Section III presents an
analysis of fabrication error tolerance for future fabrication by a
SiPh foundry service, and Section IV presents the conclusions.

II. DEVICE PRINCIPLE AND OPTIMIZATION

Figure 1 shows the schematic diagrams of the proposed
MMWBG that uses a 400-nm-thick silicon-nitride layer for each
of the four channels over an SOI platform. The silicon-nitride
layer is placed 400 nm above the 220-nm-thick silicon layer
of the SOI wafer, to meet the available SiPh foundry service.
Each MMWBG is composed of a multi-mode waveguide and
corrugations at both side walls of the waveguide such that the
forward TE0 mode can be contra-directionally coupled into
the backward TE1 mode with the filtering response shape of
a hyperbolic-tangent function. The reflected TE1-mode sig-
nal is designed to be dropped using a broadband and high-
efficiency TE1–TE0 asymmetric directional coupler. Circulators
for protecting the optical source from reflected signals is not
required under this arrangement. To more efficiently determine
the required Bragg periods for resonance at the desired channel
wavelengths λch, perturbed-permittivity CMT principle was
utilized. The differential equations of the counter-propagating
perturbed-permittivity CMT [84] were minimally adjusted and
are given in (1)–(4), where z is the spatial position along
the propagation direction, A and B represent the transverse
guided-mode amplitudes, and v and μ denote the forward and
backward propagation modes, respectively. The parameters ω,
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ε0, and εr,(dc,ac) represent the angular frequency determined
by the optical wavelength, the permittivity of free space, and
the perturbation profile of the relative permittivity constant,
respectively. The wavelength-dependent parameters κ, Δβ, and
φ are the coupling coefficient, phase mismatch (detuning), and
spatially varying phase change, respectively. The coupling co-
efficients κdc and κac are obtained by the overlap integration
in terms of the dc and ac terms of the permittivity perturbation
profile, respectively, and the modes involved in the coupling,
whereas E denotes the normalized transverse electric fields of
the guided modes, as given in (3) and (4). The expressions in
(5)–(10) describe the contra-directional coupling behavior over
a transfer matrix, where α equals

√|κac|2 − δ2, and R and S
are eigenvalue-dependent representations of the guided-mode
amplitudes for the reference (forward) and signal (backward),
respectively. The detuning parameterΔβ depends on the guided-
mode propagation constants and the harmonic factor decided
by the grating period λch and the harmonic order N , as ex-
pressed in (9). In general cases for non-chirped grating structures
(∂φ/∂z = 0), N = 1 and Δβ = 0 are employed to determine
the required λch for resonance at desired the channel wavelength
λch.

∂Bμ

∂z
= jκdc,μμBμ + jκac,νμAν · e−j(Δβz−φ(z)),

(1)

∂Aν

∂z
= − jκdc,ννAν − jκac,μvBμ · ej(Δβz−φ(z)),

(2)

κdc,(νν,μμ) =
ωε0
4

∫∫
Δεr,dc(x, y)Eν,μ(x, y) ·E∗

ν,μ(x, y)

× dxdy, (3)

κac,(νμ,μν) =
ωε0
4

∫∫
Δεr,ac(x, y)Eν,μ(x, y) ·E∗

μ,ν(x, y)

× dxdy, (4)[
R(z)

S(z)

]
=

[
T11(z) T12(z)

T21(z) T22(z)

][
R(0)

S(0)

]
, (5)

T11(22)(z) = cosh(αz) −
(+)j

δ

α
sinh(αz), (6)

T12(21)(z) =
−
(+)j

κac,{μν(νμ)}
α

sinh(αz), (7)

δ =
1

2
(κdc,νν + κdc,μμ +Δβ), (8)

Δβ = βν + βμ − 2πN

Λ
, (9)

∣∣∣∣S(0)R(0)

∣∣∣∣
2

S(L)=0

=

∣∣∣∣∣ −j
κac,νμ

α sinh(αL)

cosh(αL) + j δ
α sinh(αL)

∣∣∣∣∣
2

. (10)

The resonant wavelength λr, i.e., the wavelength with the
maximum reflected signal spectral transmission, can deviate
away from the desired channel wavelength λch due to the
non-zero dc-shift term δ, which is the non-zero sum of the two

Fig. 2. Effective refractive indices of the first three TE modes versus core
widths for four channel wavelengths.

TABLE I
REQUIRED BRAGG PERIODS FOR THE FOUR-CHANNEL CWDM SYSTEM

coupling coefficients κdc,νν and κdc,μμ obtained in (8). Note
that an adjustment is made in (8) to cater to the reflected guided
TE1 mode denoted by κdc,μμ. In (10), the reflected signal at λr

is obtained by the assumption of no reflected signal amplitude at
the end of WBG, i.e.,S(L) = 0, whereL is the full length. From
this expression, the maximum transmission of |tanh(α(λr)L)|2
can be achieved with δ(λr) = 0. For efficient design of such
device, the condition λr = λch should be met so that only
the information of guided-mode effective indices and λch are
required to evaluate the Bragg period.

To meet the condition, δ(λch) = 0, namely κdc,vv = κdc,μμ

= 0, is engineered with a tailored width for the multi-mode
waveguide. A core width of the MMWBG is chosen to achieve
approximately identical positive and negative index changes in
terms of identical width variation for the TE0 and TE1 modes,
respectively. In addition, to guide both the TE0 and TE1 modes
and to achieve shorter length of the TE1-mode dropping device,
which is presented in following paragraphs, the core width
allowing for smaller TE1-mode effective indices with lower con-
finements at the four channel wavelengths is utilized. A relation
between the TE-mode effective indices and the core widths is
characterized in Fig. 2 using the finite-difference-eigenmode
(FDE) solution (Lumerical Inc.) to determine the appropriate
width. Based on the curve shown in Fig. 2, the core width of
950 nm and the corrugated structure for the amplitude apodiza-
tion shown in Fig. 1(b) are determined to satisfy λr = λch, and
consequently the required Bragg period for resonance can be
simply evaluated using the phase matching condition Δβ = 0,
or an equivalent expression of Λch = λch/(n

TE1

eff + nTE0

eff ) as
given in Table I.

For an ultra-low XT leveraging the spatial Fourier transform,
both amplitude and phase apodizations are applied on the cor-
rugated width to obtain κac(z) with a sinusoidal profile. The
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Fig. 3. Simulated filtering responses using 3-D FDTD method for λch =
1.27 µm in terms of Λch = 392 nm and different maximum width corrugations
Δw.

expressions obtained by

Δa(z) = Δw · exp
(
−
(
z − Lmid

L/
√
sa

)2
)

and (11)

Δp(z) =
Λch

2
· exp

(
−
(
z − Lmid

L/
√
sp

)2
)

(12)

illustrate the amplitude apodization Δa(z) and phase
apodization Δp(z), respectively, where Δa(Lmid) = Δw and
Δp(Lmid) = Λch/2 are used to achieve the maximum value of
κac at half of the full length, i.e., z = Lmid = L/2. For simpli-
fication, the apodization strengths sa and sp in (11) and (12),
respectively, are assigned the same value s under a fixed duty
cycle of 0.5. Figure 3 depicts the simulated filtering responses
using the three-dimensional (3-D) finite-difference time-domain
(FDTD) method (Lumerical Inc.). The calculated period of
392 nm (Table I) is utilized in a 3-D model for resonance
at the channel wavelength λch of 1.27 μm. Both apodizations
are employed at different Δw ranging from 45 to 85 nm in
a step of 10 nm and s ranging from 1 to 7 in a step of 2.
For a flat-top response with a 1-dB channel BW (BW1-dB)
of 14 nm and SLI as defined in Fig. 3(c) that remains below
5 dB while the SLSR remains above 25.5 dB, the parameter set

Fig. 4. Simulated filtering responses of (a) the contra-directional coupled
TE1 mode, (b) the remaining forward TE0 mode, and (c)–(f) the electric-field
top-view profiles at the given four channel wavelengths, respectively, for the
corresponding individual MMWBGs using the 3-D FDTD solutions in terms of
the parameter set (W , Δw, s) = (950 nm, 65 nm, 5).

(Δw, s) of (65 nm, 5) is utilized in the following simulations.
The filtering responses of the four individual MMWBGs, which
are critically dimensioned at 196 nm and achievable at a rep-
resentative SiPh foundry, given in Fig. 4 show that ultra-low
ELs below 0.3 dB, high uniformity above −0.035 dB, and
ultra-low XTs below −25.5 dB are achieved. The ultra-low XTs
are attributed to the high SLSRs above 25.5 dB, and the low SLIs
of approximately 2.5, 4.63, 6, and 6.66 dB for Channels 1.27,
1.29, 1.31, and 1.33 μm, respectively. Moreover, the available
bandwidth for XTs below−25dB (ABW25-dB) reaches 13.5 nm,
which is beneficial for performances of the overall CWDM
filter.
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Fig. 5. Schematic top view of the SiNx-based BADC for broadband coupling
from the TE1 mode at through port to the TE0 mode at cross port.

TABLE II
OPTIMAL PARAMETER SET OF SINx-BASED BADC

To drop the reflected TE1-mode signal using four identical
devices at the corresponding channels, a broadband asymmet-
rical directional coupler (BADC) based on silicon nitride over
the SOI platform is designed at the entrance of each MMWBG.
Under this arrangement, its fabrication tolerance analysis is not
necessary given that broadband devices usually allows for low
sensitivity to geometry, if the devices are sufficiently large. In
addition, the mesh accuracy required for the BADC simulation
can be significantly reduced owing to the broadband perfor-
mance as well as the lower sensitivity to geometry, greatly saving
the demanded optimization time using a user-defined algorithm.
Figure 5 shows the schematic top view of the BADC, with the
input/through and cross ports carrying the counter-propagating
TE1 and TE0 modes, respectively. The design methodology
proposed in [36] is utilized for an optimization using the 3-D
FDTD method in combination with a user-defined adaptive
particle swarm algorithm APSO [85] to obtain high coupling
efficiencies in the given wavelength span. To guide at the two
lowest modes obtained in Fig. 3 and to achieve an adiabatic
coupling at the region within the length denoted by L1, W t2 and
W c1 is fixed at the core width 860 nm and the critical dimension
150 nm, respectively, while the remaining parameters given in
Fig. 5 optimized using the user-defined APSO. Table II lists the
optimal parameter set to achieve a broadband coupling response
from the TE1 mode at the input/through port to the TE0 mode at
the cross port. The simulated transmission and spectral response
of the extinction ratio (ER) between the TE0 and TE1 modes are
respectively depicted in Fig. 6(a) with blue and red curves, where
the ER is defined as

ER = 10 · log10
(
T cross
TE0

/T through
TE1

)
, (13)

with electric-field profiles at corresponding wavelengths given
in Fig. 6(b)–(g). From the results, the TE1–TE0 coupling ratios
above 98.63 % (>−0.06 dB) and ultra-high ERs above 40 dB are
achieved within the wavelength span of 1.25–1.35 μm, demon-
strating the feasibility of dropping the TE1 mode efficiently

Fig. 6. (a) Simulated transmission (blue) of the TE0 mode at cross port, and
extinction ratio (red) between the dropped TE0 and remaining TE1 modes.
(b)–(g) Electric-field profiles at six wavelengths.

without compromising the filtering responses of the MMWBGs.
Note that a high fabrication tolerance of the BADC can be
reasonably assumed so that only the tolerance of the MMWBGs
are analyzed in the following section, owing to i) the low-index
contrast in terms of the core (silicon nitride) and cladding (silicon
dioxide) materials, ii) the ultra-high and broadband coupling
efficiency, and iii) the large footprint of the BADC. To evaluate
the performances of the overall O-band CWDM filter, four
groups for the corresponding channels are cascaded in a proper
order, with each group formed by the same BADC followed
by the MMWBG designed for the desired channel. Regarding
the cascading order, the MMWBG desgined for the shorter
channel wavelength is cascaded with higher priority to conduct
the contra-directional coupling when demultiplexing, given that
the MMWBGs designed for longer channel wavelengths would
compromise the forward TE0-mode transmission at shorter
wavelengths by approximately 1–2 dB, as shown in Fig. 4(b).
Fig. 7 illustrates the schematic configuration of the overall
O-band CWDM filter as well as its simulated filtering responses.
The simulation results show that the flat-top responses with low
ELs below 1 dB (0.17/0.3/0.4/0.6 dB at 1.27/1.29/1.31/1.33μm),
a high channels uniformity above −0.45 dB, a broad BW1-dB

∼13.45 nm, an ultra-low channel XT of −28 dB, ultra-broad
ABW28-dB and ABW20-dB of approximately 14.35 and 15.7 nm,
respectively, are obtained. Table III shows performance com-
parison, indicating the ultra-low channel XT of −28 dB with its
ultra-broad available bandwidth ∼14.35 nm, outperforming all
other CWDM filters in the literature.
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Fig. 7. (a) Schematic configuration of the proposed overall O-band CWDM
filter and (b) its simulated filtering responses.

TABLE III
PERFORMANCE COMPARISON OF CWDM FILTERS IN THE LITERATURE

III. ANALYSIS OF FABRICATION TOLERANCE

As mentioned earlier in the former section, only the tolerance
of the proposed MMWBG to fabrication errors is analyzed to
evaluate the overall device robustness, under the reasonable
assumption of the high tolerance for the BADC. To ensure
that a sufficient degree of robustness would be demonstrated, a
value that is three times the standard error during manufacture is
selected for the analysis. Given a standard error of 6 nm provided
by a representative foundry service, an over-etching error We

within ±18 nm with a step of 6 nm is used to evaluate the

Fig. 8. Simulated filtering responses of the individual MMWBGs using 3-D
FDTD method at the four channels in terms of the configuration in Fig. 1 and
the given over-etching errors We within (±18 nm) with a step of 6 nm.

tolerance. For each tolerance analysis, the patterned core region
is considered as an island, with the outermost region (width
and length) decreased/increased by the fabrication error. The
concept is utilized so that both the corrugated width and duty
cycle of the WBG are adjusted in terms ofWe. Figure 8 shows the
filtering responses of the proposed MMWBGs at four channels
in terms of the different over-etching errors. The corresponding
resonant wavelengths is as expected, appearing blue-shifted
(red-shifted) due to the decreased (increased) effective indices
of both the TE0 and TE1 modes owing to the over-etching
errors We > 0 (We < 0). The XTs given in Fig. 8 remain below
−24.2 dB even in the case of three times the standard error,
i.e., ±18 nm, demonstrating the high tolerance to fabrication
error of the proposed device for the O-band CWDM system.
The resulting high fabrication tolerance can be attributed to three
advantageous conditions: i) low index contrast brought by the
utilized silicon-nitride layer, ii) a wide core width allowing for
guiding the TE1 mode but at the small effective indices at four
channels, iii) the coarse channel spacing of 20 nm configured for
the CWDM systems. To ensure the filter is entirely considered,
simulated filtering responses of the overall CWDM filter at
the different over-etching errors We are conducted using the
compact model based on the S-parameter concept, as shown
in Fig. 9. The simulation results indicate the impact of the
deviated MMWBGs on the performances of the overall CWDM
filter, illustrating the flat-top responses offering a low EL below
1 dB and an ultra-low XT below −25 dB even for the extreme
cases with We = ±18 nm, showing the great potential and
high attractiveness of the device for use in the O-band CWDM
systems.
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Fig. 9. Simulated filtering responses of the overall CWDM filter using 3-D
FDTD method followed by cascaded S-parameter calculation at the four chan-
nels in terms of the configuration in Fig. 7 and the given over-etching errors
We.

IV. CONCLUSION

A wavelength division (de)multiplexing (WDM) filter with
ultra-low channel crosstalk (XT) and high fabrication toler-
ance was achieved using multi-mode waveguide Bragg grating
(MMWBG). The device was based on a silicon-nitride layer
over a silicon-on-insulator to achieve the critical dimension of
≥ 150 nm to permit future fabrication at a SiPh foundry service.
By introducing an appropriate and balanced width corrugation,
i.e., the same positive and negative width change referenced
to the unperturbed width, into the amplitude apodization, the
dc-shift term of the permittivity perturbation was eliminated
to allow for efficient design of the required Bragg period,
so that the period can be evaluated by simply using channel
wavelengths and guided-mode effective indices. For lower XTs,
phase apodization was also employed to achieve a sinusoidal
profile of the coupling ac term. The results indicated that an
ultra-low channel XT below −28 dB, an ultra-broad avail-
able bandwidth of 14.35 nm for channel XT below −28 dB
(ABW28-dB ∼14.35 nm), an ultra-broad ABW20-dB ∼15.7 nm,
and a high tolerance to fabricated errors within (±18 nm) were
achieved, showing the great potential and high attractiveness
of the proposed MMWBGs for use in the O-band CWDM
telecommunication systems.
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