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Abstract—Correction performance of an adaptive optics (AO)
system is severely limited by its system latency under high tempo-
ral frequency distortions. Wavefront prediction methods has been
proven to be an effective way to compensate system delay. A novel
wavefront prediction method based on residual learning fusion
network (RLFNet) is proposed in this paper. The network is able
to eliminate redundant information between adjacent wavefront
frames and fuse refined features, which provides a higher predic-
tion accuracy under fewer priori wavefront input. The method is
tested on a 1km laser atmospheric transmission experimental setup
through high frequency atmospheric turbulence, where wavefront
data is collected from a 1kHz Shack-Hartmann wavefront sensor
(SHWS). We show that the proposed architecture is able to predict
the second frame wavefront after the previous 6 frames with a
root-mean-square (RMS) wavefront error reduction up to 53%
compare to non-predictive method.

Index Terms—Adaptive optics, atmospheric turbulence, neural
network, wavefront prediction.

I. INTRODUCTION

SUPPRESSING the degrading effect of atmospheric turbu-
lence on laser beam transmission has been a major research

focus in the fields of laser communications, and laser detection
among others. AO technique is an effective way to compensate
atmospheric turbulence in real time. However, real AO systems
usually assume that the distorted wavefront is static during a
control period, which leads to a servo-lag error of 2-3 sampling
periods in the control loop [1], [2], [3]. The time delay in the loop
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mainly comes from signal processing and control tasks such as
wavefront sensor data acquisition, wavefront reconstruction and
control operation. Such time delay will cause the compensation
wavefront on the deformable mirror (DM) lag behind the ac-
tual measured wavefront, which severely limits the correction
performance of the AO system.

A large number of prediction methods have been studied to
compensate the time delay. Among these prediction methods,
the iterative prediction method like Recursive Least Squares
(RLS) algorithm is to minimize the systematic error, which
provides a simple calculation process and avoids to fall into
the local minimum point. However, when the mode order of
wavefront aberrations is too high, it cannot converge in a short
time [4], [5]. Model-based prediction methods use atmospheric
turbulence model to predict the change of wavefront, such as
the Linear Quadratic Gaussian control algorithm, which has a
good approximation performance, but it is difficult to balance the
prediction accuracy of the model between the control complexity
of the controller [6], [7], [8]. In addition, there are more complex
Kalman Filter based methods [9], [10], [11], [12] and extensions
of various approach [13], [14], [15], [16]. In fact, the majority of
these algorithms can be described as analytical applications of
various estimation frameworks. But amid a large wave of general
advances in Neural-network (NN), NN-based methods have
been widely used for wavefront reconstruction and prediction
of AO systems [17], [18]. It turns out that NN-based meth-
ods have the advantage over analytical estimation techniques
in terms of alleviating time delay, because NN predictors are
self-optimizing, generalizable and have strong nonlinear fitting
ability [18], [19]. Shi Xiaoyu [20] and Yan Zaojun [21] et al. used
a two-layer back-propagation (BP) neural network prediction
algorithm to predict the open-loop control voltage of the DM,
and the correction effect was about 30 times better than that
of the RLS algorithm for the same wind speed. In 2020, Chen
Ying et al. used Long Short-term Memory (LSTM) network for
voltage prediction, and its prediction residual was about 8 times
lower than that of BP network [22].

In terms of network input and output types, direct prediction of
the wavefront can be more advantageous, because the prediction
model is largely unaffected by changes in SHWS and DM,
thus, there is no need to design specific network models for
different AO systems. Therefore, the way of directly predicting
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the wavefront has higher compatibility and applicability in most
of AO systems. From the perspective of network model, for
dealing with the time series prediction problem of wavefront
prediction, LSTM network has more advantages under the same
environment configuration [23]. This is because LSTM network
has a strong memory ability and can accurately learn the tem-
poral features between successive distorted wavefront frames to
meet the prediction requirements. However, due to the temporal
features of continuous wavefront, the direct feature extraction
from the unrefined continuous wavefront will cause redundant
errors, which damages the prediction accuracy. Therefore, a
deep learning-based RLFNet is proposed for the first time in
this paper, which eliminates the redundant information between
frames by means of residual learning, then extracts the refined
features for fusion, and fuses the features at all levels again to
obtain a high accuracy prediction result. The prediction per-
formance of our proposed RLFNet is tested from simulation
and experiment results under different types of atmospheric
turbulence conditions.

II. ATMOSPHERIC SIMULATION AND NETWORK SETUP

A. Atmospheric Turbulence Distorted Wavefront Simulation

The atmospheric frozen flow hypothesis is a widely adopted
modeling approach for atmospheric turbulence that has been
verified by a large number of experiments [24], [25], [26], [27].
It has been shown that the time scale on which the frozen flow
hypothesis holds is 10∼20 ms, reaching 50∼100 ms in a few
cases [28]. In the AO system with a sampling frequency of
more than 1 kHz, the time delay of the system is basically less
than 3 ms, so the frozen flow hypothesis in such a system is
reasonable.

Atmospheric turbulence occurs on a cascade of spatial scales
with a power law dependence well approximated by Kol-
mogorov’s Law [29], that is, the refractive index structure func-
tion in the inertial region satisfies the “two-thirds law”, which is
expressed as:

Dn (r) = C2
n (h) r2/3 (1)

Where: r is the scalar distance, C2
n is the refractive index

structure constant changing with altitude h. As a statistical
model, the expression of the classical model HV-57 is as follows:

C2
n (h) = 5.94× 10−53
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Among them, generally take: v = 21m/s, A = 1.7×
10−14. The formula shows that atmospheric turbulence is the
strongest at near the ground. As the altitude increases, C2

n ex-
periences a process that will first become weaker, then stronger,
and finally gradually weaken.

In laser atmospheric transmission and AO correction technol-
ogy, D/r0 is widely used to describe the influence of turbulence
effects. where D is the diameter of the telescope, and the r0 is

Fig. 1. AO system with wavefront prediction model.

the Fried parameter. The larger the value of r0, the better the
atmospheric conditions. In general, the relationship between r0
and C2

n is [30]:

r0 =

[
0.423k2secϕ

∫ L

0

C2
n (z) dz

]−3/5

(3)

Where k is the wavenumber, L is the transmission distance,
and ϕ is the zenith angle.

If the horizontal transmission, i.e.,ϕ = 0, the above equation
can be simplified as:

r0 = 1.68
(
C2

nLk
2
)−3/5

(4)

The variation of wind speed with altitude in the atmosphere
is often expressed by the Buffton wind speed model, as:

v (h) = vg + vt × exp

(
−
(
h− hpk

hscale

)2
)

(5)

Among them, generally take: vg = 5m/s, vt = 30m/s,
hpk = 9400, hscale = 4800.

In this paper, the simulation data is generated by the time
evolution of the Fourier series method based on the above atmo-
spheric turbulence theory. We simulate the distorted wavefront
according to the experimental scene of the 1 km near-ground
laser atmospheric near-horizontal transmission system. Since
the recovery accuracy of SHWS is limited, the phase screen has
more detailed phase structure information than the wavefront
recovered by SHWS, therefore, we use the phase screen as the
training data of our proposed RLFNet, which can improve the
generalization of the network model.

B. Network Model Setup

The principle of our proposed RLFNet applied to the AO
system is shown in Fig. 1. The SHWS is used to detect the
slope information of the wavefront, and then after wavefront
reconstruction, the control signal is output by the control system
with prediction model to drive the DM to produce deformation,
so as to compensate the actual distorted wavefront. In this paper,
we focus only on the implementation of the wavefront prediction
neural network model, which belongs to the open-loop predic-
tion process, so the present study procedure is shown by the solid
black arrows.

There are five key points in building a supervised network
model: input, output, loss function, label, and model structure
[31]. There is a trade-off between the network prediction time
and the number of wavefront predicted by the output. In order
to accommodate to the time delay of 2∼3 sampling periods in
most AO systems, in our RLFNet, we use consecutive wavefront
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Fig. 2. The model architecture of our proposed RLFNet. (a). The schematic diagram of the structure of our proposed RLFNet. (b). The schematic diagram of
our proposed RLFM.

of the first n frames as few as possible to predict the wavefront
of the n+2 frame. In order to select the most suitable network
input, we take n as 3, 4, 5, 6 and 7 respectively. We found that
when the input is 6 consecutive frames and later, the accuracy of
wavefront prediction remains basically unchanged. Considering
that more wavefront inputs tend to bring the problem of excessive
computation and the risk of overfitting, we finally selected 6
consecutive frames as the final input of our proposed network.
That is, the continuous wavefront from time t to t+5 is used as the
input of the network, and the distorted wavefront at moment t+7
is used as the output. Such an input-output setting can effectively
avoid both the problem of too much data being processed by the
network in a single pass and the wavefront latency for subsequent
DM compensation. The loss function of our network model uses
the L1_loss function, as follows:

L1_loss =
∑
i

∣∣∣y(i)predict − y(i)true

∣∣∣ (6)

Where y(i)predict is the predicted value of the distorted wave-
front at moment t and y(i)true is true value of the distorted wave-
front at moment t. The L1_loss function is used in our model

to minimize the sum of all the absolute value errors between
the true value and the predicted value. The smaller the value
of L1_loss, the closer the predicted value is to the true value,
which means that the prediction effect is better and the residual
RMS (RMSe) value between the predicted value and the true
value is smaller. Therefore, we choose RMSe as the evaluation
index of the prediction performance of our proposed RLFNet.

In our proposed RLFNet, as shown in Fig. 2(a), VGG19 [32] is
used as the backbone network, there is a residual learning fusion
module (RLFM) in our RLFNet. The redundant information
between two adjacent frames is eliminated by means of residual
learning, and then the refined features are extracted for fusion.
The process is shown as follows:

FI = σ (ω1 ∗ Concat (fi, fi+1) + b1) + fi (7)

Where σ represents the activate function, i.e., PReLU [33],
Concat(. . . , . . .) represents the concatenation operation [34],
(ω1, b1) denotes the weight and bias of a 1×1 convolutional
layer, and “∗” means convolutional operation.
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Fig. 3. The input and output settings of the training dataset of our proposed RLFNet.

We use the memory capability of the Convolutional Long
Short-term Memory (ConvLSTM) network [35] to predict the

output wavefront information at moment t+7 based on the con-
tinuous wavefront features from t to t+5, as shown in Fig. 2(b).
Finally, the features at all levels are fused again to obtain the
final prediction results. The process is shown as follows:

P̃1 = σ
(
ω2 ∗ Concat

(
F̃1, F̃2

)
+ b2

)
(8)

P̃2 = σ
(
ω3 ∗ Concat

(
F̃2, F̃3

)
+ b3

)
(9)

P̃3 = σ
(
ω4 ∗ Concat

(
F̃3, F̃4

)
+ b4

)
(10)

P̃4 = σ
(
ω5 ∗ Concat

(
F̃4, F̃5

)
+ b5

)
(11)

Where (ω2, b2), (ω3, b3), (ω4, b4), and (ω5, b5) denote the
weights and bias of a 1×1 convolutional layer. The final pre-
dicted value is P̃4.

III. NUMERICAL SIMULATION AND DISCUSSION

A. Data Generating

We use different values of D/r0 to simulate the distorted
wavefront with different atmospheric turbulence conditions,
D is set to 1m and the sampling frequency is set to 1 kHz.
According to the experimental environment, in the simulation,
we set the wavelength to 1064nm and considered five turbulent
layers, each of which is evenly distributed within 1km of the
transmission path and located in the middle of each segment. At
the transmit/receive altitude of about 10 m near the ground, the
wind speed is set to about 5.65 m/s, and the wind direction is set
randomly 0∼120 degrees to increase the diversity. According to

(2), at this time, C2
n is a certain value, that is C2

n = 1565e− 17.
However, in practice, it will be mainly affected by temperature
gradients under different weather conditions [36]. The experi-
mental measurement analysis shows that the variation of C2

n in
the area where our experimental system is located is generally
about an order of magnitude [36]. Therefore, according to (4),
five increasedC2

n values are selected in this range, that is, 0.1C2
n,

0.2C2
n, 0.5C2

n, 0.7C2
n and 1.0C2

n to simulate the atmospheric
turbulence intensity under different r0 conditions. The values of
r0 are 0.152, 0.100, 0.057, 0.047, and 0.038, that is, D/r0 are
6.58, 10.00, 17.54, 21.28, and 26.32, respectively.

We input the simulated 5 groups of distorted wavefronts under
different D/r0 into our proposed RLFNet at the same time to
improve the robustness of the network. For each dataset, we used
the continuous wavefront from time t to t+5 as the input to the
network, and the distorted wavefront at moment t+7 as the label.
10500 groups of data were generated under each D/r0 condition,
among which the first 10000 groups were used as training frames
and the last 500 groups were reserved to test the performance of
the model. That is, a total of 50000 groups of data were used as
our training dataset. This splitting of the training and test dataset
prevents the network model from learning the input information
of unknown data in advance. Fig. 3 more clearly represents the
input and output settings of the training dataset of our proposed
RLFNet.

B. Analysis of Simulation Results

The prediction performance of our proposed RLFNet at dif-
ferent D/r0 has been tested after training the network model. We
obtained the wavefront at the corresponding moment t+7 from
the continuous wavefront data at time t to t+5 in the simulated
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Fig. 4. The simulation results of our proposed RLFNet. (a) The RMS values of the predicted and true values of all frames within the test dataset. (b) The residual
RMS of the predicted and true values of all frames within the test dataset.

TABLE I
SIMULATION DATA RESULTS DISPLAY

test dataset and compared it with the pre-prepared labeled dataset
for analysis.

The RMSe of all frames within the test dataset to characterize
the prediction performance of our proposed RLFNet, as shown
in Fig. 4. In addition to that, we also employed the structural sim-
ilarity function (SSIM) to verify the structural similarity of the
prediction results with the real wavefront. Table I shows the RMS
value of the original distorted wavefront (Truth RMS), the RMS
value of the predicted distorted wavefront (Prediction RMS),
the RMSe, the ratio of the RMSe to Truth RMS (RMSe/Truth
RMS), and the SSIM for each test dataset. This result is based
on the average of all 500 frames from each test dataset.

The above results show that the larger the D/r0, the stronger
the atmospheric turbulence intensity, and the larger the RMSe.
But the RMSe/Truth RMS is basically stable at around 2.5%.
This indicates that our proposed RLFNet has a well prediction
performance of the distorted wavefront at different turbulence
intensities.

C. Ablation Studies

We conducted several ablation studies to demonstrate the
effectiveness of each component of our proposed RLFNet. The
two methods are built by removing the main part of our RLFNet,

respectively. The two methods used exactly the same training
dataset and test dataset as our RLFNet, the average RMSe value
and SSIM under different methods are intuitively shown in
Fig. 5.

More specifically, by comparing the results of the first method
without residual learning (expressed as w/o residual-learning)
with our RLFNet, we can clearly observe that the results of
the w/o residual-learning method are less accurate than those
of our RLFNet. This fully demonstrates that residual learning
can effectively improve the prediction performance. Secondly,
in order to verify the validity of ConvLSTM, the ConvLSTM
part was removed from RLFNet and the predicted wavefront
was obtained by general convolution method to ensure the con-
sistency of input/output dimensions. The method of removing
ConvLSTM (represented as w/o ConvLSTM) was compared
with our proposed method, and results showed that w/o Con-
vLSTM performed worse. This shows that ConvLSTM can use
its strong memory ability to well fuse the historical distorted
wavefront information with temporal features and obtain better
prediction results. The RMSe/RMS_Ture results of these meth-
ods are compared in Table II, which further demonstrates that
each component of our proposed method contributes to the final
prediction results.



8554310 IEEE PHOTONICS JOURNAL, VOL. 14, NO. 5, OCTOBER 2022

Fig. 5. The results of the ablation studies. (a) The average RMSe value under different methods. (b) The SSIM under different methods.

Fig. 6. The 1km laser atmospheric transmission system. (a) The schematic diagram of the experimental operating system. (b) Experimental system actual
installation.

TABLE II
COMPARISON OF THE RMSE/RMS_TURE RESULTS BY DIFFERENT MODULES IN ABLATION STUDIES

IV. EXPERIMENTAL VERIFICATION

A. Analysis of Experimental Results

Our proposed RLFNet performance was tested on data col-
lected by the 1km laser atmospheric transmission system, where
the laser source is a cooperative target and the collection method
is one-shot open-loop. The schematic diagram of the experi-
mental operating system for laser atmospheric transmission and
the experimental setup is shown in Fig. 6. The laser emitted
from the cooperative beacons first enters the telescope, which

is reoriented by the tilt mirror (TM) and subsequently cor-
rected for aberration by the DM. The beam is divided into
two beams by the spectroscope, one of which is directly out-
put to the Charge Coupled Device (CCD), and the other into
the SHWS, which measures the aberration. In this paper, we
are committed to the prediction of the distorted wavefront,
and do not conduct closed-loop correction experiments, so
the experimental data are derived from a one-shot open-loop
collection of the system, as shown in the red dashed box in
Fig. 6.



WANG et al.: DEEP LEARNING-BASED PREDICTION ALGORITHM ON ATMOSPHERIC TURBULENCE-INDUCED WAVEFRONT 8554310

Fig. 7. The experimental results of our proposed RLFNet. (a-b) When the D/r0 is 7.6, the comparison of RMS of all frames in the experimental test dataset
and the probability distribution of the residual RMS. (c-d) When the D/r0 is 13.6, the comparison of RMS of all frames in the experimental test dataset and the
probability distribution of the residual RMS.

We were provided with two groups of SHWS data with D/r0
of 7.6 and 13.6, both with a frame rate of 1 kHz and both
with a collection time of 10s. The relevant parameters of the
cooperative target and wavefront sensor in the experiment, as
well as the data estimated for some atmospheric conditions,
are shown in Table III. We used the mode method [37] for
wavefront recovery of SHWS data. In the recovery process, it
was found that when the zernike mode exceeded 104, the sum
of the absolute values of the zernike coefficients of each frame
remains roughly the same. Therefore, we only applied 104-
order Zernike mode for wavefront recovery of experimental data
according to experimental parameters. Since the beam jitter has
been suppressed by the TM based on CCD information during
open-loop data acquisition, the aberration of tilt and tip are not
considered in the wavefront recovery.

The presentation of the results for the two groups of exper-
imental data is based on a fine-tuned model. Fine-tuning is a
process in which a limited portion of a pre-trained network is
retrained on a particular dataset to improve its specificity to this
dataset [38]. This is because the nature of simulated data is quite
dissimilar from our experimental data, in that they are noiseless

TABLE III
THIS IS A SAMPLE OF A TABLE TITLE

models of frozen, discrete layers. The training of fine-tuning is
very fast due to the fact that the pre-trained network model has
learned the laws of feature extraction and successfully identified
the frozen flow part of the experimental data. We set aside
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Fig. 8. The results of the comparative experiment. (a-b) When the D/r0 is 7.6, in the case of two-frame latency and three-frame latency, the RMSe of two
comparison experiments and our proposed RLFNet. (c-d) When the D/r0 is 13.6, in the case of two-frame latency and three-frame latency, the RMSe of two
comparison experiments and our proposed RLFNet.

TABLE IV
EXPERIMENTAL DATA RESULTS DISPLAY

1200 frames of data as a test dataset and did not participate
in the training process, so the test dataset was not trained in
advance. Fig. 7 shows the comparison of RMS of all frames in
the two experimental test dataset and the probability distribution
of RMSe.

Table IV shows the Truth RMS, the RMSe, the RMSe/Truth
RMS and the average SSIM for the two groups of experimental
data. Again, this result is based on the average of all 1200 frames
within the test dataset.

B. Comparative Experiment

In order to verify the prediction performance of our proposed
RLFNet method, we conducted two groups of comparative

experiments. One group is a non-predictive method and the
other is a linear predictive method. The non-predictive method
is also done in a one-shot open-loop condition, where only the
recently collected wavefront is used to compensate for future
frames, regardless of delay. In other words, two-frame latency
system in which the wavefront collected at the moment t-2 is
used to compensate the frame at the most recent moment t.
We also conducted tests under the assumption of three-frame
latency system. Similarly, the three-frame latency system uses
the wavefront collected at the history moment t-3 directly to
compensate for the wavefront at the most recent moment t.
The linear predictive method to be compared in this paper is
based on the motion-estimation algorithm of module matching
(Motion-Estimation-MM). The motion direction of atmospheric
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Fig. 9. Performance comparison of two methods with our proposed RLFNet.

turbulence is estimated according to the wavefront recovery
image of the reference frame and the current frame, and then
the current frame is mobile-processed to predict the image of
the future frame [16]. This Motion-Estimation-MM adopts the
search strategy and matching criteria of Adaptive Cross Pattern
Search (ARPS) algorithm [39].

We use the same test dataset and prediction strategy to test
the two methods and compare them with our proposed RLFNet.
Fig. 8 shows the RMSe of all the same frames in the test dataset
of the two groups of comparison experiments and our proposed
RLFNet.

As can be seen from the test results of the comparative
experiments:

a) Our proposed RLFNet has a well prediction performance
of the distorted wavefront for different atmospheric tur-
bulence conditions. It proves that our network has a good
generalization capability, however, there is a slight degra-
dation in performance compared with the simulation data,
which is due to the uncertainty and randomness error of
the experimental data, as mentioned above.

b) The prediction performance of our proposed RLFNet and
Motion-Estimation-MM is better than the non-predictive
method, and our proposed RLFNet performs best because
the matching degree between the wavefront aberrations
detected by Motion-Estimation-MM and the frozen flow
hypothesis is uncertain, so it is difficult to adapt to the
changeable turbulence conditions.

As shown in the Fig. 9, we compared the average RMSe of all
frames in the test dataset for the three methods. In the two-frame
latency system, when the D/r0 is 7.6, the average RMSe of
our proposed RLFNet is 0.0237λ, and the average RMSe of
Motion-Estimation-MM is 0.0429λ. Compared with the non-
predictive method, the average RMSe of Motion-Estimation-
MM decreases about 15.6%, however, our proposed RLFNet
decreases about 53.3%. When the D/r0 is 13.6, the average
RMSe of Motion-Estimation-MM decreases about 15.7%, how-
ever, our proposed RLFNet decreases about 54.9%. When our
network is applied to a three-frame latency system, although

the average RMSe decreases, it shows a better performance
improvement. When the D/r0 is 7.6, the average RMSe of
our proposed RLFNet decreases about 55.7%, but the Motion-
Estimation-MM decreases only about 13.0%. When the D/r0
is 13.6, the average RMSe of our proposed RLFNet decreases
about 54.9%, but the Motion-Estimation-MM decreases only
about 15.2%.

It can be seen that our proposed RLFNet performs better when
the atmospheric turbulence is stronger, which is due to the fact
that when the atmospheric turbulence intensity is stronger, the
difference in structural similarity between two adjacent frames
is larger, and this is why our proposed RLFNet shows a better
performance. When the time delay of the system increases, the
difference between the compensated wavefront and the actual
wavefront also becomes larger, so our network performs better
in the three-frame latency system instead. Therefore, we believe
that there will be better performance improvements if the net-
work can predict up to frame t+8, which will be implemented
in the following work.

V. CONCLUSION

In this paper, we propose a novel wavefront prediction method
based on residual learning fusion network with high accuracy,
which aims to solve the latency problem of the traditional
AO system. The method eliminates the redundant information
between adjacent distorted wavefront frames due to temporal
features by residual learning, and then fuses the refined features
at all levels to obtain the predicted wavefront. The simula-
tion results show its effectiveness and generalization ability,
and its performance is testified from data collected on the
1km laser transmission atmospheric transmission experimental
setup. The results show that the proposed method leads to an
average RMSe reduction up to 53% for both different atmo-
spheric turbulence conditions compared to the non-predicted
method. Proposed method has potential to solve latency prob-
lem in a close-loop AO system, which can improve correction
bandwidth significantly.



8554310 IEEE PHOTONICS JOURNAL, VOL. 14, NO. 5, OCTOBER 2022

REFERENCES

[1] G. Sivo, C. Kulcsár, and J.-M. Conan, “First on-sky SCAO validation of
full LQG control with vibration mitigation on the CANARY pathfinder,”
Opt. Exp., vol. 22, no. 19, pp. 23565–23591, 2014.

[2] D. L. Fried, “Time-delay-induced mean-square error in adaptive optics,”
JOSA A, vol. 7, no. 7, pp. 1224–1225, Jul. 1990.

[3] C. Kulcsár, H.-F. Raynaud, and C. Petit, “Minimum variance prediction
and control for adaptive optics,” automatica, vol. 48, no. 9, pp. 1939–1954,
Sep. 2012.

[4] Z. J. Yan, X. Y. Li, and C. H. Rao, “Numerical simulation of a prediction
control algorithm for close-loop adaptive optical system,” Acta Optica
Sinica, vol. 31, no. 1, Jan. 2011, Art. no. 0101003.

[5] C. Liu, L. F. Hu, and Q. Q. Mu, “Modal prediction for open-loop liquid-
crysta adaptive optics systems,” Acta Physica Sinica, vol. 61, no. 12, 2012,
Art. no. 129501, doi: 10.7498/aps.61.129501.

[6] M. D. Wiberg, C. E. Max, and D. T. Gavel, “A spatial non-dynamic LQG
controller: Part I, application to adaptive optics,” in Proc. 43rd IEEE Conf.
Decis. Control, 2004, pp. 3326–3332.

[7] M. D. Wiberg, C. E. Max, and D. T. Gavel, “A spatial non-dynamic LQG
controller: Part II, theory,” in Proc. 43rd IEEE Conf. Decis. Control, 2004,
pp. 3333–3338.

[8] P. Douglas, “Linear-quadratic-Gaussian control for adaptive optics sys-
tems using a hybrid model,” JOSA A, vol. 26, no. 1, pp. 1–9, Dec. 2009.

[9] C. Petit et al., “Kalman-filter-based control for adaptive optics,” in Proc.
Advancements Adaptive Opt., Oct. 2004, pp. 1414–1425.

[10] M. Gray et al., “Local ensemble transform Kalman filter, a fast non-
stationary control law for adaptive optics on ELTs: Theoretical aspects
and first simulation results,” Opt. Exp.., vol. 22, no. 17, pp. 20894–20913,
Aug. 2014.

[11] P. Massioni, C. Kulcsár, H.-F. Raynaud, and J.-M. Conan, “Fast computa-
tion of an optimal controller for large-scale adaptive optics,” J. Opt. Soc.
Amer. A, vol. 28, no. 11, pp. 2298–2309, Oct. 2011.

[12] L. Poyneer, B. A. Macintosh, and J. Véran, “Fourier transform wavefront
control with adaptive prediction of the atmosphere,” JOSA A, vol. 24, no. 9,
pp. 2645–2660, Jul. 2007.

[13] L. C. Johnson, D. T. Gavel, and D. M. Wiberg, “Bulk wind estimation and
prediction for adaptive optics control systems,” JOSA A, vol. 28, no. 8,
pp. 1566–1577, Jul. 2011.

[14] O. Guyon and J. Males, “Adaptive optics predictive control with empirical
orthogonal functions (EOFs),” Jul. 2017, arXiv: 1707.00570.

[15] L. Poyneer and J.-P. Véran, “Predictive wavefront control for adaptive
optics with arbitrary control loop delays,” JOSA A, vol. 28, no. 8,
pp. 1486–1496, Jun. 2008.

[16] X. Zhou and X. Y. Li, “Wavefront distortion prediction method based
on motion estimation,” Opto-Electron. Eng., vol. 48, no. 10, 2021,
Art. no. 210288.

[17] M. A. Chen, X. Q. Jin, S. B. Li, and Z. Y. Xu, “Compensation of turbulence-
induced wavefront aberration with convolutional neural networks for FSO
systems,” Chin. Opt. Lett., vol. 19, no. 11, Nov. 2021, Art. no. 110601.

[18] Y. M. Guo et al., “Adaptive optics based on machine learning: A review,”
Opto-Electron. Adv., vol. 5, 2022, Art. no. 200082.

[19] J. G. Chen, V. Shah, and L. L. Liu, “Performance of a U-Net-based
neural network for predictive adaptive optics,” Opt. Lett., vol. 46, no. 10,
pp. 2513–2516, May 2021.

[20] X. Y. Shi, Y. Feng, and Y. Chen, “Predicting control voltages of deformable
mirror in adaptive optics system,” High Power Laser Part. Beams, vol. 24,
no. 6, pp. 1281–1286, Jun. 2012.

[21] Z. J. Yan and X. Y. Li, “Neural network prediction algorithm for control
voltage of deformable mirror in adaptive optical system,” Acta Optica
Sinica, vol. 30, no. 4, pp. 911–916, Apr. 2010.

[22] Y. Chen, “Voltages prediction algorithm based on LSTM recurrent neural
network,” Optik, vol. 220, no. 16, pp. 4869–4880, Oct. 2020.

[23] P. Lara-Benítez, M. Carranza-García, and J. C. Riquelme, “An experimen-
tal review on deep learning architectures for time series forecasting,” Int.
J. Neural Syst., vol. 31, no. 3, Feb. 2021, Art. no. 2130001.

[24] S. Matthias and J. Earl, “Method for a quantitative investigation of the
frozen flow hypothesis,” JOSA A, vol. 17, no. 9, pp. 1650–1658, Sep.
2000.

[25] L. Poyneer, M. V. Dam, and J. P. Véran, “Experimental verification of the
frozen flow atmospheric turbulence assumption with use of astronomical
adaptive optics telemetry,” JOSA A, vol. 26, no. 4, pp. 833–846, Mar. 2009.

[26] E. Gendron and P. Léna, “Single layer atmospheric turbulence demon-
strated by adaptive optics observations,” Astrophys. Space Sci., vol. 239,
no. 2, pp. 221–228, Sep. 1996.

[27] B. Kern, T. A. Laurence, C. Martin, and P. E. Dimotakis, “Temporal
coherence of individual turbulent patterns in atmospheric seeing,” Appl.
Opt., vol. 39, no. 27, pp. 4879–4885, Sep. 2000.

[28] Z. H. Li and X. Y. Li, “Performance of predictive correction foe adaptive
optics systems with frozen flow turbulence,” Opt. Precis. Eng., vol. 26,
no. 3, pp. 548–555, 2018.

[29] A. N. Kolmogorov, “The local structure of turbulence in incompressible
viscous fluid for very large reynolds numbers[J],” Proc. Roy. Soc. London.
Ser. A: Math. Phys. Sci., vol. 434, no. 1890, pp. 9–13, 1991.

[30] J. Y. Wang, X. C. Liu, R. Z. Rao, and Z. B. Gong, “Measurement of
atmospheric coherence length in daytime and at night,” High Power Laser
Part. Beams, vol. 16, no. 1, pp. 1–4, 2004.

[31] W. D. Xiang, P. Yang, S. Wang, B. Xu, and H. Liu, “Underwater image
enhancement based on red channel weighted compensation and gamma
correction model,” Opto-Electron. Adv., vol. 1, 2018, Art. no. 180024.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in Proc.
IEEE Int. Conf. Comput. Vis., 2015, pp. 1026–1034.

[33] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[34] S. Ma, N. Wang, L. C. Zhu, W. Shuai, Y. Ping, and X. Bing, “Light
field depth estimation using weighted side window angular coherence[J],”
Opto-Electron. Eng., vol. 2021, vol. 48, no. 12, 2021, Art. no. 210405.

[35] X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo, “Con-
volutional LSTM network: A machine learning approach for precipita-
tion nowcasting,” Adv. Neural Inf. Process. Syst., vol. 28, pp. 802–810,
2015.

[36] G. Sun, N. Q. Weng, and L. M. Xiao, “Statistical characteristics of vertical
distribution of atmospheric strucure constant of refractive index Cn2,”
J. Atmos. Environ. Opt., vol. 6, no. 2, Mar. 2011.

[37] O. Soloviev and G. Vdovin, “Hartmann-Shack test with random masks
for modal wavefront reconstruction,” Opt. Exp., vol. 13, no. 23,
pp. 9570–9583, Nov. 2005.

[38] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2014, pp. 580–587.

[39] B. Biswas, R. Mukherjee, and I. Chakrabarti, “A high-speed VLSI archi-
tecture for motion estimation using modified adaptive rood pattern search
algorithm,” Circuits Syst. Signal Process., vol. 37, no. 10, pp. 4548–4567,
2018.

https://dx.doi.org/10.7498/aps.61.129501


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


