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Underwater Polarization Imaging Recovery Based on
Polarimetric Residual Dense Network

Yanfa Xiang ", Xu Yang

Abstract—Application of deep-learning to polarization imaging
technology for image restoration has led to many technological
breakthroughs, especially in underwater image recovery and recog-
nition. In this work, a four-input deep learning model with the
Polarimetric Residual Dense Network is proposed for underwater
image recovery. The diverse polarization component images are
trained and tested in different processes in the network for the
recognition and dehazing by considering the physical model of
polarization dehazing imaging. Our study reveals that the proposed
method can efficiently recover the hazed images, and provide good
performance for improving the quality of image restoration even
in a high-turbidity complex underwater environment.

Index Terms—Polarization imaging, image restoration, deep
learning, residual dense network.

1. INTRODUCTION

NDERWATER imaging technologies have attracted im-
mense attention for accessing underwater environments.
However, the light is severely scattered and absorbed due to the
presence of turbid particles in the water, resulting in poor under-
water imaging quality and lack of image details. To overcome
this challenge, a lot of research has been carried out to improve
the quality of underwater imaging [1], [2], [3], [4]. Among
them, the underwater polarization dehazing technology [5], [6],
[7], [8] has been recognized as an effective method to obtain
a clear dehazing image, due to the backscattering light being
partially polarized [9], [10]. Many attempts have been made
to improve the underwater polarization dehazing technology
based on the Schechner’s proposal by using the relationship
between the object radiation and two orthogonal polarization
images to realize the underwater image recovery [5], [9], such
as the underwater polarimetric dehazing imaging model using
the Stokes vectors to get polarization information [11], and
the underwater image enhancement by using the wavelength
compensation [12].
In the past decade, machine learning and neural network
have achieved a variety of successes in many areas including
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distance prediction [13], image dehazing [14], [15], visible
light positioning (VLP) [16], and image recognition [17]. The
deep learning method, as a sub-field of machine learning, has
been recognized as an effective approach that leads to many
technological advancements [18]. This is because of its powerful
feature extraction capabilities and feature learning capabilities.
Recently, Hu et al. proposed a learning-based polarimetric un-
derwater image recovery method [19] to improve the dehazing
effect, and enhance the image quality under a low light environ-
ment with a neural network [20]. However, most of the work
only identifies the relation of input and the ground truth of the
target object by a dense connected neural network based on
extracting image structures and features. The governing model
for the actual physical process is usually ignored in the neural
network, which results in some inefficient efforts and inaccurate
results. The lightweight convolutional neural network for un-
derwater polarization dehazing imaging by combining both the
advantages of deep learning and polarization dehazing imaging
technology is demonstrated in our recent work [21], which can
rapidly achieve a better dehazing imaging effect than that of
conventional dehazing methods. Nevertheless, the development
and improvement of the network model for deep learning-based
underwater dehazing imaging is an urgent topic to explore for
the applications, especially the special design scheme of the
neural network for the guiding learning under considering the
governing physical model for the particular case.

In this work, we propose a robust method for underwater
dehazing technology by combining the polarization light de-
hazing technique and deep learning method. Different from the
previous work [21], there is no estimation for analytical for-
mula or important parameters in this deep learning model. The
mapping relations between the input polarization component
images and the groud truth are obtained by the four-input deep
learning model. Our proposed method shows a good recovery
effect on objects of different materials under turbid conditions.
For this method, the four-input polarimetric residual dense net-
work (PRDN) is first developed by combining the polarization
imaging technology and the Residual Dense Network (RDN)
[22]. The recognition and recovery network model is built by
combining the constructed PRDN with the Residual Network
(ResNet) [23]. The polarization image datasets are built with
the images of four polarization components (0°, 45°, 90° linear
polarization and circular polarization) for training and testing in
the neural network. The mapping relationship between the target
and the polarization image information is effectively constructed
by the extracted polarization image information. The recognition
and classification training are performed using the polarization
image datasets in the neural network, followed by the image
restoration training. Considering the governing physical model
of polarization light dehazing imaging, the training and testing
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of the linear polarization component images are conducted in
different processes in contrast to that of the circular polarization
image in the neural network. Moreover, we also conduct exper-
iments on different materials in thick turbid water. Inspired by
the transfer learning technique [24], the PRDN is first pretrained
by the entire datasets to get a preliminary model. Then the
PRDN is further trained by the classified datasets on the basis
of the preliminary model to improve the efficiency of training
and testing. The experimental results indicate that our proposed
method provides a more effective restoring performance for the
dehazing images than that of the other state-of-the-art method.

II. THE NETWORK STRUCTURE BASED ON POLARIMETRIC
RESIDUAL DENSE NETWORK

A. The Network Structure Based on the Polarization Dehazing
Model

According to the classic underwater degradation model [5]
[7] [9], the intensity image obtained by the polarization imaging
include the target signal and the background scattered light. The
target signal is the target irradiance after being absorbed and
scattered by suspended particles in turbid waters. Therefore, the
underwater imaging degradation is attributed to the background
scattered veiling and signal attenuation. Due to the uniqueness
and differences of polarization information between the target
signal and the scattered light, the polarization characteristics in a
scattered light field can be used to remove background scattered
light and restore the object images. Currently, the polarization
dehazing technology has proved the obvious advantages in
achieving clear underwater images and aiding underwater target
detection and recognition. The accurate estimation of the polar-
ization characteristics and relationship between the target light
and the background scattered light is the essential problem to be
resolved in underwater dehazing technology. In this work, the
core idea of the proposed neural network is to make full use of the
polarization image information to perform the image restoration
operations based on the polarization light dehazing technology
by combining the recognition and the recovery networks. The
different linear polarization images (the 0°, 45°, 90° linear
polarization) can be adopted to map the relation between the
veiling light and the target light by deeply mining the differences
and uniqueness in polarization information in a scattered light
field. On the other hand, the circularly polarized light possesses
the memory property (i.e., the persistence of circular polarization
in scattering environments) [25]. Thus, the circular polarization
images assist in the enhancement of imaging recovery. There-
fore, the different polarization component images (the 0°, 45°,
90° linear polarization and circular polarization components)
are conducted in different processes for the recognition and
dehazing in this proposed network.

The overall network framework is shown in Fig. 1. The entire
network framework consists of the ResNet34 [23] model and the
PRDN model. Here, we employ the ResNet34 model to identify
and classify different categories of material targets, whereas the
PRDN is used to recover the image of targets. In this network
framework, the ResNet34 model has four inputs, comprising the
linear polarized (0°, 45°, 90° components) and circular polarized
images, as shown in Fig. 1. The four inputs with different
polarization component images are identified and classified into
the corresponding categories (the three categories of material
datasets with plastic, metal and plaster are adopted to classify
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Fig. 1. Schematic diagram of the overall network. The network contains the

ResNet34 model and the polarimetric residual dense network (PRDN).

in this work) by ResNet34. The classification is conducive to
the efficiency of subsequent training and testing with a smaller
dataset through the PRDN. In order to improve the efficiency of
training and testing, the PRDN network is firstly pretrained by
the entire datasets to get a preliminary model and then further
trained by the classified datasets to obtain the different types
PRDN.

B. The Polarimetric Residual Dense Network

The Polarimetric Residual Dense Network (PRDN) with four
inputs after ResNet34 is developed to improve the dehazing
imaging quality, as shown in Fig. 2. The PRDN is mainly
composed of five parts: the shallow feature extraction (SFE),
the residual dense blocks (RDB), the local polarization feature
fusion (LPFF), the global polarization feature fusion (GPFF)
and the dense polarization feature fusion (DPFF) [26]. In Fig. 2,
the I, 1450, Igoe andI ¢, denote the images correspond to 0°,
45°, 90° linear polarization and circular polarization compo-
nents, respectively. Here, the circular polarization image (/¢,-)
information is extracted directly for the global residual learning,
whereas the feature information of three linear polarization
images ([o-, I45°, Igg°) is extracted as the input of the RDB
for the fusion of the local polarization features. The different
color lines in the figure show the data transmission between
different layers, and the dotted lines show the data transmission
between the RDBs. The SFE layer consists of two convolutional
layers: the first layer is applied to extract image features from
the four polarization images, and the second layer employs
the information of the first layer to further extract polarization
feature information for the global residual learning and provides
the inputs to the RDB. Thus, we can have

Fo = Hspr(los, Lsse, Iooe),
Forro = Hsre(Ior). (D

where Hgpp(-) is the operation of the SFE layer and Fgry,
denotes the global residual learning of the PRDN for the image
of circular polarization. Fj is used as inputs to RDB. The
relationship between the RDBs is described by

Fy=Hgrpp,a(Fa-1) = Hrpp,a(- - (Hrpp1(FD))). (2)

where Hrpp 4(-) is the operation of the d-th RDB and Fj is the
output of the d-th RDB. In the RDBs, the feature information of
three linear polarization images (/oe, I45°, Igg°) are extracted for
learning the mapping function relation to the groud truth image,
respectively. The outputs of 3n RDBs are fused into a complete
polarization imaging function model in the local polarization
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Fig. 3. The architecture of the residual dense block.

feature fusion (LPFF) process by the concatenation layers, as
shown in Fig. 2. The output of the LPFF (Fprr) is followed
by the noise reduction processing through the two convolutions
operation to obtain the F grr. The F ¢rp can be expressed as

3)

where H g is the composite operationof 1 < 1 and 3 x 3 con-
volutions. Then F gpp is further fused with the global residual
learning (F rr) from the circular polarization component im-
ages in the global polarization feature fusion (GPFF) to enhance
the imaging restoration for the image details that may lost during
the signal processing. The GPFF can be represented as

Forr = Hgrr (FLprr) -

“)

where the F' p pr is the output of the fusion operation of F g pp and
Fcrr. Finally, the Fppr can be used as the output of the final
recovery image after two convolution processing. The output of
PRDN can be summarized as

Fprr = Fgrr + Farr.

)

Iouwt = Hprpn (Loe, Luse, Iooe, Iy ).

where Hprpn is the global function of our PRDN.

Fig. 3 illustrates the architecture of the RDB [26] which is
an important constituent part of the PRDN. The RDB is made
up of numerous convolution layers and rectified linear unit
(ReLU) [27] for various operations including series and dense
connection, feature fusion and residual learning. These layer-by-
layer operations constitute a contiguous memory mechanism by
passing the state of the previous layers to the current layer. The
contiguous memory mechanism directly connects the outputs
of the previous layers with the next layer makes full use of the
hierarchical features of the convolution layers [26] with both the
feed-forward property and local dense features.

LPFF GPFF DPFF

Concat.layer

The architecture of the polarimetric residual dense network (PRDN) with four inputs after ResNet34.

The polarimetric image recovery method proposed by
Schechner is based on the difference and relation of polarization
information between the direct transmission and backscattered
light by two orthogonally linear polarization component im-
ages. The object images can be restored by removing the ef-
fects of backscattering and absorption through the uniqueness
and differences of polarization information between the target
signal and the scattered light [9]. Therefore, in the proposed
network, the feature information of three linear polarization
images (lo-, I45°, Igo°) is extracted as the input of the RDB for
learning the mapping function related to the ground truth image
in the RDB, respectively. That is, the structure of the RDB
and the local polarization feature fusion (LPFF) for the three
linear polarization images (/o, I45°, Igge) reflects the traditional
polarimetric image restoration method based on the linearly po-
larized light. On the other hand, because of the memory property
of circularly polarized light [25], the circularly polarized light
tends to maintain its original polarization property better than the
linearly polarized light. Therefore, the circularly polarized light
is fused in the global polarization feature fusion stage (GPFF)
to enhance the imaging restoration for the image details that
may be lost during the signal processing. In addition, if any
of the three linear polarization images (Ig-, I45°, I9p-) and the
circularly polarized image are exchanged as the inputs of the
RDB in the proposed model, the experimental results indicate
that the restored images are degraded correspondingly. These
results further verify the validity of this proposed model.

C. Implementation Details

The active polarization imaging experiments are performed
in the real underwater environment to obtain the polarization
image dataset. The experimental setup is shown in Fig. 4. A
532 nm blue-green laser is used as the active light source, and
a CMOS camera (MER2-301-125U3M) is employed to receive
the reflected light from the target objective. The polarizer and
quarter wave plate are used to convert the laser beam to 0,
45°, 90° linearly and circularly polarization components. The
azimuthal stepper motor is utilized to control the azimuthal
angles of polarizer for capturing images with different polar-
ization components. The mean squared error (MSE) is adopted
as the loss function during the training of the PRDN. An Adam
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Fig. 4. The experimental device for underwater active polarization imaging.

optimizer [28] is adopted for accelerating the gradient descent
algorithm by setting the initial learning rate as 1x 10 with the
exponential decay rate as 0.6. The NVIDIA RTX 3070 GPU is
used to train the model. The number of RDB blocks is chosen as
=4 which s the overall best parameter based on the performance
of the PRDN and the speed of training according to the actual
experiment results.The dataset consists of 180 sets of polarized
images with different turbidity, randomly divided into training,
validation, and test sets in aratio of 8:1:1. The scale of the dataset
is about 8772, where the data size is 200 x 200 pixels.

III. RESULTS AND DISCUSSION

Here, the three categories of material datasets (plastic, metal
and plaster) are adopted to classify in this work. The plastic is the
polyvinyl chloride (PVC) material, the stainless steel ruler made
of iron-chromium alloy is taken as the metal material, and the
plaster is mainly composed of CaSOy. The target objects with the
same material are classified into one category by the Resnet34
model. Due to the different polarization information of the re-
flected light from objects of different materials, the convergence
value and the end position of the gradient descent are different
when different objects are trained by the PRDN, resulting in dif-
ferent iteration epochs for training different types of objects. For
example, PVC plastic is a high depolarization object compared
to the stainless steel, so the PVC plastic needs more iterations to
reach the convergence than that of stainless steel ruler during the
training. In this work, the training epoch is first adopted as 300
based on a batch size of 2 to get the epoch values with different
materials for the PRDN model convergence. When the iteration
reaches 120 epochs the PRDN model for the plastic objects
converges, whereas at least 260 epochs are required for the metal
object PRDN convergence, and around 190 epochs for the plaster
object PRDN. This situation leads to the fact that if these objects
are trained together in a PRDN, the iteration training needs at
least 260 epochs (metal objects), which lead to overfitting for the
plaster and plastic objects. In order to achieve a good training
efficiency and recovery effect, 3 PRDNSs are respectively trained
with different materials after classification. The training epoch
for the plastic object PRDN model is set as 150, the plaster
material PRDN model is set as 220, and the metal material PRDN
model is 280. The training efficiency is greatly improved and the
overfitting is prevented when 3 PRDNSs are trained with different
types materials. Therefore, the training on different types of
objects facilitates the process to identify an optimal solution
for the recovery of certain materials. Since different categories
of material targets are identified and classified based on the
polarization characteristics of the reflected light of different
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materials in the ResNet34 model, therefore, the targets will be
classified into one category if the polarization characteristics of
the reflected light are similar. For example, the experimental
results show that untrained materials such as copper and gold
can also be classified as “metal”’. However, the wood can not
be classified into any of the three category materials (plastic,
metal and plaster) because the polarization characteristics of the
reflected light from the wood are significantly different from
that of the three category materials (plastic, metal and plaster).
Therefore, in practice, an additional category model such as the
wood model can be added to the ResNet34 network, and the
wood model should be trained with the corresponding dataset
in PRDN before the application in dehazing of these objects. In
addition, the objects of the same family of material with different
shapes such as plastic stickers, plastic badges, and plastic toys
have been trained in this proposed method. The different shape
objects of the same material trained in the model can prevent
the model from using a single type of feature to classify the
material of the target object, and inhibit the model from having
a restoration effect only on specific objects, thereby improving
the generalization ability of the model.

The image recovery results of the target objects with a plastic
cube, a metal ruler and a plaster sculpture as different materials
in a turbid water environment with different dehazing methods
are shown in Fig. 5 . It can be seen that the traditional intensity
images by a CMOS for the plastic, metal and plaster targets in the
turbid water environment are indistinct as shown in plots (I) in
Fig. 5. However, the image details become clear, and the outline
of the entire images can be clearly identified after the image
is restored by the PRDN network model as shown in plots (V)
in Fig. 5. In addition, compared to the image recovery results
by using different dehazing methods: the polarization dehazing
[29] (see plots (II) in Fig. 5), the CNN polarization dehazing
[21] (see plots (III) in Fig. 5) and the dark channel [30] (see
plots (IV) in Fig. 5), it is obvious that the image quality restored
by our proposed PRDN model is clearer and closer to the ground
truth image in a clear underwater environment (see plots (VI) in
Fig. 5).

To further verify the efficiency of our proposed network,
seven objective evaluation indicators for measuring the imaging
quality based on the “full-reference” (FR) and “no-reference”
(NR) [31] models are tested and the obtained values are com-
pared with different dehazing methods. Among the objective
image quality assessment of the FR is the Peak-Signal to Noise
Ratio (PSNR) [32], Information Fidelity Criterion (IFC) [33],
Structure Similarity (SSIM) [34] and feature similarity index
measure (FSIM) [35]. On the other hand, the assessment indexes
for the NR model includes the Enhancement Measure Evaluation
(EME) [36], contrast(C) [37] and information entropy(E) [38].
The evaluation results of the seven objective evaluation indica-
tors of the recovery images by different methods are compared
in Table I. Our results reveal that the image quality is better
with the higher value of indicator regardless of image quality
assessment models (the FR or NR). Compared with the NR
model, the FR index reflect the quality of the restored image
with reference to the ground truth image. Noting that the FR
index of the ground truth images cannot be provided in Table I
since the FR index is obtained by comparing the recovered target
images with the ground truth image. On the other hand, the NR
model completely breaks away from the reliance on the ground
truth image since it is based on the statistical characteristics of
the image to make a rough estimate, and the index of any image
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Fig. 5. Comparison of the recovery image of (a) a plastic cube; (b) a metal
ruler; (c) a plaster sculpture in turbid water environment using different methods:
(D) the traditional intensity image; (II) the polarization dehazing method; (III)
the CNN polarization dehazing method; (IV) the dark channel method; (V) Our
PRDN method. (VI) the ground truth image in a clear underwater environment.

including the ground truth image can be computed. It can be
seen in Table I that the 4 FR indicators of the image restored by
the PRDN give the highest values among the 5 methods and the
3 NR indicators are closest to that of the ground truth (the image
in clear underwater serviced as the ground truth), which further
evidence the significance of the PRDN method.

In addition, the FSIM and PSNR values as a function of epochs
are compared with the polarization dataset for the different
network models including the AOD [39], RDN and PRDN, as
shown in Fig. 6. The FSIM and PSNR values of all methods tend
to stabilize as the number of training epoch reaches a certain
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Fig. 6. The values of (a): FSIM and (b): PSNR with different models under
different epochs.

TABLE I
COMPARISON OF PERFORMANCE EVALUATION IN DIFFERENT METHODS FOR
THE TARGET OBJECTS WITH DIFFERENT MATERIALS: PLASTIC CUBE (UPPER
TABLE), METAL RULER (MIDDLE TABLE) AND PLASTER SCULPTURE

(LOWER TABLE)
Methods | Intensity | Polarization CNN Dark Ground
imaging dehazing Polarization | channel | PRDN truth
Criterion dehazing
PSNR 17.34 16.12 20.22 20.57 3291 /
SSIM 0.47 0.46 0.43 0.45 0.85 /
IFC 0.38 0.22 0.45 0.38 2.82 /
FSIM 0.51 0.51 0.52 0.75 0.93 /
EME 1.02 0.69 2.28 15.39 16.54 16.85
C 0.09 0.10 0.23 0.93 1.05 1.00
E 2.71 2.93 3.39 5.52 6.31 6.38
Methods | TIntensity | Polarization CNN Dark Ground
imaging dehazing Polarization | channel | PRDN truth
Criterion dehazing
PSNR 14.23 13.62 24.93 23.24 32.29 /
SSIM 0.61 0.59 0.65 0.55 0.87 /
IFC 0.55 0.29 0.37 0.55 1.40 /
FSIM 0.67 0.67 0.67 0.80 0.91 /
EME 1.00 1.00 2.22 15.37 12.27 12.67
C 0.08 0.13 0.26 0.98 1.00 1.00
E 2.85 3.28 3.29 5.82 5.53 5.59
Methods | Intensity | Polarization CNN Dark Ground
\ imaging dehazing Polarization | channel | PRDN truth
Criterion dehazing
PSNR 22.62 20.62 25.41 21.94 | 36.69 /
SSIM 0.86 0.85 0.82 0.48 0.91 /
IFC 0.37 0.22 0.43 0.37 0.77 /
FSIM 0.81 0.82 0.81 0.69 0.92 /
EME 0.68 0.28 1.66 10.27 2.07 2.64
C 0.20 0.23 0.71 1.52 1.01 1.00
E 3.05 3.28 4.34 6.13 5.47 5.48

value. However, the PRDN method shows higher FSIM and
PSNR values than that of the AOD and RDN methods, further
confirming the superiority of the method.
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IV. CONCLUSION

In this work, we combine underwater polarization imaging
technology with deep learning technique to build a four-input
Polarimetric Residual Dense Network (PRDN). An integrated
model of recognition, classification and restoration is con-
structed by combining the PRDN and residual image recognition
network (ResNet34). The four inputs of different polarization
component images are firstly identified and classified into re-
spective categories by the ResNet34. The mapping relationship
between the polarization image information and the target object
is conducted in the subsequent PRDN. Using the preliminary
model greatly shortens the training convergence time and im-
prove the accuracy of the restored image. The experimental
results indicate that this method has a good recovery effect on
objects of different materials in a turbid underwater environ-
ment.
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