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GCD-YOLOv5: An Armored Target Recognition
Algorithm in Complex Environments Based

on Array Lidar
Jian Dai , Xu Zhao , Lian Peng Li , and Xiao Fei Ma

Abstract—For the recognition of armored targets in complex
battlefield environments, how to reduce missed and false alarms
while achieving real-time is an urgent issue. To this end, the
GCD-YOLOv5 algorithm is innovatively proposed. Firstly, array
lidar is used to acquire the armor target data. Secondly, the ar-
mor target data is expanded with an improved GAN(Generative
Adversarial Network) to increase the diversity of training data.
Afterward, the expanded dataset is fed into the GCD-YOLv5(You
Only Look Once) for training. And the GCD-YOLOv5 is reflected
in the following aspects. Firstly, the CBAM(Convolutional Block
Attention Module) and the multi-scale feature fusion are added to
improve the feature extraction capability and detection efficiency,
increasing the recognition capability of small and obscured tar-
gets. Secondly, combining with DETR(Detection Transformer) to
lighten YOLOv5 to achieve the real-time requirement. Thirdly, the
YOLOv5 loss function and prediction box filtering method are
improved to increase the detection accuracy and the confidence
of the detection boxes. The experimental results show that the
GCD-YOLOv5 algorithm has higher accuracy and real-time, the
mAP(mean Average Precision) can reach 99.7%, and fps is 68.56%
higher compared to YOLOv5, which significantly improves the
recognition capability of armored targets in complex battlefield
environments.

Index Terms—Armor target, target recognition, GAN, CBAM,
DETR, YOLOv5.

I. INTRODUCTION

W ITH the complexity of the battlefield environment, espe-
cially the continuous development of new interference

technologies such as stealth coatings, cloaking materials, and
infrared interference. The detection and recognition capabili-
ties of traditional millimeter-wave radar and infrared sensors
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are reduced. The ability of array lidar to acquire geometric
information and profile characteristics of targets in the scanned
area makes it the primary means of detecting armored targets in
complex battlefield environments. At present, the array-based li-
dar target recognition algorithms for target feature extraction and
recognition mostly use the traditional manual selection of target
geometric features or local features detection methods. Among
them, the statistical histogram of the distance image is often
analyzed by the height statistical feature method for the distance
image [1], which makes a large leakage and false alarm situation
occur in complex environments and the real-time performance
is poor. The deep learning-based approach can effectively solve
the problems of missed alarms, false alarms, and poor real-time
performance with the powerful feature extraction and learning
capabilities of multi-layer convolutional neural networks.

In recent years, Transformer, as a deep neural network model
based on the self-attentive mechanism, was initially mainly
used in the field of NLP(Natural Language Processing). How-
ever, with the impressive achievement of the Transformer in
the field of NLP, more and more researchers have carried out
Transformer-related research and gradually applied it to the
field of computer vision. Chen [2] et al. proposed a pixel re-
gression prediction model based on Transformer and achieved
good classification results in the field of image classification.
Dosovitskiy [3] et al. proposed a Vit-based Transformer model
that utilizes only pure Transformer and achieves the best results
on multiple publicly available datasets for image recognition.
Carion [4] et al. of the Facebook AI team took advantage
of the Transformer’s ability to simplify the process of object
detection to construct a new method that treats object detection
as a direct ensemble prediction problem. Although it achieves
extremely good detection results, it needs to be supported by
a large number of data samples. And for the specific applica-
tion to the problem of identifying armored targets in complex
battlefield environments, domestic and international scholars
have conducted extensive research. Deng [5] et al. proposed a
holistic nested convolutional network based on a multi-pyramid
pooling model, which can effectively improve the detection
and recognition accuracy of armored targets in complex envi-
ronments by introducing the idea of dilated convolution and
feature fusion. However, the high complexity of the algorithm
model leads to a large amount of computation and the real-time
performance cannot be effectively satisfied. Wang [6] et al.
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proposed an improved algorithm for the problems of the Faster
R-CNN algorithm in the detection of small-scale tank armor
targets. The improved algorithm achieved good detection results
for tank armor targets of multiple scales, and the detection
accuracy and speed were better than the original Faster R-CNN
algorithm. But it has some difficulties in detecting obscured
targets. Cheng [7] et al. proposed an end-to-end cross-scale
feature fusion(CSFF) framework for remote sensing images that
contain a large number of targets with highly variable target sizes
and inter-class similarity. This framework can obtain powerful
and differentiated multi-level feature representations, which can
effectively improve the target detection accuracy. But it increases
the computational effort of the model and brings the problem of
real-time degradation.

In summary, the above methods applied to armor target recog-
nition in complex battlefield environments have the problems
of complex model structure, low training and detection effi-
ciency, and insufficient real-time performance. In the face of
small targets and obscured targets, there are a large number of
missed and false alarms. In contrast, this paper uses array lidar
as a detection means and deep learning methods to recognize
armored targets in the scanned area. Firstly, the dataset is ex-
panded using an improved GAN network. Secondly, the CBAM
attention mechanism is added and multi-scale feature fusion is
performed on the extracted features. After that, the loss function
calculation method and the prediction box filtering method of the
YOLOv5 algorithm are improved. Finally, YOLOv5 is lightened
by combining DETR. The above measures can effectively solve
the problems of low training and detection efficiency, and lack
of real-time performance. At the same time, they solve the
problems of missed and false alarms in the detection of small
targets and obscured targets, thus realizing the recognition of
armored targets in complex environments based on array lidar.

II. ARRAY LIDAR SCANNING IMAGING

With the complexity of the environment and the development
of countermeasure technologies such as jamming and stealth, the
recognition of armored targets requires more refined imaging.
Array lidar can achieve more refined imaging of armored target
areas. Array lidar scanning imaging is achieved with the help of
steady-state rotational scanning or linear scanning motion. The
scanning field of view is shown in Fig. 1. Where α is the array
lidar scanning angle, and β is the array lidar field of view. The
two-dimensional distance image data of m×n can be obtained by
the steady-state rotational scanning or linear scanning motion.

In the process of armor target distance image data acquisition,
the unstable jitter situation of the projectile during the flight
will bring a lot of measurement noise. And the array lidar
will bring the problems of graphic distortion and resolution
reduction when the flight speed and scanning speed are unstable.
These unavoidable factors will bring great difficulties to the
subsequent image processing and target recognition. And due
to the graphics distortion and resolution reduction, it will cause
the problem of target characteristics of the sampled data is not
obvious, resulting in missed alarms and false alarms. At the
same time, in the detection process, the complex background

Fig. 1. Array lidar scanning field.

Fig. 2. Scanning armor target field.

and environmental noise interference can also lead to missed
alarms and false alarms. Similarly, the complex background, a
large amount of measurement noise, and environmental noise
can also lead to a large amount of calculation of the target
detection process, resulting in poor real-time target detection
problems. Its scanning target field of view is shown in Fig. 2.

III. GCD-YOLOV5 MODEL

In this section, we first analyze the original yolov5 model and
the DETR model. Based on the above, we improve the yolov5
model and combine it with the DETR model to propose the
GCD-YOLOv5 model. The GCD-YOLOv5 model consists of
some elements as follows. Firstly, the expansion of the dataset
samples is achieved by using the improved GAN network.
Secondly, CBAM is added to YOLOv5 and multi-scale feature
fusion is performed on the extracted features. Then, the DETR
structure was innovatively integrated into YOLOv5. Finally, the
loss function calculation method and the prediction box filtering
method of YOLOv5 are improved.
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Fig. 3. YOLOv5 network structure diagram.

A. YOLOv5

The original YOLOv5 mainly consists of four parts: Input,
Backbone, Neck, and Prediction. Its network model structure is
shown in Fig. 3.

Input consists of the following three parts: Mosaic data
enhancement, image adaptive scaling, and adaptive anchor box
calculation [8]. Among them, Mosaic data enhancement is per-
formed by randomly selecting four images for scaling, crop-
ping, lining up, and other operations, and finally stitching the
images. This can enrich the training set data and improve the
generalization ability of the trained model and the detection of
small targets. Image adaptive scaling adaptively adds the least
black edges to both ends of the images, which can transform the
training set images input to the neural network training to a fixed
size. It can effectively solve the problem of redundant image
information during training and improve the inference speed of
neural networks. And the adaptive anchor box calculation is to
set the initial anchor box adaptively before starting the training,
compare it with the real box continuously, and iterate the reverse
update according to the difference between them to adjust the
network parameters and reduce the loss function.

The Backbone network includes four parts: Focus process-
ing, CBL layer, CSP(Cross Stage Partial) [9] structure, and
SPP(spatial pyramid pooling) [10]. Among them, Focus process-
ing is a slicing operation, which can ensure that the feature map
increases the number of features of the image without changing
the information of each feature. The CBL layer is a convolutional
block, which consists of three network layers, Conv, Batch
Normalization, and Leaky relu [11], and is mainly used to extract
the features of the target and input these features into the next
layer network. Two CSP structures are used in YOLOv5, the
Backbone network uses the CSP1_X structure and the Neck
network uses the CSP2_X structure [12]. Where X indicates
that there are several residual components. The use of two CSP
structures makes the algorithm lightweight and can reduce the
computation while improving the model learning ability. The
SPP consists of three components: Conv, max-pooling, and
concat, whose role is mainly to greatly increase the perceptual
field of feature extraction with no impact on the inference speed,

which can be used as an important feature for the network to
separate the context [13].

The Neck network uses a structure of FPN(Feature Pyra-
mid Networks) [14] combined with PAN(Path Aggregation
Network) [15] as the fusion part of the network. A top-down
FPN structure and a feature pyramid with two bottom-up PAN
structures [16] are used. It is mainly used to mix and combine
the extracted features and pass them to the prediction layer to
enhance the network feature fusion [17].

On the prediction side of YOLOv5, GIOU [18] was used as
the loss function to filter the target box by NMS(non-maximal
suppression) [19].

B. DETR

The DETR structure consists of Encoder, Decoder, and Pre-
diction, as shown in Fig. 4. In the Backbone part, a conventional
CNN(Convolutional Neural Network) is used to learn the fea-
tures of the input image and send them to Encoder for position
encoding. In the Encoder part, firstly, the feature map output
from Backbone is dimensionally compressed, and the C×H×W
dimensional feature map is convolved by a 1×1 convolution
kernel to obtain a d×H×W dimensional feature map by com-
pressing the number of channels C to d. Next, the feature map is
serially transformed to compress the spatial dimension H×W to
HW to obtain a 2-dimensional feature map of d×HW. Finally, the
2-dimensional feature map is encoded with positional encoding
for position encoding. The Encoder part contains 6 layers, each
layer contains 8 self-attentive modules and FFN(Feed Forward
Network). The decoder part also contains 6 layers, each layer
contains 8 self-attentive modules, 8 co-attentive modules, and
FFN. Decoder extracts feature from the feature map output by
Encoder, and Decoder embeds a small number of a fixed number
of positions into Object Queries as input and participates in the
output. Finally, the output of the Decoder is passed to FFN for
network detection of class and location or no object class(no
object).

The introduction of the DETR attention module enables the
model to selectively focus on the effective part of the input to
improve the target feature learning of the model [20]. And at the
same time, unlike the traditional Transformer, DETR processes
all the Object Queries at once during the feature map processing,
all the predictions are output at once, instead of left-to-right one
by one. This greatly saves the efficiency of model training and
facilitates the goal of model lightweight.

C. GCD-YOLOv5

In order to increase the sample diversity of the experimental
dataset and improve the robustness of the trained model, as well
as to solve the problem that a large amount of data is required
to support DETR to achieve excellent results as mentioned in
the literature [4]. This paper uses an improved GAN network
to achieve the expansion of the dataset samples. In order to
strengthen the sensitivity of certain important feature channels,
effectively improve the feature extraction ability and detection
efficiency of the algorithm, and also increase the recognition
ability of small armored targets and obscured targets. This paper
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Fig. 4. DETR network structure diagram.

Fig. 5. GCD-YOLOv5 network structure diagram.

adds the CBAM attention mechanism and the multi-scale feature
fusion implementation of the extracted features. In order to meet
the needs of high real-time armor target recognition, this paper
incorporates the DETR model. In order to improve the detection
accuracy and confidence of the detection box, this paper is
achieved by improving the loss function calculation method and
the prediction box filtering method of the YOLOv5 algorithm.
The GCD-YOLOv5 model structure consists of four parts: Input,
Backbone, Neck, and Prediction, as shown in Fig. 5.

IV. ALGORITHM FLOW

The flow chart of the algorithm in this paper is shown in
Fig. 6. Firstly, the armor target scene information is obtained
by scanning with an array lidar. Next, the armor target scene
distance image data is obtained by data preprocessing. Then,
the training dataset is expanded using an improved GAN [21].
After that, the GCD-YOLOv5 algorithm is constructed based
on the YOLOv5 target detection network and DETR model,
which mainly includes four parts, Input, Backbone, Neck, and
Prediction, and the details are as follows.

1) Add the multidimensional attention mechanism CBAM to
the Backbone network of YOLOv5 [22].

2) Introduce the multi-scale feature fusion module to the
Neck network of YOLOv5.

3) Introduce CIOU_Loss [23] loss function calculation and
WBF(Weighted Boxes Fusion) [24] prediction box filter-
ing method in Prediction of YOLOv5.

4) The DETR structure is combined to apply to the needs of
armor target recognition requiring high real-time.

A. CBAM Attention Mechanism

Adding the attention mechanism CBAM to the Backbone
network of YOLOv5 can effectively improve the detection
speed of the network trained out models while improving the
feature extraction ability and detection accuracy of the network.
And added as a multidimensional attention mechanism module
combining both channel attention module and spatial attention
module [25]. The former focuses on what features of the input
image are meaningful, while the latter focuses on where features
are meaningful. The specific model structure is shown in Fig. 7.
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Fig. 6. Algorithm flow chart.

Fig. 7. CBAM network structure diagram.

The Channel Attention Module(CAM) extracts the spatial
information of the feature map by summing up the input
feature map G through average pooling and maximum pooling
to obtain two spatial context description feature maps Gc

avg

and Gc
max. The former is the average pooling feature and the

latter is the maximum pooling feature. Then these two features
are passed into the shared network hidden layer MLP [26] for
processing, and finally, the attention channel feature map Hc

[27] is obtained by the activation function σ. The two layers of
parameters in the multilayer perception model are represented
by α1, α2 to obtain the channel attention calculation formula.

Hc(G) = σ(MLP (AvgPool(G)) +MLP (MaxPool(G)))

= σ
(
α2

(
α1

(
Gc

avg

))
+ α2 (α1 (G

c
max))

)
(1)

The input of the Spatial Attention Module(SAM) is the output
feature map of the previous step of the channel attention module.
Firstly, the module performs average pooling and maximum
pooling on the input feature maps to obtain the aggregated
channel information [28] for Gs

avg and Gs
max. Secondly, the

two feature maps are stitched into one feature map. Finally, a 7
× 7 convolution is used to generate a two-dimensional spatial
feature map. The formula for calculating spatial attention is as
follows.

Hs(G) = σ
(
f7×7 ([AvgPool(G);MaxPool(G)])

)
= σ

(
f7×7

([
Gs

avg;G
s
max

]))
(2)

B. Multi-Scale Feature Fusion

In YOLOv5, the images are adaptively scaled to 608∗608
before being fed into the network for training. After continuous
deepening of the network, five convolution kernels of 3∗3 with
a step size of 2 can output feature maps of 304∗304, 152∗152,
76∗76, 38∗38, and 19∗19 after downsampling. Conventional
YOLOv5 uses 76∗76, 38∗38, and 19∗19 feature maps, which
correspond to 8∗8(608/76 = 8), 16∗16, and 32∗32 receptive
fields for target detection. The receptive field is the size of the
region where the pixel points on the feature map are mapped back
to the input image, which indicates that small target detection
requires a small receptive field. Therefore, this paper proposes
a multi-scale feature fusion method based on YOLOv5 to retain
a 152∗152 feature map, which corresponds to a 4∗4 receptive
field for target detection.

Since the deeper network has a larger receptive field, it can
learn stronger semantic information features, but the larger
downsampling factor will bring about a loss of location in-
formation. The shallow network has a smaller receptive field,
and its semantic information characterization ability is weak,
but its location information characterization ability is strong.
Meanwhile, the lack of information fusion in YOLOv5 leads
to low feature information utilization, which is not conducive
to model training. In this paper, a multi-scale feature fusion
structure is proposed to address the above characteristics. As
shown in Fig. 8, firstly, upsampling enables the rich location
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Fig. 8. Multi-scale feature fusion schematic.

Fig. 9. Schematic diagram of CIOU_Loss.

information features from the shallow layer of the network
to be passed upward to enhance the multi-scale localization
capability. Subsequently, the rich semantic information features
can be passed downward by downsampling to achieve feature
cross-fusion to improve the multi-scale semantic expression
capability. Finally, the model’s two feature learning capabilities
and target detection capability of the model are comprehensively
improved.

C. CIOU_Loss Loss Function

Currently, YOLOv5’s GIOU_Loss loss function calculation
method solves the problem that the distance between two boxes
cannot be reflected when the two boxes do not intersect, but
it cannot discern the position of the predicted box when the
target’s predicted box is inside the target’s real box. Therefore,
the CIOU_Loss loss function calculation method with better
results can be used instead. This method considers the distance
information of the center point of the bounding box while
considering the scale information of the width-to-height ratio
of the bounding box, which can effectively solve the problems
of the GIOU_Loss method. The specific calculation method is
as follows.

As shown in Fig. 9, let the diagonal of the smallest outer
rectangle C be R, and the distance between the centers of the
target real box A and the prediction box B be r. Then CIOU_Loss
is calculated as follows.

CIOU=IOU − R2

r2
− v2

(1− IOU) + v
(3)

CIOU_Loss =1−CIOU=1−IOU+

(
R2

r2
+

v2

(1−IOU)+v

)
(4)

Fig. 10. WBF prediction box fusion diagram.

where v is a parameter characterizing the consistency of the
aspect ratio of the target prediction box and is calculated as
follows.

v =
4

π2

(
arctan

wgt

hgt
− arctan

wp

hp

)2

(5)

wgt, hgt denote the width and height of the target real box. wp

and hp denote the width and height of the prediction box [29].

D. WBF Prediction Box Filtering Method

In the post-processing process of target detection, for filtering
many prediction boxes, it is usually necessary to eliminate dupli-
cate redundant prediction boxes and retain the information of the
highest confidence prediction box. The common NMS approach
is used in the YOLOv5 algorithm, which uses the intersection
ratio IOU to suppress redundant detection boxes, where the
overlapping region is the only factor that often produces false
suppression for the occlusion case. In contrast, this paper uses the
WBF prediction box filtering approach. It takes into account the
role of each prediction box in the generation of detection boxes,
assigns a weight to each prediction box based on the confidence
score, and generates the coordinates of the weighted fusion box.
The confidence of the fusion box is the average confidence of
all prediction boxes. The specific formula is as follows.

Cx1 =
Ax1 ×As +Bx1 ×Bs

As +Bs
(6)

Cx2 =
Ax2 ×As +Bx2 ×Bs

As +Bs
(7)

Cy1 =
Ay1 ×As +By1 ×Bs

As +Bs
(8)

Cy2 =
Ay2 ×As +By2 ×Bs

As +Bs
(9)

Cs =
As +Bs

2
(10)

As can be seen in Fig. 10, the coordinates of the two boxes
are fused to obtain a new box, using the box’s score as a weight.
Also the higher the score the higher the weight of the box, and
the more it contributes to the process of generating new boxes.
Where, (Ax1, Ay1), (Bx1, By1) are the coordinates of the upper
left corner of the two fused boxes. (Ax2, By2), (Bx2, By2) are
the lower right coordinates of the two fused boxes. (Cx1, Cy1),
(Cx2, Cy2) are the top-left and bottom-right coordinates of the
generated fusion box. Compared with the NMS strategy, which
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Fig. 11. Experimental data collection device and environment.

Fig. 12. Armored target data.

falsely detects two overlapping targets as a single target, the
WBF strategy detects both targets correctly, which effectively
reduces the probability of missing similar targets to a certain
extent, and has higher localization accuracy and confidence
level.

V. EXPERIMENTS AND ANALYSIS

A. Training Data Collection

The samples of the experimental dataset are divided into 3
categories: armored targets, obstacles, and ground background.
The armor target sample was simulated using scaled-down ex-
periments to simulate the distance image of the armor target in
different terrains and different attitudes at 100–60 m altitude.
The obstacle samples simulate the distance images of hills
and trees. Meanwhile, to increase the number of samples, the
improved GAN data augmentation is used to expand the dataset.
Since the armored targets and obstacles can be placed at arbitrary
angles and positions, the training and testing samples are ran-
domly rotated, cropped, and scaled, with a total of 3000 samples.
And 70% of the obtained 3000 samples are randomly selected
as training samples, 20% as validation samples, and 10% as
test samples. Fig. 11 shows the data acquisition device, the

experimental scenes, and the scaled-down experimental scenes.
Fig. 12 shows the collected raw array lidar data and the processed
distance image data.

B. Training Data Expansion

The full name of DCGAN is Deep Convolution Generative
Adversarial Networks, which has powerful feature extraction
capability, thus improving the effectiveness of unsupervised
learning of generators. The network structure of DCGAN is
shown in Fig. 13, where FC is the fully connected layer, BN
is the batch normalization layer, Deconv is the deconvolution
layer, and both ReLU and Tanh are nonlinear activation func-
tions. Compared with the original GAN, the whole network
removes the fully-connected layer and uses the convolutional
layer directly instead. Meanwhile, the discriminative model is
almost symmetric to the generative model. The discriminator
uses convolutional steps instead of spatial pooling, and the gen-
erator uses the deconvolution operation to achieve upsampling to
expand the dimensionality of the data and obtain better training
stability. As for the generative network, its purpose is to generate
pictures, the input is normally distributed in random numbers,
and the output is fake pictures. For the discriminative network,
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Fig. 13. DCGAN network structure diagram.

its purpose is to judge the authenticity of the input pictures, the
input is fake pictures, and the output is the judgment result.

Its network training process can be represented as, assum-
ing the existence of n samples, its network training process is
transformed into the process of finding the network parameters
whose loss function L(z, ẑ) is reduced to the lowest.

z = (z1, z2, z3, . . . zn) (11)

ẑ = (z1, z2, z3, . . . zn) (12)

In the above equation, n is the total number of samples, z is the
true output of the network, z is the ideal output of the network,
zn is the true output of the nth sample, zn is the ideal output of
the nth sample.

The loss function of each training batch is the actual value of
the jth batch and zj is the predicted probability of the model.
The loss function of the model is obtained by summing the loss
functions of each batch and then averaging them.

L(zj , zj) = − 1

N

N∑
j=1

[zj log zj + (1− zj)log2(1− zj)] (13)

In order to find the minimum weight w and bias b that can
reduce the loss function, gradient descent is generally used to
update the weights w and bias b in each network layer.

w′ = w−η
∂L

∂w
(14)

b′ = b−η
∂L

∂b
(15)

In the above equation, η is the learning rate, L is the loss
function calculated in equation (13), w′ is the updated weight.
b′ is the updated bias.

C. Experimental Analysis

In this paper, the experiments are based on the deep learning
framework Pytorch, running on ubuntu 16.04, and the specific
parameters configured as shown in Table I.

In order to ensure the correctness of the experimental algo-
rithm model comparison, the experiment uses the same hyper-
parameters for the training, validation, and testing of different
algorithm models. Among them, the initial learning rate is 0.01,
the weight decay is 0.0005, the Batch_size is 8, and the IOU is
0.2. The details are shown in Table II.

The evaluation metrics of this experiment are mainly mea-
sured by Precision, recall, and mean average precision, which are
precision, Recall, and mAP. The calculation formula is shown

TABLE I
TRAINING ENVIRONMENT CONFIGURATION

TABLE II
EXPERIMENTAL HYPERPARAMETERS CONFIGURATION

below.

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

In the above equation, TP indicates that the target is an
armored target and the network model detects the result as an
armored target. FP indicates that the target is not an armored
target and the network model detects the result as not an armored
target. FN indicates that the target is an armored target and
the network model detects the result as not an armored target.
Precision indicates how many of the samples detected as ar-
mored targets are true armored targets, reflecting the question of
whether the detection results are accurate. Recall indicates how
many armored targets are correctly detected in the total sample
of armored target images, reflecting the question of whether the
detection of armored targets is complete. The AP is the value
of the area of the curve enclosed by the Precision and Recall.
The mAP is the average of the learned precision means for all
categories. denotes the value of AP calculated for all image
datasets in each category when the intersection ratio IOU is
set to 0.5, and then all categories are averaged. The precision
and recall of the trained target detection model are shown in
Figs. 14 and 15.
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Fig. 14. Target detection precision.

Fig. 15. Target detection recall.

Fig. 16. mean Average Precision.

From Figs. 14 and 15, it can be seen that the Precision and
recall of the GCD_YOLOv5 target detection network model
stabilize and reach the fit state after about 25 epochs of training.
And at this time, it can be seen from Fig. 16 that the determined
by the target detection precision and recall also tends to be
stable, which verifies the accuracy of the GCD-YOLOv5 target
detection network model.

Fig. 17. Loss function.

And then, from Figs. 14, and 16, it can be seen that in the
first 20 epochs of training, there are large fluctuations in Preci-
sion, Recall, and . This is due to the expansion of the training
dataset using the improved GAN network, which generates a
dataset with irregular distribution and a large resolution span.
As the model learns fewer features in the early stage, there is a
possibility of missed recognition and false recognition. But as
the training continues, the model learns more and more target
features, Precision, Recall, and will gradually stabilize. And
irregularly distributed data sets with a large resolution span can
improve the robustness of the trained model.

As can be seen from Fig. 17, after about 20 epochs, the training
of the GCD-YOLOv5 target detection network model tends to
converge and the loss function drops to below 0.04. Since the
GCD-YOLOv5 model uses the CBAM attention mechanism and
the multi-scale feature fusion strategy to obtain more compre-
hensive and detailed feature information, the confidence loss
value is the lowest. And due to the global sensing capability
of DETR and the advantage of parallel information processing,
while considering the improved loss function calculation method
and the prediction box filtering method, the position loss value
decreases rapidly. In contrast, SSD [30](Single Shot Multi-
Box Detector), Faster R-CNN [31], and YOLOv5 algorithms
converge relatively slowly and tend to converge after about
30 epochs, which verifies the rapidity of convergence of the
GCD-YOLOv5 target detection network model.

Meanwhile, in order to test the performance of the model
trained by the GCD-YOLOv5 target detection algorithm, the
experiments compared SSD, Faster R-CNN, and YOLOv5 target
detection algorithm, mainly using mAP as evaluation index, and
compared the detection speed of the trained model, as shown in
Table III.

As can be seen from Table III, the mAP of the GCD-YOLOv5
target detection algorithm reaches 99.58%, which is 19.94%,
14.26%, and 6.71% higher than the SSD, Faster R-CNN, and
YOLOv5 algorithms. SSD uses multiple layers of feature maps
as the resultant output leading to deeper network layers and
weaker extracted armor target features, which is not conducive to



3937711 IEEE PHOTONICS JOURNAL, VOL. 14, NO. 4, AUGUST 2022

Fig. 18. Target detection results.

TABLE III
COMPARISON OF TARGET DETECTION MODEL RESULTS

the detection of armored targets. Faster R-CNN due to multiple
downsampling operations, resulting in the inability to effectively
extract features for armored targets. YOLOv5 compared to the
first two methods, mAP has significantly improved. And this
paper’s GCD-YOLOv5 target detection algorithm mAP is still
improved based on YOLOv5, and the target detection model
detects each frame in a shorter time, relative to the experi-
mental comparison target detection algorithm has significantly
improved the detection accuracy and detection time.

Meanwhile, it can be seen from Table III that the Faster
R-CNN takes the longest time to train. Since Faster R-CNN
is a two-stage network, the first stage uses the region suggestion
network to get the candidate box regions of interest, and the
second stage maps the candidate box regions of interest to
the feature map through pooling for classification and location
regression, which makes its training process slow. YOLOv5 is
a one-stage network, which directly outputs classification and
localization results, thus improving its training speed compared
to Faster R-CNN. SSD is also a one-stage network, but its
structure is simpler than that of YOLOv5, which can improve the
training speed with the loss of certain detection accuracy. In this

paper, the GCD-YOLOv5 has the advantage of global awareness
and parallel information processing due to the introduction of
DETR, which can greatly reduce the training time of the network
and improve the learning efficiency of the network.

To further test the specific performance of the GCD-YOLOv5
target detection algorithm for detecting armored targets,
the results of the model trained by the GCD-YOLOv5 target
detection algorithm were experimentally tested under the exper-
imental data set. The details are shown in Fig. 18.

From the detection results in Fig. 18, it can be seen that the
trained model of the GCD-YOLOv5 target detection algorithm
can be effectively identified for armored targets in complex
battlefield environments with high accuracy and low false alarm
rate. The confidence level of the trained target detection model
is around 0.8, which verifies the correctness and effectiveness
of the GCD-YOLOv5 target detection algorithm and the trained
model.

The GCD-YOLOv5 target detection algorithm achieves these
results by first adding the multidimensional attention mechanism
module CBAM to the Backbone network of the YOLOv5 target
detection algorithm. This makes the extracted armor target fea-
tures given different weights and can obtain feature maps with
different weighting channels. And, more comprehensive and
detailed features are also obtained, thus enabling targeted train-
ing of the target detection network. Secondly, the multi-scale
feature fusion strategy effectively solves the problem of difficult
small target detection. From the iterative process of loss function
during training in Fig. 17, we can see that the GCD-YOLOv5
target detection network model tends to converge after about
20 epochs of training, which greatly saves the network training
time and improves the network learning efficiency due to the
powerful parallel processing capability of DETR. Thirdly, the
addition of the attention mechanism module CBAM can improve
the relevance of the trained model and lighten the model, which
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can reduce the occurrence of missed and false alarms. Also, the
improved loss function calculation method and prediction box
filtering method can effectively avoid the occurrence of missed
alarms when two targets overlap and improve the confidence of
the target detection boxes.

Finally, from Table III, we can see that the GCD- YOLOv5
target recognition algorithm trains the model to detect approxi-
mately 4.45 frames per second, which can detect 3.67, 2.21, and
1.81 frames per second more than the experimental comparisons
of SSD, Faster R-CNN, and YOLOv5 algorithms, significantly
improving the real-time speed of the trained model to detect
armored targets.

VI. CONCLUSION

In summary, the recognition of armored targets in complex
environments overly relies on the accurate separation and infor-
mation extraction of armored targets from the environmental
background, and there are problems of missed alarms, false
alarms, and poor real-time performance. In this paper, we pro-
pose a GCD-YOLOv5 algorithm for complex background armor
target recognition, which improves the performance of the algo-
rithm by fusing DETR and YOLOv5 structures, introducing an
attention mechanism CBAM, incorporating a multi-scale feature
fusion module, and using CIOU_Loss loss function calculation
and WBF prediction box filtering method. The experimental
results show that the GCD-YOLOv5 algorithm can achieve
the requirement of real-time detection time while ensuring a
high accuracy rate. The trained model for different complex
backgrounds, armored targets can be effectively detected, there
is no leakage and false alarm phenomenon, the average ac-
curacy means value reaches more than 99.7%, and the fps
is improved by 68.56% compared to the traditional YOLOv5
algorithm, which further verifies the correctness of the algorithm
and model. The next step is to continue to lighten the model
without affecting the performance of the algorithm and model
and improve the recognition in real-time is a research direction
afterward.
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