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Abstract—Reconstructing high-quality images at low measure-
ment rate is one of the research objectives for single-pixel imaging
(SPI). Deep learning based compressed reconstruction methods
have been shown to avoid the huge iterative computation of tra-
ditional methods, while achieving better reconstruction results.
Benefiting from improved modeling capabilities under the con-
stant game of generation and identification, Generative Adversarial
Networks (GANs) has achieved great success in image generation
and reconstruction. In this paper, we proposed a GAN-based com-
pression reconstruction network, MPIGAN. In order to obtain
multiple prior information from the dataset and thus improving
the accuracy of the model, multiple Autoencoders are trained as
regularization terms to be added to the loss function of the gener-
ative network, and then adversarial training is performed with a
multi-label classification network. Experimental results show that
our scheme can significantly improve reconstruction quality at a
very low measurement rate, and reconstruction results are better
than the existing network.

Index Terms—Compressed sensing (CS), single pixel imaging
(SPI) system, photon counting, generative adversarial networks
(GAN), deep learning, multiple prior information.

I. INTRODUCTION

COMPRESSED sensing theory proposes that if the data is
sparse in a certain transform domain, the original signal

can always be reconstructed [1]–[3]. This theory has important
applications in many fields, and single-pixel imaging (SPI) is
one of them [4]–[9]. In the SPI system, the target is first imaged
on the DMD, then a series of masks is loaded onto the digital
micro-mirror device (DMD) to spatially modulate the image
of object, and finally a single-pixel detector with no positional
resolution receives the modulated light intensity. The image
of the target can be recovered using an algorithm based on
compressed sensing theory. Single-pixel imaging is promising to
be widely used in medical diagnosis, astronomical observation
and spectral measurement.
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Nevertheless, SPI requires plenty of time in sampling which
limits its application in real-time scenarios, thence reconstruct-
ing high-quality images at a low measurement rate is one of
the research objectives. According to different principles, recon-
struction algorithms can be divided into traditional mathematical
algorithms and deep-learning-based schemes. Traditional math-
ematical algorithms have high reconstruction accuracy, and the
typical representatives are OMP [10], GPSR [11], BCS [12],
TVAL3 [13] and so on. However, this type of methods has the
problem of slow reconstruction speed, and it is difficult to adapt
to more complex features. The machine-learning-based schemes
have faster reconstruction speed and higher imaging accuracy,
which can dynamically learn features of different sampled im-
age. With the rapid development of machine learning, many
excellent solutions have been derived [14]–[17]. In fact, other
networks for compressive reconstruction can also be applied to
single-pixel imaging tasks, which essentially solve the inverse
problem from low-dimensional signals to high-dimensional sig-
nals. In 2016, Kulkarni et al. proposed a CNN-based algorithm
named ReconNet [18], which trained an end-to-end model by
stacking convolutional blocks. In the same year, Yao et al.
proposed a DR2Net model with a residual structure [19], which
could effectively reduce the number of parameters and improved
the training speed while further improving the reconstructed
image details. However, the above-mentioned networks have
problems such as simple structure and poor anti-disturbance
ability of the network.

Generative Adversarial Network (GAN) is a deep learning
model proposed by Goodfellow et al. [20]. The model includes
a generation network and a discrimination network, which pro-
duce fairly good outputs through mutual game learning between
the two. GAN, as a new framework for generative model through
adversarial optimization, has been studied for reconstruction
of compressed sampled images. Wu et al. proposed DCS [21],
which combined compressed sensing and meta-learning to im-
prove the reconstruction effect, so that it can optimized the
operation efficiency and iteration number of GANs. Kabkab
et al. [22] proposed CSGAN, which used GAN as structural
constraints instead of sparsity to reduce the measurement rate
requirements. However, there are several problems in the above
studies: lack of image quality evaluation indicators, single prior
information, and differences between generated images and
actual images. Overall, both the lack of prior information and
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the uncertainty of the output limit the development of GANs for
single-pixel imaging tasks.

The essence of compressive reconstruction is to use prior
information to solve underdetermined equations. Prior informa-
tion includes sparse prior [23], [24], edge information prior,
Fourier prior [25], and Autoencoder prior [26], etc. Introducing
strong prior information is equivalent to adding constraints to the
feature space, which can enhance the quality of reconstructed
images effectively. Recent studies reported that adding prior
information to GAN could improve reconstruction accuracy.
Yang et al. proposed DAGAN [27], which combined the prior
information of multiple domains such as time and frequency
to train MRI images with GAN and achieved higher MRI im-
age reconstruction accuracy, showing us the potential for prior
information. Autoencoder can learn the representation of the
input information by taking the input information as the learning
target. Zhang et al. [28] proposed REDAEP, which used an Au-
toencoder to refine image priors on high-dimensional data and
introduces a mathematical iterative method to compute imaging,
indicating that Autoencoder priors have a strong driving effect
on image feature learning. The GAN is prone to generate images
that are inclined to a specific category when the prior information
is inclined in a certain direction. That is, the problem of mode
collapse may occur when the label training is introduced. We
believe that one of the main solutions to the above problems is to
increase the diversity of prior information, as sufficiently diverse
information can assist GAN to get out of the local optimum trap.

We regard including multi-scale and multi-level prior in-
formation to the GAN to pay attention to a more complex
feature environment, thereby improving the image reconstruc-
tion accuracy. Therefore, in this study, multiple Autoencoders
focusing on different types of information are trained as prior
information. On this basis, multi-label training and several other
optimizations methods are introduced to further improving the
imaging accuracy. In summary, the contributions of this study
are mainly in three aspects:

1) We proposed a GAN-based compression reconstruction
networks (MPIGAN and MPIGAN+). Different from ex-
isting studies, we add multiple Autoencoder priors and
auxiliary classifier losses to the loss function, resulting in
higher imaging accuracy and faster convergence.

2) Through theoretical analysis, we illustrate the working
principle of the Autoencoder regular term in GAN, and
prove that the Autoencoder regular term can accelerate
the gradient descent of GAN.

3) We test MPIGAN and MPIGAN+ on multiple datasets
and the single-pixel imaging system, respectively, and
obtain better imaging results than other networks. The
experiments demonstrate that our algorithm can recon-
struct the main features of images even at a very low
measurement rate.

II. THE PROPOSED NETWORK

In the single-pixel imaging, we denote the compression mea-
surement process as (1).

y = Sx+ q (1)

where x ∈ RN×1 is source signal, S ∈ RM×N is the sampling
matrix, M is the number of measurements, N is the source image
dimension, q is the noise generated during the sampling, and
y ∈ RM×1 is the measured value matrix. In general, the total
number of measurements (M) is much smaller than the total
number of pixels (N). This means that to restore x from y, one
needs to solve an inverse problem with far fewer equations than
the number of variables. With symbol G as the generator of a
GAN, we can express this inverse problem as (2).

x̂ = G (y) (2)

where x̂ ∈ RN×1 is the reconstructed images. The output of
the generator is sent to the discriminator, which continuously
compares the difference between x̂ and x. The generator’s job
is to generate images that can fool the discriminator, and the
discriminator’s job is to differentiate between the real images and
the generator’s output. The better the discriminator is trained, the
less likely it is to be fooled by the generator’s output.

A. Network Structure

In this section, we introduce the network structure of MPI-
GAN (Fig. 1). MPIGAN consists of a sampling network, a
generator, a discriminator, and multiple Autoencoders. We set
a fully-connected layer as sampling network, which will be
jointly trained with generator and discriminator. Previous net-
works usually use random matrices for image sampling, but it is
easy to lose key feature information and affect the accuracy of
reconstructed images. Therefore, we use a fully-connected layer
instead of a random matrix, which is jointly optimized with the
image reconstruction network. Related work shows [29] that
fully-connected layers for sampling not only ensure sufficient
weights to reconstruct images, but also reduce training time.
The generator is responsible for restoring the images from the
measurements to its original dimensions, upsampling the images
multiple times in a row. The measured value is first reconstructed
by a fully-connected layer (the first layer of generator), and
then enters the generator to obtain the reconstructed images x̂.
The original images x and the reconstructed images x̂ are fed
into the discriminator, respectively, and the binary classification
output and auxiliary classification output is obtained. As shown
in Fig. 1, the discriminator produces two losses, with lBinary(x)
corresponding to the binary classification loss and lMulti(x)
corresponding to the auxiliary classification loss. The denoising
Autoencoder (DAE) is a simple mapping network to represent
latent image features, consists of two fully-connected layers.
Descriptions of each part of the MPIGAN are detailed in the
Section II.B.

B. Loss Function Design

With letter D as the discriminator, we denote optimization
process of the GAN as (3).

min
G

max
D

Ex [logD (x)] + Ex̂ [log (1−D (x̂))] (3)

Here, D(x) and D(x̂) is the binary classification probability.
However, the loss function with min-max form is not conducive
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Fig. 1. Algorithm for our proposed GAN-based network with multiple priors (MPIGAN). Specifically, MPIGAN consists of an analog sampling network, a
generator, a discriminator, and multiple Autoencoders. Notedly, we set a total of three pretrained Autoencoders with variances of 0.05, 0.07 and 0.1, respectively,
and each of them has the same structure.

to using code implementation, so we rewrite the function using
cross entropy:

lBinary
G (x̂) = Ex̂ [H ([1, 0] , [D (x̂) , 1−D (x̂)])] (4)

lBinary
D (x, x̂) = Ex [H ([1, 0] , [ D (x) , 1−D (x)])]

+ Ex̂ [H ([0, 1] , [D (x̂) , 1−D (x̂)])] (5)

where lBinary
G (x) and lBinary

D (x, x̂) represent the loss functions
of the generator and discriminator, respectively, and H (p, q) =
−∑i pi log qi represents the cross entropy. In this way, (3)
can be transformed into two minimization problems. Because
(4) and (5) are implemented based on real/fake classification,
we call it binary classification loss. However, such a simple
classification has not paid attention to the deep image features, so
it is difficult for discriminator to distinguish real and fake images
with complex features. One of the problems with this is that the
loss function of GANs is difficult to train. Inspired by ACGAN
[30], other than retaining the original real/fake classifier, we add
auxiliary classifier under the discriminator.

Studies have shown that adding multi-label classifier could
help improving the network learning effect [30]–[33], which
could alleviate the problem of single type and poor diversity of
images generated by GAN, too. [34] further discussed how the
multi-label information works. Discriminator with multi-label
classifier is regarded as an implicit target class model, refin-
ing each generated image towards one of the specific classes,
which will help improve the image’s quality. As such, the use
of multi-label information can enhance the network ability to
gain complex features and enhance stability of loss function.
We incorporate auxiliary classifiers to help MPIGAN to extract
deep features, enriching the details of reconstructed images.
We assumed images to possess a total of K categories, so the
auxiliary classification loss can be expressed as:

lMulti
G (x, x̂) = Ex̂ [H (T (x) , DC (x̂))] (6)

lMulti
D (x) = Ex [H (T (x) , DC (x))] (7)

where DC(x) = {DC1(x), DC2(x), . . . , DCi(x), . . . ,
DCK(x)}, T (x) = {T1(x), T2(x), . . . , Ti(x), . . . , TK(x)}
with Ti (x) = 1 if x ∈ class i and Ti (x) = 0 if x /∈ class i.
lMulti
G (x, x̂) and lMulti

D (x) are the auxiliary classifier losses
for the generator and discriminator, respectively. DC(x̂) and
DC(x) are the class label prediction outputs of the discriminator
for the reconstructed images and the original images, assigning
a probability to each class. Since (4) to (7) are designed based
on the adversarial structure of GAN, we call them adversarial
loss.

However, optimizing a GAN using adversarial loss alone
would require a large number of iterative steps and much time to
finally produce high-quality images. With the growth of training
data size and network size, it is unrealistic to obtain the best
results in a limited time. Usually, using MSE as the loss can get
images of better quality in a short time. Therefore, we consider
adding the MSE loss to speed up the training of the GAN:

lMSE (x, x̂) = 1
N

N∑
i=1

(xi − x̂i)
2 (8)

We noticed that MSE tends to produce blurry output and is
hard to recover high frequency contents in the image, which is
bad for reconstructing images with complex features. We thus
consider ways to introduce prior information so as to supply
high frequency contents into the reconstructed images.

Bigdeli et al. [26] further studied the properties of DAE and
proposed that DAE Fση

(x) have the following mathematical
relationship with the image data density p:

Fση
(x) =

Eη[p(x−η)(x−η)]
Eη [p(x−η)] (9)

where η is Gaussian noise with variance ση. As observed by
(9), output of the self-encoder is equivalent to the local average
of the image x. It is further proved that when the noise has a
Gaussian distribution, the Autoencoder error is proportional to
the log-likelihood gradient of the smoothing density:

Fση
(x)− x = σ2

η ∇logEη [p (x− η)] (10)
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The Autoencoder error guides the feature space to the con-
fidence interval that maximizes the probability density distri-
bution of the image, so that the Autoencoder finally learns the
probability distribution of the training images. Inspired by (10)
that introducing the Autoencoder as prior information into the
network can supplement the missing details in the reconstructed
image, we thus use two-norm error as the regularizer term:

l
ση

DAE (x) =
∥∥x− Fση

(x)
∥∥2
2

(11)

Each of Autoencoder error denoted by (11) is a vector pointing
in the direction of real image’s maximum probability density,
supplementing missing details in reconstructed images. Dif-
ferent Autoencoders are trained by different noise variance,
forcing the MPIGAN to focus on the distribution of image
data at different scales and targeting at introducing multi prior
information. Combining the above loss functions, we propose
the loss function of the MPIGAN:

lG (x, x̂) = λ1 lMSE (x, x̂)+λ2l
Binary
G (x̂) + λ3l

Multi
G (x, x̂)

+ λ4l
ση1

DAE (x) + λ5l
ση2

DAE (x) + λ6l
ση3

DAE (x)
(12)

lD (x, x̂) = λ2 l
Binary
D (x, x̂) + λ3l

Multi
D (x) (13)

Where λ1 to λ6 are the weight coefficients to balance each
loss, respectively.

C. Network Training

The training process can be divided into two parts: Autoen-
coder training and MPIGAN training.

Autoencoder consists of encoder and decoder. The training
of the autoencoder is a process to optimize the encoder weights
θe and decoder weights θd. To ensure that the Autoencoder
error is kept to a minimum stably during training, we pretrained
each autoencoder with different noise variances, and froze its
weights when MPIGAN is training. We denote the images input
with noise as (14).

xnoise = x+ η (14)

Each autoencoder is trained to minimize the (15).∥∥x− Fση

(
xnoise

)∥∥2
2

(15)

In our experiment, we trained each Autoencoder with 100
epochs. The details of autoencoder training are listed in Algo-
rithm 1.

The training of MPIGAN includes generator training and
discriminator training. We then freeze all pretrained autoen-
coder’s weights and reload them when MPIGAN is training. The
discriminator weights and three DAE errors are frozen when we
train the generator using (12) as loss function. At the same time,
we will freeze the generator weights when discriminator is train-
ing using (13) as loss function. The generator and discriminator
are trained alternately until the minimum weight of generator
θG is obtained. The details of MPIGAN training are listed in
Algorithm 2.

Importantly, since the loss function consists of multiple parts,
it is necessary to balance the contribution of each part during

Algorithm 1: Autoencoder training.
Initialize encoder weights θe and decoder weight θd.
for number of epoch do:

for number of batches do:
-Sample minibatch of m samples {x1, x2, . . . , xm}.
-Compute xnoise

i = xi + η.
-Compute coded value Fση

(xnoise
i ).

-Update the θe and θd to minimize the loss (15):
argmin
θe,θd

‖xi − Fση
(xnoise

i )‖22
end for

end for
Get θe and θd.

Algorithm 2: MPIGAN algorithm.
MPIGAN training process:
Restore the Autoencoder weights: θe and θd.
Initial the weights of sampling network, generator and
discriminator: S, θG and θD.
for number of epoch do:

for number of batches do:
- Sample minibatch of m samples {x1, x2, . . . , xm}.
- Compute yi = Sxi, x̂i = G(yi), Fσ1, Fσ2 and
Fσ3.

- Freeze the discriminator weights.
- Update the generator and sampling network to
minimize lG(xi, x̂i) loss.
argmin
θG,θS

λ1lMSE(xi, x̂i) + λ2l
Binary
G (x̂i) +

λ3l
Multi
G (xi, x̂i)

+λ4l
ση1

DAE(xi) + λ5l
ση2

DAE(xi) + λ6l
ση3

DAE(xi)
- Freeze the generator weights.
- Update the discriminator to minimize lD(xi, x̂i) loss.

argmin
θD

λ2l
Binary
D (xi, x̂i) + λ3l

Multi
D (xi)

end for
end for
MPIGAN testing process:
Restore the weights of sampling network and generator:
S, θG.

- Compute the reconstructed images:
x̂i = G(Sxi)

Get x̂i.

training to ensure the stability of the training. According to
the observation of the experimental results, we have adjusted
the coefficients of the regular terms in time. We found that the
stability of the network is the best when the values of each part
of the loss function are of the same order of magnitude.

D. Working Principle of the Autoencoder Regular Term

In subsequent experiments, we found that the images gen-
erated by MPIGAN had higher accuracy than that of other
networks, and obtained higher PSNR and SSIM scores. In this
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section, we try to analyze the effectiveness of the regularization
term of the Autoencoder from a theoretical point of view.

The essence of the compression imaging task is to solve the
maximum a posteriori problem P (x̂|y), and solve the images x̂
that satisfies the maximum probability distribution by observing
the sample value y. Regardless of the network structure, even
if we adopt GAN as the basic structure of the network, the
above basic theory will not be changed. Since the Autoencoder
(11) we used as the regular term is pre-trained, we regard that
optimization for the MPIGAN loss function can be understood
from a probabilistic perspective as solving the maximum a
posteriori problem:

P

(
x̂|y, argmin

Fση

∥∥x− Fση
(x+ η)

∥∥2
2

)
(16)

That is, the generator solves the maximum probability distri-
bution of x under the constraints of the Autoencoder.

Notedly, our improved maximum a posteriori problem is
fundamentally different from the original problem: the inde-
pendent variable space of the original problem is taken from the
complete set of images, and the feature space of the improved
problem are from images and Autoencoders. This means that
the generator not only learns features from the images, but also
from the Autoencoders. In order to illustrate the role of the
regular term of the Autoencoder in GAN vividly, we take out
lBinary
G (x̂) + L

ση

DAE(x) from MPIGAN loss function, and then
solve the gradient of it about x:

−
∂
(
lBinary
G (x̂) + l

ση

DAE (x)
)

∂x

= − ∂H ([1, 0] , [D (x̂) , 1−D (x̂)])

∂x
− ∂

∥∥x− Fση
(x)
∥∥2
2

∂x
(17)

If we use L to represent the logit vector and q to be the sigmoid
output, then:

− ∂H (p, q (L))

∂L
=

∂
∑

i pi log qi (Li)

∂L

=
∂
∑

i pi log
1

1+e−L

∂L
=

−∑i pi∂ log
(
1 + e−Li

)
∂L

= −
∑
i

pi

(
1− 1

1 + e−Li

)
= −p (1− q (L)) (18)

We substitute the conclusion of the (18) into (17):

− ∂(lBinary
G (x̂)+l

ση
DAE(x))

∂x = − (1−D (x̂)) ∂x̂
∂L(x)

∂L (x)

∂x

+
(
2σ2

η∇logEη [p (x− η)]
) (∂Fση

(x)

∂x
− 1

)
(19)

where (1−D(x̂)) is the GAN’s generator gradient and
(2σ2

η∇logEη[p(x− η)]) is the Autoencoder gradient. As ob-
served from (19), we find the gradients of the log likelihood
were added after the adversarial loss. This means that adding
the Autoencoder error is equivalent to adding a vector pointing
in the direction of maximum probability density, helping the

network to converge faster and improving the accuracy of the
imaging.

As such, the existence of the Autoencoder regularizer gradi-
ent succinctly connects the prior information of the maximum
probability distribution of the image with the category gradient.
The discriminator plays a role in directly guiding the gradient
descent of the generator, both intuitively and theoretically.

E. MPIGAN+

We think that the regular term can be set as an Autoencoder
other than DAE. Replacing the regular term of the Autoencoder
established for other tasks will help the network learn the feature
space of other tasks, which can also reduce the impact of data
disturbance. For example, we cover the input samples with
evenly spaced 3 × 3 mask blocks, and train the Autoencoder to
fill the mask blocks with higher degrees of freedom to improve
the robustness of the MPIGAN model. The main modifications
are as follows.

1) Masked Autoencoder FM

We overlay the images by multiple 3× 3 black blocks with
equally space, thereby removing part of the feature informa-
tion of the images, forcing the Autoencoder to invert samples
that approximate x with less information.

lMask (x) = ‖x− FM (x)‖22 (20)

FM (x) is trained to minimize (21):

‖x− FM (M (x))‖22 (21)

where M(∼) means mask operation.

1) Revolved Autoencoder FR

We flip the images and feed it to the Autoencoder. The aim
of designing this Autoencoder is to avoid images sampled
from different directions being incorrectly identified in real
situations and thus improving the robustness of MPIGAN.

lRevolve (x) = ‖x− FR (x)‖22 (22)

FR(x) is trained to minimize (23):

‖x− FR (R (x))‖22 (23)

where R(∼) means revolve operation.

Combined with the above discussion, we modify the generator
loss of MPIGAN:

lG (x, x̂) = λ1 lMSE (x, x̂) + λ2l
Binary
G (x̂) + λ3l

Multi
G (x, x̂)

+ λ4l
ση1

DAE (x) + λ5lRevolve (x) + λ6lMask (x)
(24)

The above model is called MPIGAN+.

III. EXPERIMENTS AND RESULTS

In this chapter, we use several comparative experiments to
illustrate the advantages of MPIGAN in single-pixel imaging
tasks from multiple aspects. The batch-size is set as 64. The
epoch is set as 100 for Mnist dataset, 20 for CelebA dataset.
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TABLE I
NETWORK STRUCTURE OF THE MPIGAN

The image size of Mnist is set as 32× 32, and the image size of
CelebA is set as 64× 64. The optimizer is set as Adam with the
learning rate of 1e-3. The measurement rate can be denoted as:

MR (Measurement Rate) = M
N

(25)

The network settings we used in our experiments are shown
as Table I. Notedly, increasing the number of layers or setting
other parameters may achieve better experimental results.

A. The Ablation Studies in MPIGAN

The experiments in this part focus on the contribution of
each part in MPIGAN loss function. We denote MPIGAN
networks with and without adversarial part losses by “MAD”
(MSE, Adversarial loss and DAEs, representing lMSE(x, x̂) +

lBinary
G (x̂) + lMulti

G (x, x̂) + l
ση

DAE(x)) and “MD” (MSE and
DAEs, representing lMSE(x, x̂) + l

ση

DAE(x)), respectively. The
parameters used in the training process at the same measurement
rate are consistent, and the noise standard deviations used in
different DAE training are 0.05, 0.07 and 0.1, respectively. We
set the six coefficients of λ1 to λ6 from (12) and (13) to be 1,
0.001, 0.001, 0.05, 0.05, 0.05 in our experiments, and fine-tune
them according to the actual situation. The dataset adopts Mnist,
one part used as training set and the other part used to test
network performance. Experiment results are shown as Table II.
Bold numbers indicate the best value in that measurement rate.
Under the conditions of the same number of regularizer terms
(same row) and the same measurement rate, the network with
adversarial structure (MAD) performs better. With the same
network (same column) and the same measurement rate, the
network with more Autoencoder regularizers performs better.
Overall, the PSNR score is proportional to the number of reg-
ularization terms added, indicating that the network can absorb
multi-scale prior information from autoencoders with different
standard deviations.

To further illustrate the contribution of each part of the loss
function clearly, we list the PSNR scores for different combi-
nations of loss functions in Table III (MR = 0.01). Compared
with combinations without adversarial loss, combinations with

Fig. 2. PSNR values for testing images by different algorithms at different
number of Autoencoder regularization terms (MR = 0.01). The abscissa is the
number of regular items, and the ordinate is the PSNR score. The red and black
lines represent adversarial structures and no adversarial structures, respectively,
and the results show that networks with adversarial structures perform better
in imaging. Points on the same polyline represent PSNR scores after adding
different amounts of Autoencoder regularization terms. In general, the polyline
shows a monotonically increasing trend, indicating that the superposition of the
autoencoder effectively improves the amount of prior information.

adversarial loss terms achieved higher PSNR scores (at most
0.42 dB higher). The PSNR with the Autoencoder regularizer
added is higher than that without the Autoencoder regularizer (at
most 0.481 dB higher). Adding multiple Autoencoder regulariz-
ers achieved a higher PSNR than adding a few autoencoder reg-
ularizers (at most 0.172 dB higher). As the result of experiments,
autoencoder regularizers can effectively improve the quality of
reconstructed images and enhance the features learning ability
of GAN. Fig. 2 shows the situation of Table II in a line graph
(MR = 0.01). As observed by Fig. 2, we note that regularization
terms of the Autoencoder works better in GAN framework than
it does in the standard network. There may be two main reasons,
one is that the increase in the number of parameters improves
the accuracy of network fitting, and the other is that the working
principle of the Autoencoder in GAN is different from that in
standard networks. In the framework of GAN, the loss function
gradient of the generator is mainly contributed by the probability
distribution output from discriminator. The main role of the Au-
toencoder can be considered as accelerating the GAN to assign
the gradient to a certain category and indirectly accelerating
the convergence of the loss function. In the standard network,
the loss function gradient of the generator is mainly contributed
by losses such as MSE. At this point, the Autoencoder does
not make an obvious connection to the category of the image.
Therefore, we believe that the connection between Autoencoders
and image categories in GAN is the key to improving quality of
reconstructed images.

B. Comparison With Other Networks

In this section, we compare MPIGAN with other algorithms,
proving that our network has advantages in image reconstruction
task. We set the standard deviations of the three DAEs in the
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TABLE II
PSNR OF MPIGAN WITH DIFFERENT LOSS FUNCTION COMBINATIONS UPON THE MNIST AT DIFFERENT MEASUREMENT RATES

TABLE III
THE ABLATION STUDY OF MPIGAN IN MR 0.01

Fig. 3. PSNR values for testing images by different algorithms at different
measurement rates.

MPIGAN network to be 0.1, 0.07, and 0.05, and performed
dozens of tunings for each measurement rate to obtain reliable
experimental results. The experimental dataset uses celebA with
scaled and is cropped to a standard size of 64 × 64. We use
200,010 images for training and the rest for testing. In each
round of testing, 64 images are taken to calculate the average
value of the indicators. The experimental results are shown as
Table IV. From Table IV, we could see that MPIGAN achieves
the highest PSNR and SSIM scores in all comparative exper-
iments. For example at MR 0.1, the highest PSNR is 23.548
from MPIGAN, which is obviously higher than 21.34 dB from
DR2Net. Fig. 3 shows the PSNR values for testing images by
different algorithms at different measurement rates. Fig. 4 shows

Fig. 4. Loss values for testing images by different algorithms.

Fig. 5. Reconstructed images from different networks (MR=0.1). (a) Original
images, (b) Images reconstructed by ReconNet, (c) Images reconstructed by
DR2Net, (d) Images reconstructed by Bsr2Net [35], (e) Images reconstructed
by MPIGAN.

loss values for testing images by different algorithms. It can
be observed from Fig. 4 that MPIGAN obtains the lowest loss
value at the same iteration, which demonstrates the point that
Autoencoder regularizers can accelerate the gradient descent of
GAN. Besides, the loss value of our algorithm is less volatile,
which proves the stability of the MPIGAN.

Fig. 5 shows the generated samples of several models, indicat-
ing that MPIGAN generates more detailed and textured images
than other algorithms. To ensure the fairness of the experiments,
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TABLE IV
PSNR AND SSIM OF DIFFERENT ALGORITHMS UPON THE CELEBA DATASET AT DIFFERENT MEASUREMENT RATES

TABLE V
PSNR AND SSIM OF DIFFERENT ALGORITHMS UPON THE REVOLVED CELEBA DATASET AT DIFFERENT MEASUREMENT RATES

we add a simulate sampling network to all the networks used
for comparison. Relevant work has proved that this approach
will instead improve the image reconstruction accuracy of the
network [29], so our modification will not affect the performance
of the original network.

C. MPIGAN+ Related Exploration and Verification
Experiments

In this section, we further explore the improvement of the
imaging effect and the robustness of the model by the autoen-
coder regularizer terms. We replace the three DAEs in MPIGAN
with DAE, RAE, and MAE, and train each Autoencoder in
advance using differently preprocessed images as described in
Section II.E. Most importantly, during the MPIGAN+ alternat-
ing training process, we still use images that have not been
revolved as input, and we use revolved images for simulation
experiments during testing. This means that the network does
not actually learn the mappings required for revolved image
reconstruction in advance except for the regularization part, yet
MPIGAN+ still succeeds in reconstructing the sampled images
with high quality in the end. Table V shows the reconstructed
sample performance of MPIGAN+ and other networks when
dealing with revolved images input. Any number that higher than
the same position in Table IV will be marked ‘∗’, while lower
won’t be marked. It can be observed that MPIGAN+ performs
well at the four measurement rates, while the scores of other
networks including MPIGAN is lower than that of Table IV.

As shown in Fig. 6, MPIGAN+ obtains the highest PSNR
value. Fig. 7 shows the result of reconstructed images recon-
structed by MPIGAN+ and other algorithms, which can be
observed that the reconstructed images from MPIGAN+ are
clearer than others. The experimental results illustrate that we
can improve the robustness of the network by modifying the

Fig. 6. PSNR values for testing images by different algorithms at different
measurement rate.

regular term, so that the network can be adapted to other types
of tasks.

D. Test on Single-Pixel Imaging System

Fig. 8 is the single-pixel imaging system we used, which
mainly consists of a light source, a DMD (0.7XGA 12° DDR),
and a photon counter (Hamamatsu H10682). The light source
emits very weak light to illuminate the imaging target, and the
target is imaged on the DMD through the optical system. The
DMD can be viewed as a combination of micro-mirrors with a
size of 1024 × 768, and each micro-mirror can be individually
controlled by programming.
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Fig. 7. Revolved images reconstructed by different networks (MR = 0.1). (a)
Original revolved images, (b) Images reconstructed by ReconNet, (c) Images
reconstructed by DR2Net, (d) Images reconstructed by Bsr2Net, (e) Images
reconstructed by MPIGAN, (f) Images reconstructed by MPIGAN+.

Fig. 8. Image sampling and reconstruction using single-pixel imaging system.
The photon counter is set up to capture pulse information instead of million pixel
sensors in conventional camera.

Specifically, for each measurement, we program a binarized
sampling matrix (i.e., a row of the sampling matrix S) onto the
DMD. “1” in the binarization matrix will control the correspond-
ing micromirror in the DMD to rotate +12 degrees, and “−1”
will rotate −12 degrees. The rotated micromirror will reflect
light from the object in both directions, but only the +12-degree
reflected light will enter the photon counter. Under the control
of FPGA (Altera DE2-115), the light intensity modulated by
DMD is received by the single-point single-photon detector
PMT without spatial resolution. We input the single-photon
pulse signal from PMT into FPGA for counting, and output the
count value to the host computer for image reconstruction.

To load the sampling network into the DMD, we first create
a binarized matrix using the sign function:

W b = sign (W ) =

{
+1, W ≥ 0

−1, Otherwise
(26)

Fig. 9. Reconstruction results of sampled images from a single-pixel imaging
system. (a) TVAL3 reconstruction results; (b) MPIGAN reconstruction results.

where W b ∈ RM×N is binary weight of the sampling network.
However, the derivative of the sign function is almost 0 ev-
erywhere, which makes the backpropagation process unable to
proceed smoothly. Inspired by Binarized neural network [36],
we still use the sign function to binarize the sampling layer
during the forward propagation of the network. Meanwhile,
we use the Htanh function for gradient calculation during
backpropagation.

Htanh (x) = Clip (x,−1, 1) = max [x− 1, min (1, x)]
(27)

where Clip(x,−1, 1) = −1 if x < −1; Clip(x,−1, 1) = 1
if x > 1; Clip(x,−1, 1) = x if −1 ≤ x ≤ 1. Notably, af-
ter binarizing the sampling network, the entire model needs
to be retrained to decrease the impact of reduced network
weights accuracy. For each sample, we load a row of W b

into the DMD, and finally get a measured value from PMT.
After M times of sapling, we finally get a measured value
matrix.

We acquired two different sets of image measurements using
the experimental setup described above, and loaded the measure-
ments directly into networks to perform reconstruction (Fig. 9).

The contours of the digits can still be reconstructed by MPI-
GAN at a low measurement rate (MR = 0.05). However, the
images reconstructed by TVAL3 are hard to recognize.

At higher measurement rate (MR = 0.25), the images from
MPIGAN are clearer and less noisy than images from TVAL3.
This means that MPIGAN can filter the noise light existing
in the actual imaging environment effectively. To sum up,
MPIGAN has excellent performance in real systems, and the
anti-disturbance ability is stronger than other networks. Espe-
cially, the images reconstructed by our algorithm still retains the
main features at extremely low measurement rate. Therefore,
MPIGAN can be widely used in astronomy, medicine, biology
and other fields. In addition, we also find that the reconstructed
images from MPIGAN at a very low measurement rate (MR
= 0.025) showed sharp streaks, while the reconstructed images
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from TVAL3 were blurry. We speculate that the main reason
for this phenomenon is that the handwritten digit images can be
attributed to different combinations of simple lines. When the
measured value is not enough to map to a complete number,
MPIGAN tends to classify existing information into a certain
line combination, thereby reconstructing unrecognizable lines.

IV. CONCLUSION

In this study, we propose the GAN-based compressed re-
construction networks (MPIGAN and MPIGAN+) optimized
by multiple Autoencoder priors and auxiliary classifier losses.
The experimental results show that the reconstruction effect and
accuracy of our network are better than the existing compression
imaging network, especially at low measurement rates. Under
the condition of the same number of iterations, our algorithm has
a faster convergence rate than other networks. After theoretical
and experimental demonstration, the pre-trained Autoencoders
we added into MPIGAN can extract multi-scale image features
and improve the robustness of the network, effectively. In addi-
tion, our network can be directly applied to single-pixel imaging
system, and the binarization matrix after joint optimization of
multiple priors can be directly loaded on DMD for compu-
tational imaging. Experiments show that MPIGAN captures
the semantic information of samples effectively, restores spe-
cific images with higher accuracy and completeness than other
networks.
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