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Abstract—When used for object tracking, the discriminative
correlation filter (DCF) is effective, but its performance is often
burdened by undesirable boundary effects. Meanwhile, when there
is too much background information in training samples of the
DCF, it will be easier to learn the area deviating from the tracking
object. Further, illumination variation, partial/full occlusion, and
appearance variations, render the response map aberrance of the
correlation filter (CF) more prone to occur. To overcome these
problems, an object tracking model based on a time-varying Spatio-
temporal regularized correlation filter with aberrance repression
is proposed in this paper. Firstly, by adding a regularized term to
the traditional CFs to limit the change rate of the response map
generated in the object detection phase, the proposed tracker can
obviously repress the aberrance of the response maps; secondly,
by adjusting the filter to the object regions suitable for tracking
with high confidence scores with a time-varying spatial reliability
map, the proposed tracker effectively overcomes the adverse ef-
fects caused by the boundary effect; and finally, by introducing a
temporal regularized term, the proposed tracker also has superior
tracking ability for the partial occluded objects and those with large
appearance variations. Significant experiments on the OTB100,
VOT2016, TC128, and UAV 123 datasets have revealed that the
performance thereof outperformed many state-of-the-art trackers
based on DCF and deep-based frameworks in terms of tracking
accuracy, tracking success rate, and A-R rank, etc.

Index Terms—Visual tracking, correlation filter, spatial
reliability map, temporal regularized, aberrance repression.

I. INTRODUCTION

AMONGST the background of improvements in computer
hardware performance and the rapid development
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of artificial intelligence technology, visual tracking has made
more development, and has progressively received an increasing
amount of attention. Presently, although several visual tracking
technologies have achieved good results when applied in video
surveillance, action recognition, and automatic driving, etc.,
how to track an object quickly, accurately, and robustly in real
situations is still a very challenging task.

Recently, the use of deep convolutional neural networks
(CNNs) in visual tracking has emerged as a favorable option
[1], [2], [3]. Trackers based on deep features such as CNN [4],
ResNet [5], and VGG-Net [6] can capture complex and hier-
archical object features, and the tracking accuracy thereof is
generally high. Yet, these trackers require a substantial amount
of convolution operations, which contribute to the poor real-time
performance thereof. Further, the demand for substantial number
of training data limits the application thereof in visual tracking.

In 2010, a filtering algorithm for the minimum output sum of
squared error filter (MOSSE) was proposed [9], which was the
first time the CF was introduced into visual tracking. Compared
with traditional tracking methods, MOSSE exhibited strong
competitiveness. Subsequently, Henriques et al. [7] solved the
problem of the number of samples being limited, and reduced
the computational complexity by applying the circular matrix
and the kernel technique, thereby rendering the tracker more
versatile.

Among the existing tracking methods, the discriminative cor-
relation filter paradigm has been proved to have excellent perfor-
mance in visual tracking [7], [8]. Although the correlation filter
possesses a myriad of advantages, owing to the use of circular
training samples in the tracker, the periodic Fourier transform
of the left and right upper and lower image boundaries will pro-
duce noise, resulting in an undesirable boundary effect, thereby
limiting the object tracking performance of the correlation filter
in a number of aspects. Firstly, the lack of negative training
samples will lead to over fitting of the learning model, signifi-
cantly affecting the tracking ability with regard to the deformed
objects of the tracker. Secondly, the lack of real negative training
samples will substantially reduce the tracking robustness of the
tracker with regard to the objects with background clutter, and
the risk of tracking drift will increase especially when the object
and background display similar visual cues. Thirdly, the simple
expansion of the image region employed to train filters results
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in a profusion of background information being contained in the
positive training samples, and these corrupted training samples
considerably reduce the object recognition ability of the model.
In addition, if the objects move too fast, the DCF based trackers
will encounter issues because of the limited search areas. Finally,
the DCF based trackers also generally have other problems, such
as insufficient expression ability of the selected features and
insufficient consideration of the influence of the time continuity
of tracking on tracking results, etc.

Regarding the aforementioned problems in DCF trackers [10],
[11], [12], a plethora of methods have been proposed to solve
them. To solve the boundary effects of the tracker when us-
ing circular shift samples for training, a spatial regularized
DCF model (SRDCF) was proposed [13], which imposed a
spatial penalty on the DCF coefficients. Meanwhile, after a
temporal regularized term being introduced into SRDCF, a
Spatio-temporal regularized correlation filter was proposed [14],
which compared with SRDCF, could handle the boundary effects
without losing efficiency. However, they are all based on a fixed
spatial regularization mode and only consider the information
compression along the spatial dimensions, which make them
unable to make full use of the diverse information of the object.
Yuan et al. [47] incorporated channel and spatial confidence into
DCF and proposed a DCF with channel and spatial reliabilities,
which could not only allow for the searching of the objects in
any range area, but could also effectively track the objects with
irregular shape. However, as the influence of time continuity
on tracking results is not fully considered, its tracking ability
to the occluded objects and the objects with large appearance
variations is weak. In addition, Xu et al. [16] enhanced the
object recognition and interpretation ability of the filter by means
of reducing the information redundancy and un-correlation of
high-dimensional multichannel features through group feature
selection in two dimensions of space and channel. But it requires
a large amount of calculation since the complex features are used
in filter training.

Ning et al. [17] employed discriminant correlation filters
(DCFs) combined with different feature types to construct mul-
tiple experts, and each expert independently tracked the object.
Here, the optimal expert was selected to optimize the tracking
results and superior tracking results were obtained. However,
due to the complex structure of the tracker, the real-time object
tracking performance cannot be achieved. In the adaptive spatial
regularized correlation filter proposed by Dai et al. [18], two
correlation filter models were used, in which one used complex
features for object localization, and the other used shallow
features for scale estimation, with the tracking performance
thereof being considerably high. Nevertheless, as the set of
shallow and deep features are used to train the correlation filter
to determine the object position, it requires a large amount of
calculation.

From conducting a detailed comparison and analysis on
the advantages and disadvantages of the current DCF based
tracking models, in this paper, a novel visual object tracking
model is proposed, i.e., object tracking based on a time-varying
Spatio-temporal regularized correlation filter with aberrance
repression (ARSTCF). The proposed tracking model can better

solve the boundary effect of the DCF-based tracking models in
visual tracking and improve the tracking ability to the occluded
objects and the objects with large appearance variations. Ex-
tensive experimental results conducted on four general video
sequence data sets (OTB100 [22], VOT2016 [23], TC128 [24],
and UAV123 [25]) indicate that the proposed tracking model has
certain advantages in some evaluation indicators compared with
several state-of-the-art tracking models.

The major contributions of this paper are summarized below:
1) A regularized term is added into the standard DCF tracking

model, which can limit the change rate of the response
map in the object detection stage, thereby allowing the
proposed tracking model to obviously repress the aber-
rance of the object response map, and improve the tracking
robustness and accuracy, instead of using complex com-
binations of the object features.

2) Differing from the current DCF based tracking models,
which generally use a fixed spatial regularized matrix
in the objective function to repress the response of the
correlation filter outside the object region by adjusting
the filter coefficients. A time-varying spatial reliability
map is employed to adjust the CF to the regions with
high confidence scores so that the filter can reflect the
characteristics and appearance variations of the object
in real-time, thereby effectively overcoming the adverse
effects caused by the boundary effect.

3) A correlation filter temporal regularized term is introduced
into the standard DCF tracking model, so as to allow
the proposed tracking model to effectively deal with the
boundary effect. Meanwhile, in the case of occlusion
and large appearance variations, the proposed tracking
model can alleviate tracking drift by passively updating
the DCFs to maintain closeness to the previous ones, and
the tracking ability for the occluded objects and the objects
with large appearance variations have also been further
improved.

4) Extensive experiments in the image sequences of the
OTB100, VOT2016, TC128, and UAV 123 data sets show
that the proposed low-illumination object tracking model
outperforms state-of-the-art trackers.

An overview of our framework for Object tracking is shown
in Fig. 1.

The remainder is structured below: the related works
of visual tracking in recent years are reviewed in Sec-
tion II; the proposed tracking model is elaborated in Sec-
tion III; in Section IV, the effectiveness and robustness of
the proposed tracking model have been proved by signif-
icant experiments; the experimental analysis is given in
Section V; the conclusion is given in Section VI.

II. RELATED WORK

In recent years, object tracking models that are based on
deep learning have been increasingly applied. Wei et al. [26]
proposed an object-aware network that includes a background
filtering module, channel complementary module, and template
adaptive network to improve feature representation and to realize
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Fig. 1. An overview of our framework.

robust object tracking. Li et al. [27] successfully trained an object
tracker based on SiamRPN using ResNet as the backbone net-
work. Zhang et al. [28] built a tracker that contains both semantic
models and appearance models by using Siamese networks and
multi-granularity color features. Chandrakar et al. [29] proposed
an enhancement system for automatic moving object detection
and object tracking using a radial basis function-based, filtered,
deep learning neural network and a counterfactual, regret mini-
mization algorithm. Yu et al. [30] combined the discriminant cor-
relation filter with the matching-based segmentation paradigm
as a local tracker and used a memory attention network based on
partial cost to address the problem of object appearance change.
Zhu et al. [31] proposed a multilevel predictive Siamese network
composed of a Siamese feature extraction module and multilevel
predictive module for object tracking in unmanned aerial vehicle
(UAV) video. For small-size object tracking, a residual feature
fusion block is designed, and the low-level feature representation
is constrained by high-level abstract semantics. Fu et al. [32] pro-
posed a tracking algorithm for learning discrimination and adap-
tive feature representation by using a hard-balanced, focus loss
function and embedding an off-line training, guidance domain
adaptive module in a Siamese network. Fu et al. [33] proposed
a visual target tracking method based on a Siamese modulation
network on the basis of Resnet to extract the multi-layer fusion
features of a given object in the first frame and the current frame.
Meng et al. [34] proposed a hierarchical correlation Siamese
network for object tracking. The network uses the convolution
features of each layer to compare the correlation between the

object and the search area, and determines the location of the
tracking object according to the maximum correlation.

Xie et al. [36] found that the features extracted by Siamese-
like networks cannot completely distinguish between the tracked
target and the distractor objects. Therefore, by deeply embed-
ding cross-image feature correlation in multiple layers of the
feature network, a new target-dependent feature network is
proposed, and it allows the features of the search and template
images to be deeply fused for tracking. Considering that the tem-
poral contexts among consecutive frames are far from being fully
utilized in the existing object trackers, Cao et al. [37] proposed
an object tracking framework for exploiting temporal contexts
in Siamese-based networks. In terms of feature extraction, an
online temporally adaptive convolution is proposed to extract
features with convolution weights dynamically calibrated by
the previous frames; At the level of similarity map, an adap-
tive temporal transformer is proposed to refine the similarity
map according to the temporal information. To improve the
expressibility of the tracking network, Mayer et al. [38] pro-
posed a tracking framework using a Transformer-based model
prediction module. The weights of the framework are obtained
using a Transformer-based model predictor, which allows it to
learn more powerful object models. Ye et al. [39] developed
an unsupervised domain adaptive framework for night-time
aerial tracking. In the the framework, to solve the problem
of domain discrepancy, a Transformer-based bridging layer
is used on the feature extractor to align the image features
from the day-time and night-time. Through the Transformer
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day/night feature discriminator, the day-time tracking model is
adversarially trained to track at night. Considering that previous
unsupervised tracking methods are unable to track the objects
with strong variation over a long time span, Shen et al. [40]
proposed a novel unsupervised tracking framework, which is
composed of three components: consistency propagation trans-
formation, region mask operation, and mask-guided loss re-
weighting, and aims to learn the temporal correspondence both
on the classification and regression branchs. As the current
single-object tracking method and multi-object tracking method
are usually not easily adapted to the other, Ma et al. [41]
developed a Unifed Transformer Tracker to solve these two
tracking tasks, in which the correlation between the target
feature and the tracking frame feature is used to locate the
target.

In addition, DCF has also been widely used in visual tracking
in these years. With a view to realize an adaptive spatially-
regularized correlation filter, Xu et al. [42] embedded dy-
namic spatial feature selection into the filter learning phase. An
effective updating strategy was proposed by Lukežic et al. [43],
which could minimize the short term visual model pollution
and activate re-detection in time, so as to solve the model
degradation problem caused by occlusion. Xie et al. [44] es-
tablished the motion appearance model through precise Spatio-
temporal segmentation in combination with motion information
between consecutive frames for online object tracking, while
Bertinetto [45] used the complementarity of multiple features to
train a DCF tracker, which had strong robustness in the case of
severe object deformation and occlusion.

With the introduction of the channel and spatial reliability
into DCF, a discriminant correlation filter (CSR-DCF) was pro-
posed [15], which allowed the object to be searched in any area,
in addition to effectively tracking the irregular shaped object.
For overcoming certain negative effects produced by generated
samples, an object-focusing convolutional regression model was
proposed [47]. Meanwhile, a temporal constrained background
aware CF with saliency map was proposed by Liao et al. [48],
which enhanced the robustness of the tracker.

Sun et al. [49] proposed an adaptive kernel CF tracking model
to improve the tracking accuracy in complex scenes. To solve
the tracking drift problem, Guan et al. [50] proposed a reliability
redetermination correlation filter to adjust the weight of each
feature, in which two different weight solvers were formulated
to determine the weights, thereby representing the importance
of each feature more accurately.

Taking into account that the existing approaches treat deep
features produced by different network layers independently,
which limits the representation power thereof, Zheng et al. [51]
proposed a multi-task deep dual CFs based tracking method for
robust visual tracking. To enhance tracking ability to the oc-
cluded and deformed objects, Pu et al. [52] constructed a spatial
map with deep features and introduced temporal regularization
into DCF training. A lightweight particle filter was proposed by
Li et al. [53], which not only retained the robust tracking ability
of the particle filter, but also reduced the time cost in sampling
with the use of correlation filters.

Compared with the existing DCF based tracking models, the
proposed object tracking model has the following differences:

1) To make the DCF in this paper obtain stronger discrimi-
nation to background clutter, we introduce a background
clipping matrix to the objective function of the standard
correlation filter to clip the real background around the
tracking object as negative training samples to train the
CFs, instead of using the negative training samples with
false background information generated by the circular
shift of a base sample. For the aberrance of the CF response
map that may be caused by the use of the clipping matrix,
we introduce a regularized term with aberrance repressor
ability to the objective function to deal with, instead of
leaving it alone. As far as we know, it is the first time
that the the DCF training method and the response map
aberrance repression method are combined to use.

2) Different from the current tracking models based on DCF
and using spatial regularization, which use a fixed spatial
regularization matrix in their objective functions, we use a
time-varying spatial reliability map to weight the training
samples. By dynamically weighting the training samples,
the DCF can be adjusted to the regions suitable for tracking
with high confidence scores for learning, which effectively
suppressed the response of the correlation filter in the
non-object area. To our knowledge, our proposed tracking
model is the first to use the spatial reliability map in this
way.

III. PROPOSED TRACKING MODEL

A. Background Aware Correlation Filter

The tracking performance of a traditional CF based tracking
model is often affected by an undesirable boundary effect. For
this reason, a background aware CF (BACF) for real-time object
tracking model was proposed by Galoogahi et al. [10]. By
introducing a clipping matrix in the CF training process, BACF
could use the object as a positive sample, in addition to also
being able to densely sample the real background as negative
samples to train the filter.

The objective function of BACF in the spatial domain is

E(f) =
1

2

∥∥∥∥∥y −
D∑

d=1

Bxd ∗ fd
∥∥∥∥∥
2

2

+
λ

2

D∑
d=1

∥∥fd∥∥2
2

(1)

where x = [x1, x2, ..., xD] is the vectorized sample with D
feature maps, xd ∈ RN is the d-th channel sample, D is the
number of feature channels, y is the vectorized expected output,
fd ∈ RN is the correlation filter to be learned in the d-th channel,
* is the convolution operator, B is a cropping matrix, which is
used to choose centralM elements of each channel sample, λ is
a regularized factor.

(1) can be expressed in the frequency domain as follows:

Ê(f) =
1

2

∥∥∥ŷ −Bf̂H diag(x̂)
∥∥∥2
2
+

λ

2
‖f̂‖22 (2)
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where the superscript (^) represents the discrete fourier trans-
form (DFT) of a vector, that is, â =

√
NF (a) is the discrete

Fourier transform of the vector a, (·)H is a Hermitian transpose.
A drawback exists in that more background clutter will be

introduced when using too much background information to
train CFs in BACF, thereby rendering the filter learning more
background noise instead of the object. Further, a similar object
in the context is more likely to be suggested as the real object
than some previous CF based trackers. Along with the object
appearance variations caused by full/partial OCC, IV, etc., the
response map in the object detection process is more likely to
distort, which could substantially degrade its tracking credibility.

B. The Proposed Tracking Model

In this paper, a novel object tracking model, i.e., object track-
ing model based on a time-varying Spatio-temporal regularized
correlation filter with aberrance repression, is proposed for better
solving the problems of the boundary effect, the aberrance of
the response map and the rectangular object hypothesis in the
traditional correlation filter tracking model.

Firstly, to eliminate the boundary effects, the spatial reliability
map varying with time was introduced into the objective function
of the standard CF tracking model. Here, the spatial reliability
map could shift the filter to the regions with high confidence
score, thereby alleviating the circular shift problem of the cor-
relation filter in the arbitrary search range and the limitation
of the tracking object rectangular hypothesis. By adopting the
spatial reliability map, the proposed tracking model could solve
the adverse effects caused by the boundary effect well.

Secondly, for the purpose of repressing the aberrances of
the response map, the proposed tracking model integrated the
repression of the occurrences thereof to the training process of
correlation filters. By introducing a regularized term that could
limit the change rate of the response map generated in the object
detection stage into the objective function of standard CFs,
the aberrances of the response map were obviously repressed,
and the robustness and accuracy of the object tracking were
improved.

Finally, by introducing a temporal regularized term into the
objective function of the standard DCF tracking model, the
synchronization of the DCF learning and updating was realized
in the proposed tracking model. In this paper, the tracking drift
was avoided by passively updating the DCF to keep it close to
the previous, at the same time, its tracking ability to the occluded
objects and the objects with considerable appearance variations
was also enhanced at some extent.

The objective function of the proposed tracking model in the
spatial domain is:

E (fk) =
1

2

∥∥∥∥∥y −
D∑

d=1

Bxdk ∗ fdk
∥∥∥∥∥
2

2

+
λ

2

D∑
d=1

∥∥m ∗ fdk
∥∥2
2
+
γ

2

∥∥∥∥∥
D∑

d=1

(
Bxdk−1 ∗ fdk−1

)
[ψp,q]−

D∑
d=1

Bxdk ∗ fdk
∥∥∥∥∥
2

2

+
ε

2
‖fk − fk−1‖22 (3)

where m in the second term of (3) is the spatial reliability map;
the third term is the regularized term to repress the aberrances
of the response map; the fourth term is the introduced temporal
regularized term; λ and ε are regularized factors; γ is a aberrance
penalty factor; fdis the CF learned in d-th channel; subscripts k
and (k − 1) represent thek-th and (k − 1)-th frame. The regular-
ized term ‖∑D

d=1(Bx
d
k−1 ∗ fdk−1)[ψp,q]−

∑D
d=1Bx

d
k ∗ fdk‖22

is introduced to represent the difference between the response
maps of the two frames before and after, and p and q represent
the position difference of two peaks in both response maps in
two-dimensional space, [ψp,q] represents the shifting operation
to make the two peaks coincide with each other. When an
aberrance occurs, it is proved that the similarity between the
two frames before and after would suddenly drop, resulting in
the value of the regularized term will be high, the aberrance can
be suppressed by optimizing and reducing it. The ‖fk − fk−1‖22
is the introduced temporal regularized term.

In order to solve the objective function in the frequency
domain more conveniently, (3) is expressed in matrix form as
follows:

E (fk) =
1

2

∥∥y −Xk

(
ID ⊗BT

)
fk
∥∥2
2
+

λ

2
‖m ∗ fk‖22 +

γ

2∥∥Mk−1 [ψp,q]−Xk

(
ID ⊗BT

)
fk
∥∥2
2
+
ε

2
‖fk

−fk−1‖22 (4)

where XK is the matrix form of input sample xk; ID is an
identity matrix with a sizeD*D; the operator ⊗ represents Kro-
necker product, and the superscript (∗)T represents conjugate
transpose operation;Mk−1 is the previous response map, whose
value is equal to [XK−1(ID ⊗B�)FK−1]; fk and fk−1 are the
CFs learned in k-th and (k − 1)-th frames respectively.

To get high order of computational efficiency, (4) is trans-
formed to the frequency domain by discrete Fourier transform
as follows:

Ê (fk, ĝk) =
1

2

∥∥∥ŷ − X̂kĝk

∥∥∥2
2
+

λ

2
‖m ∗ fk‖22 +

γ

2

∥∥∥M̂k−1

−X̂kĝk

∥∥∥2
2
+
ε

2
‖fk − fk−1‖22 (5)

ĝk =
√
N

(
ID ⊗BT

)
fk (6)

where the auxiliary variables of (6) are introduced to further
optimize (5).

To achieve the global optimal solution of (5), and considering
the convexity of it, the alternative direction method of multipliers
(ADMM) is used to accelerate computing. Therefore, (5) should
be written as follows:

Ê
(
fk, ĝk, ζ̂

)
=

1

2

∥∥∥ŷ − X̂kĝk

∥∥∥2
2
+

λ

2
‖m ∗ fk‖22 +

γ

2

∥∥∥M̂k−1

−X̂kĝk

∥∥∥2
2
+
ε

2
‖fk − fk−1‖22 + ζ̂T [ĝk

−
√
N

(
ID ⊗ FBT

)
fk

]
+
μ

2

∥∥∥ĝk−√
N (ID

⊗FBT
)
fk
∥∥2
2

(7)
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Fig. 2. Success plots on the OTB100.

where μ and the lagrange vector ζ̂ = [ζ̂1T , ζ̂2T . . . , ζ̂DT ] in
Fourier domain are the introduced penalty factor and the auxil-
iary variable.

Employing ADMM in k-th frame to calculate the correlation
filters in (k + 1)-th means that (7) can be solved by solving the
following subproblem 1 (solve (8)) and subproblem 2 (solve
(9)) iteratively. In each iteration, the values of the filter f and
auxiliary variable ĝk can be obtained by the partial derivatives
of (8) to fk and (9) to ĝk being equal to zero, respectively.

f̂k+1 = argmin
fk

{
λ

2
‖m ∗ fk‖22 +

ε

2
‖fk − fk−1‖22 + ζ̂T [ĝk

−
√
N

(
ID ⊗ FBT

)
fk

]
+
μ

2
‖ĝk

−
√
N

(
ID ⊗ FBT

)
fk

∥∥∥2
2

}
(8)

ĝk+1 = argmin
ĝk

{
1

2

∥∥∥ŷ − X̂kĝk

∥∥∥2
2
+
γ

2

∥∥∥M̂k−1 − X̂kĝk

∥∥∥2
2

+ζ̂T
[
ĝk −

√
N

(
ID ⊗ FBT

)
fk

]
+
μ

2
‖ĝk

−
√
N

(
ID ⊗ FBT

)
fk

∥∥∥2
2

}
(9)

1) Solution to subproblem 1: The partial derivative of (8) to fk
is

∂f̂k + 1

∂fk
= λm(m)T fk + ε (fk − fk−1)−

√
N

(
ID ⊗ FBT

)
ζ̂ −

√
Nμ

(
ID ⊗BFT

) [
ĝk −

√
N

(
ID ⊗ FBT

)
fk

]
= λm(m)T fk + εfk − εfk−1 −

√
N

(
ID ⊗DTFT

)
ζ̂

−
√
Nμ

(
ID ⊗BFT

)
ĝk +Nμfk (10)

Let (10) equal to 0, then the closed form solution of (8) can
be obtained,

f̂k =
1

λm(m)T + ε+Nμ
[εfk−1 +Nζ +Nμgk] (11)
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Fig. 3. Precision plots on the OTB100.

2) Solution to subproblem 2: Unlike solving subproblem 1,
solving subproblem 2 is highly time consuming. For accelerating
the computation, the sparsity of X̂k is exploited here, it supposes
that each element ŷ(n) of ŷ, n = 1, 2, ..., N , is solely depen-
dent on each X̂T

k = [X̂1
k(n), X̂

2
k(n), ..., X̂

D
k (n)]T and ĝk(n) =

[conj(ĝ1k(n)), conj(ĝ
2
k(n)), ..., conj(ĝ

D
k (n))]T , conj (*) repre-

sents a complex conjugate operation, then (9) can be divided
into N smaller problems,

ĝk+1(n) = argmin
ĝk(n)

{
1

2

∥∥∥ŷ(n)− X̂T
k (n)ĝk(n)

∥∥∥2
2
+
γ

2

∥∥∥M̂S
k−1

−X̂T
k (n)ĝk(n)

∥∥∥2
2
+ ζ̂T

[
gk(n)− f̂k(n)

]
+
μ

2∥∥∥ĝk(n)− f̂k(n)
∥∥∥2
2

}
(12)

The partial derivation of (12) to ĝk(n) is

∂ĝk+1(n)

∂ĝk(n)
= − X̂k(n)

[
ŷ(n)− X̂T

k (n)ĝk(n)
]
− γX̂k(n)[

M̂k−1 − X̂T
k (n)ĝk(n)

]
+ ζ̂ + μ [ĝk(n)

−f̂k(n)
]

= − X̂k(n)ŷ(n) + X̂k(n)X̂
T
k (n)ĝk(n)− γ

X̂k(n)M̂k−1 + γX̂k(n)X̂
T
k (n)ĝk(n) + ζ̂

+ μĝk(n)− μf̂k(n) (13)

Let (13) equal to 0, then the closed form solution of (9) can
be obtained,

ĝk(n) =
1

μ

[
X̂k(n)ŷ(n) + γX̂k(n)M̂k−1 − ζ̂ + μf̂k(n)

]

− 1

μ

X̂k(n)
μ

1+γ + X̂T
k (n)X̂k(n)

[
X̂T

k (n)X̂k(n)ŷ(n) + γ

X̂T
k (n)X̂k(n)M̂k−1 − X̂T

k (n)ζ̂ + μX̂T
k (n)f̂k(n)

]
(14)

Let b = μ
1+γ + X̂T

k (n)X̂k(n), Ŝxk(n) = X̂T
k (n)X̂k(n),

Ŝfk(n) = X̂T
k (n)f̂k(n), Ŝζ(n) = X̂T

k (n)ζ̂ , then (14) can be
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TABLE I
THE AVERAGE OVERLAP RATE AND PIXEL ERROR VALUES OF TRACKERS ON THE OTB100 (THE RED, BLUE, AND GREEN NUMBERS DENOTE

THE 1ST, 2ND, AND 3RD RANKS SEPARATELY)

TABLE II
THE TRACKING SPEED OF TRACKERS ON THE OTB100 (THE RED, BLUE, AND GREEN NUMBERS DENOTE THE 1ST, 2ND, AND 3RD RANKS SEPARATELY)

Fig. 4. Radar chart of tracking success rate of trackers on the OTB100.

Fig. 5. Radar chart of tracking precision rate of trackers on the OTB100.

written as follows:

ĝk(n) =
1

μ

[
X̂k(n)ŷ(n) + γX̂k(n)M̂k−1 − ζ̂ + μf̂k(n)

]

− X̂k(n)

μb

[
Ŝxk(n)ŷ(n) + γŜxk(n)M̂k−1 − Ŝζ(n)

+ μŜfk(n)
]

(15)

Thus far, the subproblems 1 and 2 are both solved.
3) Parameter update: In this paper, the Lagrange factor ζ is

updated as follows:

ζ̂j+1
k+1 = ζjk+1 + μ

[
ĝj+1
k+1 − f̂ j+1

k+1

]
(16)

where the subscript j and (j + 1) denotes the j-th and the (j +
1)-th iteration respectively.

The object appearance model x is updated as follows:

x̂k+1 = (1− η)x̂k+1 + ηx̂k (17)

where ζ is a appearance model learning rate.
The penalty factor μ is updated according to the following

equation:

μ(j + l) = min
(
μmax, βμ

j
)

(18)

where μmax is the maximum value of μ, and β is the scale factor
with a constant value.

A brief overview of the proposed tracking model is given in
Algorithm 1.

IV. EXPERIMENTS

In this section, the proposed tracking model is evaluated
extensively on the data sets of OTB100 [22], VOT2016 [23],
TC128 [24], and UAV123 [25], and compared with several
state-of-the-art tracking models in terms of the precision plots
of OPE (one-pass evaluation), success plots of OPE, accuracy
rate, overlap rate between the tracking bounding-box and the
ground-truth, pixel error between tracking bounding-box center
and the ground-truth center, and tracking speed, etc., where the
precision plot is a plot of curves below different center location
error thresholds (20 pixels in this paper) and the success plot
is a plot of curves below different overlap thresholds (0.5 in
this paper). The conventional method to evaluate trackers is to
run them throughout a dataset with object initialization, this
is referred to be OPE. All experiments were conducted with
MATLAB R2018a on a platform equipped with a 4 GHz Intel
Core i7 processor and 8 GB RAM.

The values of the related hyperparameters in the proposed
tracking model were set as below: the regularized factors λ =
0.001, ε = 16; the aberrance penalty factor γ = 0.71; the initial
value of the penalty factor μ was 1, and μmax = 103; the bject
appearance model learning rate η = 0.0125; and the scale factor
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Fig. 6. Tracking results in some image sequences of the OTB100.

Fig. 7. Success plots on the VOT2016.

β = 10. All of the mentioned parameters remained unchanged
throughout the experiments.

A. Compared Tracking Model

To fully evaluate the performance of the proposed tracking
model, extensive experiment results thereof on the OTB100 [22],
VOT2016 [23], TC128 [24], and UAV123 [25] data sets were
compared with those of several state-of-the-art tracking mod-
els [10], [14], [15], [16], [17], [18], [19], [20], [21], [27], [46],
[54], which are detailed below.

1) In the HOG feature based BACF [10], by zero padding
operation, the negative samples are obtained to include a
larger search area and more real backgrounds.

2) In the HOG and CN features based STRCF [14],
DCFs learning and updating are done concurrently, and
STRCF_Deep [14] is the CNN features based version.

3) In the HOG and CN features based CSR-DCF [15], the
reliabilities of channel and spaial are introduced to train
CFs.

4) In the CN, HOG, intensity channels (IC) and CNN fea-
tures based GFSDCF [16], a tracking model for joint
group feature selection across both channel and spatial
dimensions is established.

5) In MCCT [17], multiple DCF based experts are used to
track the objects, and each independent expert is con-
structed with different combinations of deep and HOG
features. The MCCT_H [17] is a MCCT version based
on different combinations of CN and HOG features.

6) In ASRCF [18], two CF models are utilized to esti-
mate the object position and scale respectively, and the
combination of HOG and deep features is adopted to train
the position estimation CF. To train the scale estimation
CF, a combination of five scales of HOG features is
employed.



3963120 IEEE PHOTONICS JOURNAL, VOL. 14, NO. 6, DECEMBER 2022

Algorithm 1: Object Tracking Based on Correlation Filter.
Input:the tracking object coordinate value in the first
frame (r0, c0, w0, h0) or in the previous frame
(rt−1, ct−1, wt−1, ht−1);

Output:the tracking object coordinate value in the
current frame (rt, ct, wt, ht);

1: for frame=1:total_frames
2: if frame =1
3: Input the tracking object coordinate value
4: (r0, c0, w0, h0) in the frame;
5: else
6: Input the tracking object coordinate value
7: (rt−1, ct−1, wt−1, ht−1) obtained by our tracking
8: model in the previous frame;
9: end

10: Calculate the foreground color histogram hist_fg
11: and background color histogram hist_bg of the

object
12: and its surrounding areas in the current frame in HSV
13: color space;
14: Calculate the foreground prior probability fp of the
15: object;
16: Calculate the spatial reliability map m of the

object
17: from hist_fg, hist_bg, and fp;
18: Extract the normalized combination feature xt of
19: HOG and CN features of the object;
20: Train the correlation filter ft according to (11);
21: Calculate the auxiliary variable gt according to

(15);
22: Calculate the object response Rt = xt ∗ ft, the

posi-
23: tion where the maximum response value Rmax of Rt

24: located is the object center (rc, cc) calculated by our
25: tracking model;
26: Estimate the object scale (w′

t, h
′
t) using a

single-scale
27: spatial correlation filter;
28: Output the coordinate value (rt, ct, wt, ht) of the
29: object in the current frame calculated by the pro-
30: posed tracking model, where wt = rc − (w′

t/2),
31: ht = cc − (h′t/2).
32: end

7) The number of parameters is significantly reduced in
ECO [19] by introducing a factor convolution operator
into the objective function of the standard DCF, and the
CNN, HOG, and CN features of the objects are adopted
to train the CF.

8) In AutoTrack [20], to let DCF predominantly learn the
reliable part of the object, the spatially local response
map variation is introduced as spatially-regularized.

9) In ARCF_HC [21], the HOG, CN, and grayscale features
are employed to train CF. To expand the object search ar-
eas, the background patches are used as negative samples.

10) The HOG and CN features of the object are used to
train the correlation filter in CSTRCF [46], which im-
proves the object tracking performance by introducing a
temporal regularized term into the objective function of
CSR-DCF [15].

11) As a two-stage object detection approach for visual
object tracking, Siam R-CNN [54] operates in combi-
nation with a novel trajectory based dynamic program-
ming algorithm, and can redetect the tracked object after
long occlusion and is particularly effective for long-term
tracking.

12) Composed of one multi-layer aggregation module and
one depthwise correlation layer, SiamRPN++ [27] as-
sembles the hierarchy of connections through the ag-
gregation module thereof to aggregate different levels
of representation, and the depthwise correlation layer
allows the network to reduce the computation cost and
redundant parameters.

B. OTB100 Data Set

The OTB100 data set [22] contains 100 fully annotated video
sequences with 11 different attributes, including illumination
variation (IV), scale variation (SV), occlusion (OCC), defor-
mation (DEF), motion blur (MB), fast motion (FM), in-plane
rotation (IPR), out-of-plane rotation (OPR), out-of-view (OV),
background clutters (BC), and low resolution (LR). The pro-
posed tracking model was evaluated on this data set, and the
precision and success plots of OPE, overlap rate (the overlap
degree between the obtained tracking bounding-box value and
the real bounding-box value, and the greater the better), tracking
speed, and pixel error (the distance between the obtained track-
ing bounding-box center and the real bounding-box center, and
the smaller the better) were adopted to evaluate the performance
thereof with several state-of-the-art tracking models, such as
BACF [10], STRCF [14], STRCF_Deep [14],GFSDCF [16],
MCCT [17], MCCT_H [17], ASRCF [18], ECO [19], Auto-
Track [20], ARCF_HC [21], CSR-DCF [15], CSTRCF [46].
Fig. 2 illustrates the success plots under different overlap thresh-
olds of each tracker on the OTB100 [22], and Fig. 4 shows its
corresponding radar performance chart. As shown in the Figs. 2
and 4, when tracking the objects with attributes of DEF, IV,
OCC, and SV, the proposed tracking model was superior to Au-
toTrack [20], STRCF_Deep [14], CSTRCF [46], CSR-DCF [15]
and others. For the objects with attributes of BC, IPR, LR, and
OV, the proposed model also demonstrated good tracking perfor-
mance. Overall, the tracking success rate of the proposed model
on the OTB100 [22] ranked third with an average score of 0.829,
being only 0.043 lower than the first-ranked GFSDCF [16], and
0.022 lower than the second-ranked MCCT [17].

The precision plots under different location error thresholds
of each tracker for the tracking objects with different attributes
are presented in Figs. 3 and 5 shows its corresponding radar
performance chart. Compared with the 12 state-of-the-art track-
ers, the tracking precision of the proposed tracking model was
excellent for the objects with DEF, OCC, and SV attributes, all
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TABLE III
THE TRACKING ACCURACY RATE AND A-R RANK VALUES OF TRACKERS ON VOT2016 (THE RED, BLUE, AND GREEN NUMBERS DENOTE

THE 1ST, 2ND, AND 3RD RANKS SEPARATELY)

Fig. 8. Radar chart of tracking success rate of trackers on the VOT2016.

ranking in the top 4. Moreover, the proposed model also exhib-
ited superior tracking accuracy for the objects with attributes
of BC, IPR, OV, IV, LR, MB, and OPR. Even for the objects
with FM attribute, the precisions of the proposed model fell to
some degree, yet the worst ranking thereof was fourth, which
was still better than several state-of-the-art trackers, such as
AutoTrack [20], STRCF_Deep [14], and CSTRCF [46], etc.

From Figs. 2, 3, 4, and 5, an observation can be made that the
proposed tracking model in this paper was outstanding in terms
of tracking success rate and tracking precision for the objects in
the image sequences of the OTB100 [22] with attributes DEF,
OCC, and SV. At the same time, its tracking performance for
the objects with other attributes was also worthy of affirmation.

Table I displays the bounding-box average overlap rate be-
tween the tracking results and the ground-truth, in addition to
the pixel errors between the center of the two aforementioned

Fig. 9. Radar chart of tracking precision rate of trackers on the VOT2016.

bounding-boxes of the trackers on the OTB100 [22]. An ob-
servation can be made that the proposed tracking model not
only ranked first in the average overlap rate, but also had a
small pixel error. Table II shows the tracking speed statistics
of each tracker on the OTB100 [22]. Although the proposed
tracker was generally inferior to GFSDCF [16] and MCCT [17]
in success and precision plots, it can be seen from Table II
that the tracking speed of these two trackers was far lower than
that of the proposed. The proposed tracker had more practical
application value due to its certain real-time tracking perfor-
mance.

The object tracking results of several state-of-the-art trackers
and the proposed tracking model in several OTB100 [22] frames
are reported in Fig. 6, in which an observation can be made that
the proposed tracking model could still track the SV, OCC, DEF,
IPR, LR, BC, and other attributes objects accurately, in the case



3963120 IEEE PHOTONICS JOURNAL, VOL. 14, NO. 6, DECEMBER 2022

Fig. 10. Precision plots on the VOT2016.

Fig. 11. Object tracking results in some image sequences of the VOT2016.

of GFSDCF [16], AutoTrack [20], BACF [10], CSR-DCF [15],
MCCT [17], and STRCF_Deep [14] all tracking failure.

C. VOT2016 Data Set

60 challenging and publicly available video sequences are
contained in the VOT2016 data set [23], in which the kinds of the
tracking objects are various, including toys, faces, vehicles, ani-
mals, etc., which are labeled with camera_motion, illu_change,
motion_change, occlusion, and size_change. In this section, the
experiment of the proposed tracking model on the VOT2016 [23]
is discussed, to evaluate the tracking performance, and the
tracking accuracy rate, A-R rank, success plots, precision plots,
overlap rate, tracking speed, and pixel errors are used.

The tracking accuracy and A-R rank values of each tracker in
the video sequences of the VOT2016 data set [23] are shown in
Table III. As can be seen from the data in Table III, the proposed
tracking model could still track the objects with camera_motion,

illu_change, motion_change, occlusion, and size_change at-
tributes accurately. Better yet, the average tracking accuracy of
the proposed tracker was 2% higher than that of the second
CSTRCF [46].

The success plots of OPE of the trackers on the VOT2016
data set [23] are shown in Fig. 7 and 8 shows its corresponding
radar performance chart. It can be seen from Figs. 7 and 8 that
the proposed tracking model had the highest tracking success
rates, which were all over 90%, for all objects with occlusion,
size change, and other attributes in the VOT2016 data set [23],
compared with all the listed state-of-the-art trackers in this paper.

Fig. 10 illustrates the tracking precision plots of each tracker
on the VOT2016 data set [23], and Fig. 9 shows its corresponding
radar performance chart. As can be seen from Figs. 9 and 10 that
the tracking accuracy values of the proposed tracking model
were all 1, no matter what attributes the object was, indicating
that once the object was successfully tracked, the proposed
tracking model could always track the object in the VOT2016
data set [23] completely correctly.
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Fig. 12. Success plots on the TC128.

TABLE IV
THE AVERAGE OVERLAP RATE AND PIXEL ERROR VALUES OF TRACKERS ON THE VOT2016 (THE RED, BLUE, AND GREEN NUMBERS DENOTE

THE 1ST, 2ND, AND 3RD RANKS SEPARATELY)

TABLE V
THE TRACKING SPEED OF TRACKERS ON THE VOT2016 (THE RED, BLUE, AND GREEN NUMBERS DENOTE THE 1ST, 2ND, AND 3RD RANKS SEPARATELY)

The average overlap rate and pixel errors of the trackers on
the VOT2016 data set [23] are presented in Table IV, in which
the proposed tracking model ranked first in terms of average
overlap rate and pixel errors, with 79% and a significant 0.5
pixels, respectively, which were considerably better than the
other trackers.

Table V shows the average tracking speed statistics of each
tracker on the VOT2016 [23]. According to the data in the table,
we can see that the object tracking speed of the proposed tracker
in the VOT2016 [23] was better than some state-of-the-art
trackers, such as CSR-DCF [15], CSTRCF [46], GFSDCF [16],
MCCT [17], and ECO [19], etc., and had more practical
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TABLE VI
THE AVERAGE OVERLAP RATE AND PIXEL ERROR VALUES OF TRACKERS ON THE TC128 (THE RED, BLUE, AND GREEN NUMBERS DENOTE

THE 1ST, 2ND, AND 3RD RANKS SEPARATELY)

TABLE VII
THE TRACKING SPEED OF SOME TRACKING ALGORITHMS ON THE TC128 (THE RED, BLUE, AND GREEN NUMBERS DENOTE THE 1ST, 2ND, AND 3RD

RANKS SEPARATELY)

Fig. 13. Radar chart of tracking success rate of trackers on the TC128.

application values than them. Fig. 11 lists the tracking results
of each tracker for the tracking objects that are difficult to track
in the VOT2016 data set [23]. An observation can be made that
the proposed tracking model could track the object accurately
no matter what attributes the object was, with a performance far
superior than other trackers.

D. TC128 Data Set

There are 128 color sequences in the TC128 data set [24], and
the object in each sequence has been labeled with ground-truth
and its attributes, including IV, SV, OCC, DEF, MB, FM, and
IPR, etc.

The success plots for the objects with different attributes on
the TC128 data set [24] are shown in Figs. 12 and 13 shows
its corresponding radar performance chart. It can be observed
from Figs. 12 and 13 that the proposed tracking model had the
highest tracking success rate for the objects with attributes of
BC, IPR, LR, and OPR in the TC128 data set [24]. For the
objects with IV and OCC attributes, the proposed model was
second only to CSTRCF [46], while the proposed model also
had a good tracking success rate for the objects of which the
attributes were FM, MB, OV and SV. Even for DEF objects, the

tracking success rate of the proposed model was ranked fifth,
which was still higher than AutoTrack [20], STRCF_Deep [14],
ASRCF [18], CSR-DCF [15], and other trackers.

Fig. 14 shows the precision plots of the trackers on the TC128
data set [24] red, and Fig. 15 shows its corresponding radar
performance chart. As can be seen from Figs. 14 and 15 that
when tracking the IV, IPR, OCC, OPR, and SV objects, the
tracking accuracy of the proposed tracking model was better
than other trackers. Moreover, for the objects with BC, FM, LR,
MB, and OV attributes, the tracking accuracy of the tracking
model was far superior to other trackers except CSTRCF [46]
and CSR-DCF [15].

The average overlap rate and pixel errors of each tracker on
the TC128 data set [24] are listed in Table VI. We can see that
the proposed tracking model was superior to other trackers in
average overlap rate, ranking first with 62%; the pixel errors of
it was second only to CSTRCF [46], with 34.3 pixels, which was
also excellent.

Table VII shows the average tracking speed statistics of each
tracker on the TC128 [24]. According to the data in the table,
we can see that the object tracking speed of the proposed tracker
on the TC128 [24] was more better than some state-of-the-art
trackers, such as CSR-DCF [15], CSTRCF [46], GFSDCF [16],
MCCT [17], and ECO [19], etc.

Fig. 16 shows partial tracking results of several state-of-the-
art trackers on the TC128 [24], in which an observation can
be made that the proposed could accurately track the objects
with IV, OCC, BC, FM, MB, OPR, LR, and other attributes,
and sometimes it was the only tracker that can did that, and
its tracking performance was better than CSTRCF [46], CSR-
DCF [15], GFSDCF [16], and STRCF_Deep [14], etc.

E. UAV123 Data Set

123 challenging video sequences obtained by unmanned
aerial vehicles (UAV) are contained in the UAV123 data set [25],
in which the object is labeled with ground-truth and some at-
tributes, such as IV, SV, Partial Occlusion (POC), Full Occlusion
(FOC), OV, FM, Camera Motion (CM), Similar Object (SOB),
Aspect Ratio Change (ARC), Viewpoint Change (VC), BC, and
LR.
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Fig. 14. Precision plots on the TC128.

Fig. 15. Radar chart of tracking precision rate of trackers on the TC128.

Fig. 17 shows the success plots of each tracker for different
attributes objects in the UAV123 [25], and Fig. 19 shows its
corresponding radar performance chart. As can be seen from
Figs. 17 and 19 that the proposed tracking model had the highest
tracking success rate for the BC objects. In addition, for the
objects with attributes of ARC, IV, LR, OV, POC, SV, SOB,
and VC, the tracking success rates of the proposed tracking
model were second only to CSTRCF [46], SiamRCNN [54],
and SiamRPN++ [27]. Even for the objects with CM and FM
attributes, the tracking success rates of the proposed tracking
model were ranked fifth, which were better than trackers such as
CSR-DCF [15], MCCT [17], ASRCF [18], STRCF_Deep [14],
and AutoTrack [20], etc.

Fig. 18 shows the precision plots on the UAV123 data
set [25], and Fig. 20 shows its corresponding radar performance
chart. It can be seen from Figs. 18 and 20 that the proposed
tracking model had the highest tracking precision for the IV
objects in the UAV123 data set [25] with 88.9%; for the objects
with POC, SV, and SOB attributes, the proposed had better
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Fig. 16. Object tracking results in some image sequences of the TC128.

Fig. 17. Success plots on the UAV123.

tracking accuracy than SiamRCNN [54], SiamRPN++ [27], and
GFSDCF [16], except for CSTRCF [46] or CSR-DCF [15]; for
the objects with BC, ARC, LR, CM, FM, OV, and VC attributes,
although the tracking precisions of the proposed tracker ranked
fourth, they were higher than most of the trackers, such as
CSR-DCF [15], MCCT [17], ASRCF [18], and STRCF_Deep
[14], etc.

Table VIII displays the average overlap rate and pixel errors
of some trackers on the UAV123 [25]. Although the average
overlap rate of the proposed tracking model was not as good
as SiamRPN++ [27], SiamRCNN [54], and CSTRCF [46], yet
the worst ranking thereof was fourth, which was still better than
most trackers. The proposed tracking model ranked first with
23.8 pixel errors.
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Fig. 18. Precision plots on the UAV123.

TABLE VIII
THE AVERAGE OVERLAP RATE AND PIXEL ERROR VALUES OF TRACKERS ON THE UAV123 (THE RED, BLUE, AND GREEN NUMBERS DENOTE

THE 1ST, 2ND, AND 3RD RANKS SEPARATELY)

TABLE IX
THE TRACKING SPEED OF SOME TRACKING ALGORITHMS ON THE UAV123 (THE RED, BLUE, AND GREEN NUMBERS DENOTE

THE 1ST, 2ND, AND 3RD RANKS SEPARATELY)

Table IX shows the average tracking speed statistics of each
tracker on the UAV123 [25]. According to the data in the table, it
can be seen that the object tracking speed of the proposed tracker
in the UAV123 [25] was more better than some state-of-the-art
trackers, such as CSTRCF [46], GFSDCF [16], and MCCT [17],
etc., and it had certain real-time tracking abilities.

Fig. 21 shows the tracking results of the trackers on the
UAV123 [25]. As can be seen from Fig. 21 that the proposed
tracking model had excellent tracking performance for the ob-
jects with attributes of IV, SV, POC, SOB, BC, and LR, and
in some cases, it even had better tracking performance than
SiamRPN++ [27], SiamRCNN [54], and CSTRCF [46].
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Fig. 19. Radar chart of tracking success rate of trackers on the UAV123.

Fig. 20. Radar chart of tracking precision rate of trackers on the UAV123.

F. Ablation Study

To get a comprehensive understanding of the influences of dif-
ferent components in the proposed object tracking models on its
tracking performances, ablation study is usually required. Con-
sidering that the performance of the three components, i.e., the
temporal regularized term ‖ft − ft−1‖22, the aberrance repres-
sion term ‖∑D

d=1(Bx
d
k−1 ∗ fdk−1)[ψp,q]−

∑D
d=1Bx

d
k ∗ fdk‖22,

and the spatial reliability map m, used in this paper has been
verified in STRCF [14], CSR-DCF [15], and ARCF_HC [21],
respectively, and these algorithms have been compared with the
proposed in this paper, it is unnecessary to conduct ablation
experiments to emphasize the three components, but only show
the applications of the three components in relevant algorithms
in Table X.

TABLE X
THE USAGE OF THE TEMPORAL REGULARIZED TERM, THE ABERRANCE

REPRESSION TERM, AND THE SPATIAL RELIABILITY MAP IN STRCF, CSR-DCF,
ARCF_HC, AND THE PROPOSED TRACKING ALGORITHMS

V. EXPERIMENTAL ANALYSIS

A myriad of experiment results on the OTB100 [22],
VOT2016 [23], TC128 [24], and UAV123 [25] data sets reveal
that the proposed Spatio-temporal regularized correlation filter
with aberrance repression had significantly high tracking per-
formance for the objects with OCC and SV attributes, mean-
while, its tracking ability to the objects with BC, IV, OCC, SV,
LR, OV, and IPR attributes was also outstanding. According
to the tracking performance of the proposed tracking model
in this paper regarding the objects with the aforementioned
attributes superior than that of BACF [10], STRCF [14] with
the temporal regularized term and spatial regularized matrix,
ARCF_HC [21] with the aberrance repression regularized term,
and CSR-DCF [15] with the spatial reliability map, etc., a
conclusion can easily be drawn that the fusion of the aberrance
repression term of response map, spatial reliability map, and
temporal regularized term of CFs was considerably beneficial
in solving the boundary effects of correlation filters and the
response map aberrance of the correlation filters, in addition
to improving the object tracking robustness and accuracy of the
proposed tracking model.

Meanwhile, from the very unexpected experiment results of
the proposed tracking model on the VOT2016 data set [23],
we can see that the proposed tracker was extremely effective
in tracking the objects in color video sequences with high
resolution and without many influence factors, and slightly poor
for the objects in gray sequences or sequences with complex
influence factors, such as MB, IPR, OPR, and OV, etc.. We
believe that it was not only related to the construction of the
proposed tracker, but also related to the hand-crafted gradient
and CN-based color template features used in this paper. Among
them, the HOG-based gradient template feature thinks that the
appearance and shape of a local object can be well described
by the distribution of the local gradient or edge direction,
moreover, since the image is gamma-corrected and the gradient
direction is quantified by cell method, it is not sensitive to
the geometric or illumination variations; the CN-based color
template feature is global, it focuses on the whole image, and has
little dependence on the size, direction, and angle of the image
itself, and it is not sensitive to the object deformation and fast
movement.

However, during the experiment, we found that the proposed
tracking model in this paper has a significant deficiency. As
shown in Fig. 22(a), when the tracking object is fully occluded,
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Fig. 21. Object tracking results in some image sequences of the UAV123.

Fig. 22. ARSTCF tracking failed situation.

the proposed tracker fails to track. Although it can successfully
track the object again when it appears slightly, as shown in
Fig. 22(b), it is undeniable that this is a defect of the pro-
posed tracker. Next, we need to think about how to solve the
problem.

Further, from the experiment results on the UAV123 data
set [25] presented in Fig. 17, an observation can be made
that although the object tracking success rate of the pro-
posed tracking model is higher than most of the trackers for
the objects with almost all attributes, SiamRCNN [54] and
SiamRPN++ [27] still performed better in tracking success rate
and precision, which means that due attention must be paid to the
important role of neural networks in the field of object tracking.
In our future work, the knowledge of the neural networks is
more necessarily to be applied into the research of the object
tracking.

VI. CONCLUSION

In this paper, an object tracking model based on a time-varying
Spatio-temporal regularized correlation filter with aberrance
repression is proposed, in which the aberrance repression reg-
ularized term, spatial reliability map, and temporal regularized
term are introduced into the objective function of the standard
CF. By limiting the change rate of the response map in the object
detection phase, the proposed tracker could obviously repress
the aberrance of the response map, and improve the object
tracking robustness and accuracy. Additionally, the correlation
filter could be adjusted to the regions with high confidence scores
to train the filter by using the spatial reliability map, which was
conducive to overcoming the excessive object search range of the

correlation filter and the limitations of the rectangle hypothesis
in the tracking object, and the adverse effects caused by the
boundary effect was solved well. The use of the correlation filter
temporal regularized term was beneficial in enhancing the track-
ing ability of the proposed tracking model for the partially oc-
cluded object and the object with large appearance variations. A
plethora of experiment results indicate that the tracking accuracy
and robustness of the proposed tracking model are significantly
higher compared with several state-of-the-art trackers.
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