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Convolutional Neural Network for Phase-Only
Hologram Optimization Based on the Point Source

Method With the Holographic Viewing-Window
Yun Chen , Tianshun Zhang , Minjie Hua , Mingxin Zhou , and Jianhong Wu

Abstract—An optimization algorithm for phase-only hologram
(POH) based on the point source method (PSM) with the holo-
graphic viewing-window (HVW) by using a convolutional neural
network (CNN) is proposed. The network training adopts an unsu-
pervised strategy that maps the target image to optimized constant
phases (OCPs) corresponding to the wavefront of each point source
instead of random constant phases (RCPs), and then the optimized
POH can be obtained by wavefront superposition. The simulation
and experimental results show that the speckle noise of the re-
construction is significantly suppressed compared with the initial
random phase method (RPM), which demonstrates the feasibility
of the proposed method and shows a strong generalization ability
of the trained CNN. The HVW of a holographic near-eye display
(NED) has a continuous observation range of about 6 mm in the
horizontal direction without using additional optical expansion
elements, and a complete high-quality image can be observed within
this range.

Index Terms—Holography, convolutional neural network, point
source method, holographic viewing-window.

I. INTRODUCTION

HOLOGRAPHIC display technology has been widely used
in the research of augmented reality (AR) and near-eye

displays (NED) in recent years [1], [2]. Since the spatial light
modulator (SLM) can only modulate amplitude or phase, the
encoding methods of computer-generated hologram (CGH) can
be divided into amplitude-type and phase-type. The phase-type
has higher diffraction efficiency without the conjugate image
and the space bandwidth product (SBP) is not theoretically
sacrificed, so it is very suitable for holographic display.

The essence of how to encode a phase-only hologram (POH)
is an ill-posed problem, which the same purpose of different
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algorithms is to obtain a more optimal solution that can recon-
struct high-quality images. Common optimization algorithms
are mainly divided into iterative and non-iterative algorithms.
Iterative algorithms mainly include the Gerchberg-Saxton (GS)
algorithm [3], [4], the gradient descent algorithm [5], and the
Wirtinger algorithm [6], which all take a lot of time to calculate.
Non-iterative algorithms mainly have complex amplitude modu-
lation (CAM), error diffusion [7], and so on. The commonly used
CAMs are the double phase method [8]–[10] and the hologram
bleaching method [11], [12], which achieve high-quality images
at the expense of the SBP.

The most important step before the encoding is to calculate
the wavefront of the target object, which is mainly divided into
the point source method (PSM) [13], the polygon-based method
[14], and the layer-based method [15]. Among them, the basic
principle of the PSM is to decompose the target object into a
series of self-luminous point sources, and then superimposes
the wavefront of each point source on the hologram plane to
obtain the wavefront information of the target object. Since the
PSM can reconstruct objects with fine structures and is easy
to express visual effects such as lighting and occlusion, it is
widely used in holographic displays. The PSM often uses the
CAM and the initial random phase method (RPM) [16], [17]
to encode the wavefront. Compared with other methods, the
RPM is simpler and theoretically does not sacrifice the SBP. It
adds random constant phases (RCP) (0∼2π) to the phase of the
wavefront of each point source to alleviate the distortion of the
reconstructed intensity due to directly removing the amplitude of
the complex field. But this method will make the reconstructed
image serious speckle noise. For the optimization of POH, these
constant phases are free variables that can change the phase
distribution on the hologram. If suitable constant phases can
be found, we may be able to obtain the optimized POH that
can suppress speckle noise. These constant phases are called
optimized constant phases (OCPs) in this paper.

In addition, most existing holographic NEDs used multiple
viewpoints to expand eyebox to observe reconstructed images
[18]–[21]. The crosstalk may occur during observation due to
discontinuous viewpoints. And these works usually use ad-
ditional optical expansion elements like holographic optical
elements (HOEs) to generate multiple viewpoints [22], which
could introduce some aberrations into these optical systems. We
can actually use the characteristics of wavefront superposition
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of the PSM to solve the above problems. If we can guarantee that
each point of the hologram contains wavefront information of all
point sources, which means that the common area of wavefront
superposition is the hologram, then according to the principle of
reversibility of light, the complete reconstructed image can be
observed continuously and naturally within the hologram just
like we look at the outside scenery through the window. The
hologram that is generated by the PSM with the above feature is
called holographic viewing-window (HVW) in this paper. It is
obvious that for holographic NED, the HVW can be considered
as the eyebox without using expansion elements. However, the
holograms generated in many existing works using the PSM are
composed of an array of zone plates or sub-holograms and are
not the above common area [23], [24], so they can only observe
the reconstructed image through the viewpoint that is usually
generated by an eyepiece.

Recently, deep learning has been successfully applied to holo-
graphic displays, which can provide high-speed and high-quality
image reconstruction [25], [26]. Especially for optimizing the
POH, deep learning is undoubtedly a powerful tool, and a lot
of interesting work has been carried out in this area [27]–[29].
These works mainly use the unsupervised strategy to train the
neural network, which directly maps the target image to the
phase distribution on the hologram plane by incorporating the
process of numerical diffraction into the training [30]. However,
these direct mapping methods are not specifically designed for
the PSM, so the OPCs for each point source and the wavefront
superposition on the hologram plane are not introduced in the
training. In other words, that there is no unsupervised method
to predict OCPs for the PSM in the existing studies.

In this paper, we proposed a novel optimization method for
the POH based on the PSM with the HVW by training a CNN.
The unsupervised strategy is used to train the network, which
maps the target image to the OCPs (0∼2π) corresponding to
the wavefront of each point source to obtain the optimized
POH. In the simulation and experiment sections, we compare
the reconstruction results by the proposed method with those by
the RPM on the training set and test set, respectively, which
better shows the feasibility of the proposed method and the
strong generalization ability of the trained CNN. Finally, the
experimental results of observing the reconstructed image with
no serious speckle noise at multiple locations within the HVW
are given, which provides a continuous and natural observation
method for holographic NED.

II. PRINCIPLE AND METHOD

A. The Principle of the HVW

Fig. 1(a) shows the wavefront of each point source, where
each wavefront is on-axis and has the same size in the x and
y direction, the size of each wavefront is LW. The process of
wavefront superposition on a certain plane is shown in Fig. 1(b),
where five wavefronts from a 2D target image are selected as an
example to show the process. The green box is used to represent
the target image and its size is Lo, the common area of the
wavefront superposition is marked with a red box and its size
is LHVW. Note that each point of the common area contains

Fig. 1. The principle of the HVW. (a) The on-axis wavefront of each point
source. (b) The wavefront superposition of point sources on a certain plane,
where LW = Lo+LHVW. (c) The complete reconstructed image can be seen
within the HVW from the perspective of light rays.

Fig. 2. The details of the training process of the CNN. (a) The training process
of the network. (b) Wavefront superposition by using the convolution. (c) The
structure of the U-Net model.

wavefront information of all point sources, which means that
if a hologram of a target image is the above common area, a
complete reconstructed image can be observed within the area.
Then such a hologram is called HVW in this paper. Besides,
from the above description and Fig. 1(b), it is obvious that the
size of each wavefront is the sum of the size of the target image
and the size of the hologram (HVW), that is, LW = Lo+LHVW.
This relationship is a necessary condition for the existence of the
HVW for the proposed method. Note that Lo can be larger than,
smaller than, or equal to LHVW. Moreover, the principle of the
HVW can also be explained from the perspective of rays shown
in Fig. 1(c), where the rays emitted from different point sources
are represented by different colors. If each point of the hologram
is formed by the convergence of light emitted by all point sources
of the object, according to the principle of reversibility of light, a
complete reconstructed image can be seen within the hologram.

B. The Details of the Training Process of the CNN

The training process of the CNN is shown in Fig. 2(a), where
the input is the amplitude of the target image and the network



CHEN et al.: CONVOLUTIONAL NEURAL NETWORK FOR PHASE-ONLY HOLOGRAM OPTIMIZATION 5243307

model adopts the U-Net that consists of five down-sampling
blocks and five up-sampling blocks as shown in Fig. 2(c). Each
down-sampling block consists of two convolution layers, two
batch normalization layers, two activation layers (ReLU), and
a pooling layer. A transposed convolution layer is added to the
up-sampling block to increase the resolution and make the input
and output matrices equal in size. The output layer adopts the
Sigmoid function so that the output range can be easily converted
to [0, 2π]. Then the output of the network is the OCP matrix that
is directly mapped by the target amplitude as shown in Fig. 2(a).
Note that each phase value in the OCP matrix has a one-to-one
correspondence with each amplitude value in the input matrix
due to the powerful ability of convolution layers to extract
features. Each OCP needs to be added to the phase of the corre-
sponding wavefront instead of the RCP [16], and then the POH
can be obtained by extracting the phase after superimposing all
wavefronts, which is shown in the red dotted box in Fig. 2(a).
The expression of the phase distribution on the hologram plane
considering the paraxial approximation is as follows:

φholo(x, y) = arg

{
S∑

i=1

A(xoi, yoi)

ri
exp [j(kri + φOCPi

)]

}

(1)
where S is the number of point sources, A(xoi, yoi)
is the amplitude of each point source, ri =√
(x− xoi)

2 + (y − yoi)
2 + z2i , zi is the distance from each

point source to the hologram plane, φOCPi
is the OCP value

corresponding to each point source, k is the wave number, j is
the imaginary unit, and arg{∗} is the extraction phase operation.
Besides, if the complete reconstructed image can be seen within
the HVW while can avoid the aliasing error on the reconstructed
image plane, the distance zi is limited by the pixel pitch of the
SLM needs to satisfy the following relationship [12]:

zi ≥ pLW

λ
(2)

where p is the sampling interval of the hologram, LW is the size
of the wavefront of each point source, and λ is the wavelength.

To speed up the wavefront superposition, the fast convolution
method that exploits the space translation invariance of the
wavefront of the point source is used to calculate the complex
amplitude as shown in Fig. 2(b). To ensure the existence of the
common area (HVW), here the size of the wavefront of each
point source is set to be twice the size of the target image,
which satisfies the condition proposed in II. A. And it also
means that the size of each wavefront is twice the size of the
hologram. Due to the convolution operation, the zero-padding
needs to be used on the target image to make it the same size
as each wavefront. Then the result of the convolution operation
is cropped to a complex field U(x, y) that has the same size as

the hologram. The phase distribution on the hologram of a 2D
image is equivalent to (1), which the expression based on the
convolution is as follows, (3) shown at the bottom of this page,
where φOCP is the OCP matrix, � represents the convolution
operation, r =

√
x2 + y2 + z2, and z is the distance between

the hologram plane and the object plane, which the distance
needs to satisfy (2).

Next, the reconstructed image can be obtained by numerical
Fresnel diffraction of the POH as shown in Fig. 2(a). The nor-
malized mean square error (NMSE) is used as the loss function
to calculate the loss between the reconstructed intensity and
the target intensity, and the loss is propagated backward to the
U-Net to continuously update parameters including weights and
biases, which make the training loss smaller and eventually reach
a stable state during the training. Then the optimized POH can be
obtained by the trained CNN. The expression of the loss function
is as follows:

L(I, I ′) =
1

MN

M∑
m=1

N∑
n=1

[I(m,n)

− μI ′(m,n)]2, μ =

∑M
m=1

∑N
n=1 I(m,n)∑M

m=1

∑N
n=1 I

′(m,n)
(4)

where I and I′ are the normalized intensities of the target image
and the reconstructed image, respectively, M×N is the number
of point sources of the target image, and μ is a coefficient to
ensure energy conservation between the target intensity and the
reconstructed intensity. Compared with the MSE, the value of
NMSE does not oscillate sharply and converges faster during
training.

It should be pointed out that in the whole training process
mentioned above, the output of the network is only the OCPs
that act as free variables to change the phase distribution on
the hologram, so the independence of the wavefront of each
point source and the existence of the HVW will not be destroyed
during multiple epochs of the training.

III. NUMERICAL SIMULATIONS

The proposed neural network is implemented in Python 3.6
based on the PyTorch 1.10.0 platform on a computer with an Intel
Core i9-9900K CPU (32GB RAM), and an NVIDIA GeForce
RTX 2080Ti GPU (10GB VRAM) with CUDA 11.4. We used
800 images as a training set, 100 images as a validation set, and
100 images as a test set. These target images were obtained from
the DIV2K dataset [31]. Due to the limitation of GPU memory,
we need to convert these target images with 2K resolution into
512×512 grayscale images by center cropping. The point source
interval is 8 μm, the sampling interval on the hologram is 8 μm,
the resolution of the hologram is 512×512, the wavefront of each
point source has 1024×1024 pixels, the wavelength is 532 nm,

φholo = arg

⎧⎪⎨
⎪⎩
⎡
⎣[A(xo, yo) exp(jφOCP )] zero−

padding:
Lo→LW

⊗ exp(jkr)

r

⎤
⎦

cropping:
LW→LHV W

⎫⎪⎬
⎪⎭ (3)
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Fig. 3. The curves of loss value during the training with 3000 epochs using
800 images. The red line is the training loss and the black dotted line is the
validation loss.

Fig. 4. Simulation results using the training set. (a)–(c) Three 512×512 target
images from the training set. (d)–(f) The reconstructed images by the RPM.
(g)–(i) The reconstructed images by the proposed method, which the OCPs are
obtained by specific optimization based on the CNN.

and the reconstruction distance is 124 mm which satisfies (2).
Taking into account the GPU performance, the batch size of the
network is 4, the network parameters are updated using the Adam
optimizer with a learning rate set to 0.0001, and the training
period of the network is set to 3000 epochs. Fig. 3 shows the
curves of the training loss and the validation loss, respectively.
Due to the small batch size, the training loss oscillates slightly.
The change of the loss value becomes stable after 1000 epochs,
which takes about 15 h. Then an optimized POH is generated in
1.3 s, which includes the time to predict the OCPs by the trained
CNN and the time to implement wavefront superposition.

Firstly, to demonstrate the feasibility that OCPs for optimizing
POH and better show the great improvement in image quality
after 3000 epochs training, the numerical simulation results
compared with those by the RPM are shown in Fig. 4, which the
three 512×512 target images are adopted from the training set.
This means that the OCPs for each target image in the training set

Fig. 5. Simulation results using the test set. (a)–(c) Three 512×512 target
images from the test set. (d)–(f) The reconstructed images by the RPM. (g)–(i)
The reconstructed images by the trained CNN. (j)–(l) The same target images
are reconstructed by specific optimization.

are obtained by specific optimization instead of predicting it by
the trained CNN, which the training process can be considered
as an iterative optimization. Note that the peak signal-to-noise
ratio (PSNR) and the structural similarity index measure (SSIM)
are used to evaluate the image quality, and the speckle contrast
(SC) [32] is used to measure the speckle noise. Since the SC is
sensitive to the area with uneven intensity distribution, the area
with uniform intensity distribution of the target image should be
selected for evaluation. Compared with the results by the RPM,
the PSNR of the reconstructed images by specific optimization
is improved by 64.8%, 60.7%, and 114.4%, and the SSIM is
improved by 60.4%, 73.8%, and 159.2%, respectively. Besides,
the partial areas marked in red boxes were used to calculate SC
in Fig. 4(d)–(i), and the SC of the proposed method is reduced
by 52.7%, 53.8%, and 66.7% compared with the results by
the RPM, respectively. For these enlarged images, the speckle
noise on the reconstructed images by the proposed method is
significantly suppressed. The partial areas marked with green
boxes are used to demonstrate the ability to reconstruct sharper
details and features.

Then, we arbitrarily select three 512×512 target images from
the test set to show the generalization ability of the above trained
CNN, which the corresponding OCPs are directly predicted. The
numerical reconstruction results by the RPM and those by the
trained CNN are given in Fig. 5(d)–(i), respectively. Compared
with the RPM, the PSNR of the reconstructed images by the
proposed method is improved by 53.5%, 45.2%, and 48.2%, the
SSIM is improved by 96.4%, 71.4%, and 87.9%, and the SC is
reduced by 48.6%, 40.6%, and 54.5%, respectively. From these
partially enlarged areas in Fig. 5(g)–(i), it can be observed that
even if the target images from the test set, the speckle noise on
the reconstructed image is also obviously suppressed. Besides, in
order to compare the results by the trained CNN with the results
by specific optimization, the OCPs for the same target images in
the test set can also be obtained by iterative optimization based
on the CNN, which the training period is also 3000 epochs. The
corresponding results are given in Fig. 5(j)–(l). Compared with
those by the trained CNN, the PSNR is improved by 46.4%,
19.5%, and 19.5%, the SSIM is improved by 29.1%, 15.0%, and
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TABLE I
EVALUATION OF THE PROPOSED METHOD AND THE RPM

Fig. 6. The experimental setup of the holographic NED system based on the
HVW.

27.4%, and the SC is reduced by 68.4%, 63.2%, and 33.3%,
respectively. The above results show that the generalization
ability of the trained CNN is limited compared with specific
optimization.

Moreover, using the trained CNN by 800 images, the average
PSNR and the average SSIM of the reconstructed images have
been greatly improved compared with those of the RPM, regard-
less of whether the target images are from the training set or the
test set, which the results are given in Table I. Compared with
the RPM, the average PSNR and average SSIM on the training
set are improved by 84.8% and 157.1%, respectively, while the
two values are improved by 48.8% and 100% on the test set,
respectively. These data again illustrate that the reconstruction
results by the trained CNN are worse than those by specific
optimization. Therefore, combining the above analysis of those
data in Fig. 5 and Table I, there are two application directions
of our proposed method as follows: 1) if we want to optimize
POHs in batches and obtain higher quality reconstructed images,
we can use target images as a training set, but it will take a lot
of time; 2) if we want to quickly obtain the optimized POHs
of target images outside the training set, we can use the trained
CNN to directly predict the OCPs for the target images, but
the image quality is slightly worse. Nevertheless, the structure
and parameters of our neural network model need to be further
optimized to improve its generalization ability.

IV. EXPERIMENTAL RESULTS

The experimental setup of the holographic NED system using
the HVW to observe the reconstructed images is shown in
Fig. 6. The used phase-only SLM (Holoeye Pluto VIS-016)
with 1920×1080 pixels, and 8 μm pixel pitch. The experi-
mental configuration has the same parameters as the numerical

Fig. 7. Experimental results using the training set. (a)–(c) The POHs by the
RPM. (d)–(f) The reconstructed images by the RPM. (g)–(i) The optimized
POHs are generated by the OCPs that are obtained by specific optimization
based on the CNN. (j)–(l) The reconstructed images by specific optimization.

simulation, which means that only a 512×512 area of the SLM
is used to load the POH and the reconstruction distance is 124
mm. The 4f system is used to filter out the zero-order noise and
translate the hologram to its back focal plane, for which a 1/4p
carrier frequency along the y direction needs to be added to
the hologram. The filter of the 4f system is a rectangular hole
that has the same size as the target frequency spectrum. Since
a field lens with a focal length that is half the reconstructed
distance is placed on the reconstructed image plane, we can pan
the hologram to the image plane of the field lens to obtain the
HVW.

Firstly, the experimental results by the RPM and those by
specific optimization are shown in Fig. 7, in which the used
three target images from the training set are the same as in the
numerical simulation. It is worth noting that these results were
taken with a camera at the center of the HVW. Fig. 7(a)–(c) and
(g)–(i) are the POHs generated by the RPM and the proposed
method, respectively. Since the RCPs are replaced by the OCPs,
the phase distributions on the hologram of the proposed method
are smoother than those of the RPM, which is an important
reason for suppressing speckle noise. Fig. 7(d)–(f) and (j)–(l)
show the reconstructed images by the two methods. Compared
with the RPM, the speckle noise of the reconstructed images by
specific optimization has been significantly suppressed, so that
the image quality has been greatly improved with the sharper
details in visual.

Then, the experimental results using the test set are shown in
Fig. 8, in which the three target images are the same as in the nu-
merical simulation. Fig. 8(a)–(c) are the POHs generated by the
RPM, Fig. 8(g)–(i) are the optimized POHs directly generated
by the trained CNN, and Fig. 8(m)–(o) are the optimized POHs
generated by specific optimization. The phase distributions of
the optimized POHs are also smoother than those of the RPM and
the optimized POHs by specific optimization have richer struc-
tures compared with those by the trained CNN. Moreover, the
reconstructed images by the trained CNN and those by specific
optimization are shown in Fig. 8(j)–(l) and (p)–(r), respectively,
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Fig. 8. Experimental results using the test set. (a)-(c) The POHs by the RPM.
(d)-(f) The reconstructed images by the RPM. (g)-(i) The optimized POHs
are generated by the OCPs that are predicted by the trained CNN. (j)-(l) The
reconstructed images by the trained CNN. (m)-(o) The optimized POHs are
generated by the OPCs that are obtained by specific optimization. (p)-(r) The
reconstructed images by specific optimization.

where the speckle noise is also obviously suppressed compared
with the results of the RPM in Fig. 8(d)–(f). The above results
show that the trained CNN has a strong generalization ability,
which the optimized POHs can reconstruct high-quality images
without serious speckle noise. Meanwhile, it can be clearly
observed that the reconstructed images have higher quality by
specific optimization, which the details are reconstructed more
finely.

Finally, the experimental results of the holographic NED by
using the HVW to observe the reconstructed images are shown in
Fig. 9. The experimental setup is still the optical system shown in
Fig. 6. We used the proposed method to generate the optimized
POH of the 512×512 target image “school badge”. Since the
pixel pitch of the SLM is 8 μm, the size of the HVW is about
4 mm×4 mm. Fig. 9(b)–(d) are the observation results taken by
the camera at the leftmost side, the center, and the rightmost
side of the HVW, respectively. As the camera moves, the two
reference objects “toy doll” move relative to the camera, but the
complete “school badge” can still be observed, which verifies
the feasibility of the HVW. Compared with the observation
based on viewpoints, the HVW has a continuous observation
range and a natural visual experience without using additional
optical expansion elements. Since the camera lens has a certain
aperture that is similar to the pupil, the actual observation range
is slightly larger. In the experiment, the camera can move about

Fig. 9. The experimental results of the holographic NED by using the HVW to
observe the image. The target image is the school badge of Soochow University.
(a) The 512×512 target image is the school badge of Soochow University. (b)
The camera is at the leftmost side of the HVW. (c) The camera is at the center
of the HVW. (d) The camera is at the rightmost side of the HVW.

6 mm in the horizontal direction. It should be noted that a 1/4p
carrier frequency along the y direction is added to the hologram
to separate the target frequency spectrum from the zero-order
noise, so that the HVW loses half of the observation range in the
vertical direction.

V. CONCLUSION

To the best of our knowledge, this is the first study to op-
timize the POH based on the PSM by using the OCPs. The
CNN is trained by unsupervised learning to output the OCPs
corresponding to each point source, which can obtain the op-
timized POH to reconstruct the high-quality image without
serious speckle noise. We demonstrate the feasibility of the
proposed method and show a strong generalization ability of
the trained CNN by simulations and experiments, which the
reconstruction results compared with those by the RPM. Then
according to the reconstruction results by the trained CNN and
those by specific optimization, the two application directions of
our proposed method are pointed out, respectively. In addition,
since the wavefront superposition ensures the existence of the
HVW, so a continuous observation range of about 6 mm in the
horizontal direction can be obtained, and the observation method
will have great application prospects in the holographic NED.
The size of the reconstructed image is currently relatively small
due to the limitation of the SBP. In the future, multiple SLMs
will be spliced together to obtain a large-scale reconstructed
image while ensuring the existence of the HVW. Moreover, the
proposed method will be generalized to optimize the POHs of
3D images by designing an appropriate loss function.
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